PHP WebShell

Текущая директория: /opt/BitGoJS/node_modules/asmcrypto.js

Просмотр файла: asmcrypto.js

/*! asmCrypto v0.22.0, (c) 2018 asmCrypto.js, opensource.org/licenses/MIT */
(function (global, factory) {
   typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports) :
   typeof define === 'function' && define.amd ? define(['exports'], factory) :
   (factory((global.asmCrypto = {})));
}(this, (function (exports) { 'use strict';

   var FloatArray = typeof Float64Array !== 'undefined' ? Float64Array : Float32Array; // make PhantomJS happy

   /**
    * @param {string} str
    * @param {boolean} [utf8]
    * @return {Uint8Array}
    */
   function string_to_bytes(str, utf8) {
     utf8 = !!utf8;

     var len = str.length,
       bytes = new Uint8Array(utf8 ? 4 * len : len);

     for (var i = 0, j = 0; i < len; i++) {
       var c = str.charCodeAt(i);

       if (utf8 && 0xd800 <= c && c <= 0xdbff) {
         if (++i >= len) throw new Error('Malformed string, low surrogate expected at position ' + i);
         c = ((c ^ 0xd800) << 10) | 0x10000 | (str.charCodeAt(i) ^ 0xdc00);
       } else if (!utf8 && c >>> 8) {
         throw new Error('Wide characters are not allowed.');
       }

       if (!utf8 || c <= 0x7f) {
         bytes[j++] = c;
       } else if (c <= 0x7ff) {
         bytes[j++] = 0xc0 | (c >> 6);
         bytes[j++] = 0x80 | (c & 0x3f);
       } else if (c <= 0xffff) {
         bytes[j++] = 0xe0 | (c >> 12);
         bytes[j++] = 0x80 | ((c >> 6) & 0x3f);
         bytes[j++] = 0x80 | (c & 0x3f);
       } else {
         bytes[j++] = 0xf0 | (c >> 18);
         bytes[j++] = 0x80 | ((c >> 12) & 0x3f);
         bytes[j++] = 0x80 | ((c >> 6) & 0x3f);
         bytes[j++] = 0x80 | (c & 0x3f);
       }
     }

     return bytes.subarray(0, j);
   }

   function hex_to_bytes(str) {
     var len = str.length;
     if (len & 1) {
       str = '0' + str;
       len++;
     }
     var bytes = new Uint8Array(len >> 1);
     for (var i = 0; i < len; i += 2) {
       bytes[i >> 1] = parseInt(str.substr(i, 2), 16);
     }
     return bytes;
   }

   function base64_to_bytes(str) {
     return string_to_bytes(atob(str));
   }

   function bytes_to_string(bytes, utf8) {
     utf8 = !!utf8;

     var len = bytes.length,
       chars = new Array(len);

     for (var i = 0, j = 0; i < len; i++) {
       var b = bytes[i];
       if (!utf8 || b < 128) {
         chars[j++] = b;
       } else if (b >= 192 && b < 224 && i + 1 < len) {
         chars[j++] = ((b & 0x1f) << 6) | (bytes[++i] & 0x3f);
       } else if (b >= 224 && b < 240 && i + 2 < len) {
         chars[j++] = ((b & 0xf) << 12) | ((bytes[++i] & 0x3f) << 6) | (bytes[++i] & 0x3f);
       } else if (b >= 240 && b < 248 && i + 3 < len) {
         var c = ((b & 7) << 18) | ((bytes[++i] & 0x3f) << 12) | ((bytes[++i] & 0x3f) << 6) | (bytes[++i] & 0x3f);
         if (c <= 0xffff) {
           chars[j++] = c;
         } else {
           c ^= 0x10000;
           chars[j++] = 0xd800 | (c >> 10);
           chars[j++] = 0xdc00 | (c & 0x3ff);
         }
       } else {
         throw new Error('Malformed UTF8 character at byte offset ' + i);
       }
     }

     var str = '',
       bs = 16384;
     for (var i = 0; i < j; i += bs) {
       str += String.fromCharCode.apply(String, chars.slice(i, i + bs <= j ? i + bs : j));
     }

     return str;
   }

   function bytes_to_hex(arr) {
     var str = '';
     for (var i = 0; i < arr.length; i++) {
       var h = (arr[i] & 0xff).toString(16);
       if (h.length < 2) str += '0';
       str += h;
     }
     return str;
   }

   function bytes_to_base64(arr) {
     return btoa(bytes_to_string(arr));
   }



   function is_number(a) {
     return typeof a === 'number';
   }

   function is_string(a) {
     return typeof a === 'string';
   }

   function is_buffer(a) {
     return a instanceof ArrayBuffer;
   }

   function is_bytes(a) {
     return a instanceof Uint8Array;
   }

   function is_typed_array(a) {
     return (
       a instanceof Int8Array ||
       a instanceof Uint8Array ||
       a instanceof Int16Array ||
       a instanceof Uint16Array ||
       a instanceof Int32Array ||
       a instanceof Uint32Array ||
       a instanceof Float32Array ||
       a instanceof Float64Array
     );
   }

   function _heap_init(constructor, heap, heapSize) {
     var size = heap ? heap.byteLength : heapSize || 65536;

     if (size & 0xfff || size <= 0) throw new Error('heap size must be a positive integer and a multiple of 4096');

     heap = heap || new constructor(new ArrayBuffer(size));

     return heap;
   }

   function _heap_write(heap, hpos, data, dpos, dlen) {
     var hlen = heap.length - hpos,
       wlen = hlen < dlen ? hlen : dlen;

     heap.set(data.subarray(dpos, dpos + wlen), hpos);

     return wlen;
   }

   /**
    * Util exports
    */

   function IllegalStateError() {
     var err = Error.apply(this, arguments);
     this.message = err.message, this.stack = err.stack;
   }
   IllegalStateError.prototype = Object.create(Error.prototype, { name: { value: 'IllegalStateError' } });

   function IllegalArgumentError() {
     var err = Error.apply(this, arguments);
     this.message = err.message, this.stack = err.stack;
   }
   IllegalArgumentError.prototype = Object.create(Error.prototype, { name: { value: 'IllegalArgumentError' } });

   function SecurityError() {
     var err = Error.apply(this, arguments);
     this.message = err.message, this.stack = err.stack;
   }
   SecurityError.prototype = Object.create(Error.prototype, { name: { value: 'SecurityError' } });

   /**
    * @file {@link http://asmjs.org Asm.js} implementation of the {@link https://en.wikipedia.org/wiki/Advanced_Encryption_Standard Advanced Encryption Standard}.
    * @author Artem S Vybornov <vybornov@gmail.com>
    * @license MIT
    */
   var AES_asm = function () {
     var ginit_done = false;

     /**
      * Galois Field exponentiation and logarithm tables for 3 (the generator)
      */
     var gexp3, glog3;

     /**
      * Init Galois Field tables
      */
     function ginit() {
       gexp3 = [], glog3 = [];

       var a = 1, c, d;
       for (c = 0; c < 255; c++) {
         gexp3[c] = a;

         // Multiply by three
         d = a & 0x80, a <<= 1, a &= 255;
         if (d === 0x80) a ^= 0x1b;
         a ^= gexp3[c];

         // Set the log table value
         glog3[gexp3[c]] = c;
       }
       gexp3[255] = gexp3[0];
       glog3[0] = 0;

       ginit_done = true;
     }

     /**
      * Galois Field multiplication
      * @param {number} a
      * @param {number} b
      * @return {number}
      */
     function gmul(a, b) {
       var c = gexp3[(glog3[a] + glog3[b]) % 255];
       if (a === 0 || b === 0) c = 0;
       return c;
     }

     /**
      * Galois Field reciprocal
      * @param {number} a
      * @return {number}
      */
     function ginv(a) {
       var i = gexp3[255 - glog3[a]];
       if (a === 0) i = 0;
       return i;
     }

     /**
      * AES stuff init flag
      */
     var aes_init_done = false;

     /**
      * Encryption, Decryption, S-Box and KeyTransform tables
      *
      * @type {number[]}
      */
     var aes_sbox;

     /**
      * @type {number[]}
      */
     var aes_sinv;

     /**
      * @type {number[][]}
      */
     var aes_enc;

     /**
      * @type {number[][]}
      */
     var aes_dec;

     /**
      * Init AES tables
      */
     function aes_init() {
       if (!ginit_done) ginit();

       // Calculates AES S-Box value
       function _s(a) {
         var c, s, x;
         s = x = ginv(a);
         for (c = 0; c < 4; c++) {
           s = ((s << 1) | (s >>> 7)) & 255;
           x ^= s;
         }
         x ^= 99;
         return x;
       }

       // Tables
       aes_sbox = [], aes_sinv = [], aes_enc = [[], [], [], []], aes_dec = [[], [], [], []];

       for (var i = 0; i < 256; i++) {
         var s = _s(i);

         // S-Box and its inverse
         aes_sbox[i] = s;
         aes_sinv[s] = i;

         // Ecryption and Decryption tables
         aes_enc[0][i] = (gmul(2, s) << 24) | (s << 16) | (s << 8) | gmul(3, s);
         aes_dec[0][s] = (gmul(14, i) << 24) | (gmul(9, i) << 16) | (gmul(13, i) << 8) | gmul(11, i);
         // Rotate tables
         for (var t = 1; t < 4; t++) {
           aes_enc[t][i] = (aes_enc[t - 1][i] >>> 8) | (aes_enc[t - 1][i] << 24);
           aes_dec[t][s] = (aes_dec[t - 1][s] >>> 8) | (aes_dec[t - 1][s] << 24);
         }
       }
     }

     /**
      * Asm.js module constructor.
      *
      * <p>
      * Heap buffer layout by offset:
      * <pre>
      * 0x0000   encryption key schedule
      * 0x0400   decryption key schedule
      * 0x0800   sbox
      * 0x0c00   inv sbox
      * 0x1000   encryption tables
      * 0x2000   decryption tables
      * 0x3000   reserved (future GCM multiplication lookup table)
      * 0x4000   data
      * </pre>
      * Don't touch anything before <code>0x400</code>.
      * </p>
      *
      * @alias AES_asm
      * @class
      * @param {Object} foreign - <i>ignored</i>
      * @param {ArrayBuffer} buffer - heap buffer to link with
      */
     var wrapper = function (foreign, buffer) {
       // Init AES stuff for the first time
       if (!aes_init_done) aes_init();

       // Fill up AES tables
       var heap = new Uint32Array(buffer);
       heap.set(aes_sbox, 0x0800 >> 2);
       heap.set(aes_sinv, 0x0c00 >> 2);
       for (var i = 0; i < 4; i++) {
         heap.set(aes_enc[i], (0x1000 + 0x400 * i) >> 2);
         heap.set(aes_dec[i], (0x2000 + 0x400 * i) >> 2);
       }

       /**
        * Calculate AES key schedules.
        * @instance
        * @memberof AES_asm
        * @param {number} ks - key size, 4/6/8 (for 128/192/256-bit key correspondingly)
        * @param {number} k0 - key vector components
        * @param {number} k1 - key vector components
        * @param {number} k2 - key vector components
        * @param {number} k3 - key vector components
        * @param {number} k4 - key vector components
        * @param {number} k5 - key vector components
        * @param {number} k6 - key vector components
        * @param {number} k7 - key vector components
        */
       function set_key(ks, k0, k1, k2, k3, k4, k5, k6, k7) {
         var ekeys = heap.subarray(0x000, 60),
           dkeys = heap.subarray(0x100, 0x100 + 60);

         // Encryption key schedule
         ekeys.set([k0, k1, k2, k3, k4, k5, k6, k7]);
         for (var i = ks, rcon = 1; i < 4 * ks + 28; i++) {
           var k = ekeys[i - 1];
           if ((i % ks === 0) || (ks === 8 && i % ks === 4)) {
             k = aes_sbox[k >>> 24] << 24 ^ aes_sbox[k >>> 16 & 255] << 16 ^ aes_sbox[k >>> 8 & 255] << 8 ^ aes_sbox[k & 255];
           }
           if (i % ks === 0) {
             k = (k << 8) ^ (k >>> 24) ^ (rcon << 24);
             rcon = (rcon << 1) ^ ((rcon & 0x80) ? 0x1b : 0);
           }
           ekeys[i] = ekeys[i - ks] ^ k;
         }

         // Decryption key schedule
         for (var j = 0; j < i; j += 4) {
           for (var jj = 0; jj < 4; jj++) {
             var k = ekeys[i - (4 + j) + (4 - jj) % 4];
             if (j < 4 || j >= i - 4) {
               dkeys[j + jj] = k;
             } else {
               dkeys[j + jj] = aes_dec[0][aes_sbox[k >>> 24]]
                 ^ aes_dec[1][aes_sbox[k >>> 16 & 255]]
                 ^ aes_dec[2][aes_sbox[k >>> 8 & 255]]
                 ^ aes_dec[3][aes_sbox[k & 255]];
             }
           }
         }

         // Set rounds number
         asm.set_rounds(ks + 5);
       }

       // create library object with necessary properties
       var stdlib = {Uint8Array: Uint8Array, Uint32Array: Uint32Array};

       var asm = function (stdlib, foreign, buffer) {
         "use asm";

         var S0 = 0, S1 = 0, S2 = 0, S3 = 0,
           I0 = 0, I1 = 0, I2 = 0, I3 = 0,
           N0 = 0, N1 = 0, N2 = 0, N3 = 0,
           M0 = 0, M1 = 0, M2 = 0, M3 = 0,
           H0 = 0, H1 = 0, H2 = 0, H3 = 0,
           R = 0;

         var HEAP = new stdlib.Uint32Array(buffer),
           DATA = new stdlib.Uint8Array(buffer);

         /**
          * AES core
          * @param {number} k - precomputed key schedule offset
          * @param {number} s - precomputed sbox table offset
          * @param {number} t - precomputed round table offset
          * @param {number} r - number of inner rounds to perform
          * @param {number} x0 - 128-bit input block vector
          * @param {number} x1 - 128-bit input block vector
          * @param {number} x2 - 128-bit input block vector
          * @param {number} x3 - 128-bit input block vector
          */
         function _core(k, s, t, r, x0, x1, x2, x3) {
           k = k | 0;
           s = s | 0;
           t = t | 0;
           r = r | 0;
           x0 = x0 | 0;
           x1 = x1 | 0;
           x2 = x2 | 0;
           x3 = x3 | 0;

           var t1 = 0, t2 = 0, t3 = 0,
             y0 = 0, y1 = 0, y2 = 0, y3 = 0,
             i = 0;

           t1 = t | 0x400, t2 = t | 0x800, t3 = t | 0xc00;

           // round 0
           x0 = x0 ^ HEAP[(k | 0) >> 2], x1 = x1 ^ HEAP[(k | 4) >> 2], x2 = x2 ^ HEAP[(k | 8) >> 2], x3 = x3 ^ HEAP[(k | 12) >> 2];

           // round 1..r
           for (i = 16; (i | 0) <= (r << 4); i = (i + 16) | 0) {
             y0 = HEAP[(t | x0 >> 22 & 1020) >> 2] ^ HEAP[(t1 | x1 >> 14 & 1020) >> 2] ^ HEAP[(t2 | x2 >> 6 & 1020) >> 2] ^ HEAP[(t3 | x3 << 2 & 1020) >> 2] ^ HEAP[(k | i | 0) >> 2], y1 = HEAP[(t | x1 >> 22 & 1020) >> 2] ^ HEAP[(t1 | x2 >> 14 & 1020) >> 2] ^ HEAP[(t2 | x3 >> 6 & 1020) >> 2] ^ HEAP[(t3 | x0 << 2 & 1020) >> 2] ^ HEAP[(k | i | 4) >> 2], y2 = HEAP[(t | x2 >> 22 & 1020) >> 2] ^ HEAP[(t1 | x3 >> 14 & 1020) >> 2] ^ HEAP[(t2 | x0 >> 6 & 1020) >> 2] ^ HEAP[(t3 | x1 << 2 & 1020) >> 2] ^ HEAP[(k | i | 8) >> 2], y3 = HEAP[(t | x3 >> 22 & 1020) >> 2] ^ HEAP[(t1 | x0 >> 14 & 1020) >> 2] ^ HEAP[(t2 | x1 >> 6 & 1020) >> 2] ^ HEAP[(t3 | x2 << 2 & 1020) >> 2] ^ HEAP[(k | i | 12) >> 2];
             x0 = y0, x1 = y1, x2 = y2, x3 = y3;
           }

           // final round
           S0 = HEAP[(s | x0 >> 22 & 1020) >> 2] << 24 ^ HEAP[(s | x1 >> 14 & 1020) >> 2] << 16 ^ HEAP[(s | x2 >> 6 & 1020) >> 2] << 8 ^ HEAP[(s | x3 << 2 & 1020) >> 2] ^ HEAP[(k | i | 0) >> 2], S1 = HEAP[(s | x1 >> 22 & 1020) >> 2] << 24 ^ HEAP[(s | x2 >> 14 & 1020) >> 2] << 16 ^ HEAP[(s | x3 >> 6 & 1020) >> 2] << 8 ^ HEAP[(s | x0 << 2 & 1020) >> 2] ^ HEAP[(k | i | 4) >> 2], S2 = HEAP[(s | x2 >> 22 & 1020) >> 2] << 24 ^ HEAP[(s | x3 >> 14 & 1020) >> 2] << 16 ^ HEAP[(s | x0 >> 6 & 1020) >> 2] << 8 ^ HEAP[(s | x1 << 2 & 1020) >> 2] ^ HEAP[(k | i | 8) >> 2], S3 = HEAP[(s | x3 >> 22 & 1020) >> 2] << 24 ^ HEAP[(s | x0 >> 14 & 1020) >> 2] << 16 ^ HEAP[(s | x1 >> 6 & 1020) >> 2] << 8 ^ HEAP[(s | x2 << 2 & 1020) >> 2] ^ HEAP[(k | i | 12) >> 2];
         }

         /**
          * ECB mode encryption
          * @param {number} x0 - 128-bit input block vector
          * @param {number} x1 - 128-bit input block vector
          * @param {number} x2 - 128-bit input block vector
          * @param {number} x3 - 128-bit input block vector
          */
         function _ecb_enc(x0, x1, x2, x3) {
           x0 = x0 | 0;
           x1 = x1 | 0;
           x2 = x2 | 0;
           x3 = x3 | 0;

           _core(
             0x0000, 0x0800, 0x1000,
             R,
             x0,
             x1,
             x2,
             x3,
           );
         }

         /**
          * ECB mode decryption
          * @param {number} x0 - 128-bit input block vector
          * @param {number} x1 - 128-bit input block vector
          * @param {number} x2 - 128-bit input block vector
          * @param {number} x3 - 128-bit input block vector
          */
         function _ecb_dec(x0, x1, x2, x3) {
           x0 = x0 | 0;
           x1 = x1 | 0;
           x2 = x2 | 0;
           x3 = x3 | 0;

           var t = 0;

           _core(
             0x0400, 0x0c00, 0x2000,
             R,
             x0,
             x3,
             x2,
             x1,
           );

           t = S1, S1 = S3, S3 = t;
         }


         /**
          * CBC mode encryption
          * @param {number} x0 - 128-bit input block vector
          * @param {number} x1 - 128-bit input block vector
          * @param {number} x2 - 128-bit input block vector
          * @param {number} x3 - 128-bit input block vector
          */
         function _cbc_enc(x0, x1, x2, x3) {
           x0 = x0 | 0;
           x1 = x1 | 0;
           x2 = x2 | 0;
           x3 = x3 | 0;

           _core(
             0x0000, 0x0800, 0x1000,
             R,
             I0 ^ x0,
             I1 ^ x1,
             I2 ^ x2,
             I3 ^ x3,
           );

           I0 = S0, I1 = S1, I2 = S2, I3 = S3;
         }

         /**
          * CBC mode decryption
          * @param {number} x0 - 128-bit input block vector
          * @param {number} x1 - 128-bit input block vector
          * @param {number} x2 - 128-bit input block vector
          * @param {number} x3 - 128-bit input block vector
          */
         function _cbc_dec(x0, x1, x2, x3) {
           x0 = x0 | 0;
           x1 = x1 | 0;
           x2 = x2 | 0;
           x3 = x3 | 0;

           var t = 0;

           _core(
             0x0400, 0x0c00, 0x2000,
             R,
             x0,
             x3,
             x2,
             x1,
           );

           t = S1, S1 = S3, S3 = t;

           S0 = S0 ^ I0, S1 = S1 ^ I1, S2 = S2 ^ I2, S3 = S3 ^ I3;

           I0 = x0, I1 = x1, I2 = x2, I3 = x3;
         }

         /**
          * CFB mode encryption
          * @param {number} x0 - 128-bit input block vector
          * @param {number} x1 - 128-bit input block vector
          * @param {number} x2 - 128-bit input block vector
          * @param {number} x3 - 128-bit input block vector
          */
         function _cfb_enc(x0, x1, x2, x3) {
           x0 = x0 | 0;
           x1 = x1 | 0;
           x2 = x2 | 0;
           x3 = x3 | 0;

           _core(
             0x0000, 0x0800, 0x1000,
             R,
             I0,
             I1,
             I2,
             I3,
           );

           I0 = S0 = S0 ^ x0, I1 = S1 = S1 ^ x1, I2 = S2 = S2 ^ x2, I3 = S3 = S3 ^ x3;
         }


         /**
          * CFB mode decryption
          * @param {number} x0 - 128-bit input block vector
          * @param {number} x1 - 128-bit input block vector
          * @param {number} x2 - 128-bit input block vector
          * @param {number} x3 - 128-bit input block vector
          */
         function _cfb_dec(x0, x1, x2, x3) {
           x0 = x0 | 0;
           x1 = x1 | 0;
           x2 = x2 | 0;
           x3 = x3 | 0;

           _core(
             0x0000, 0x0800, 0x1000,
             R,
             I0,
             I1,
             I2,
             I3,
           );

           S0 = S0 ^ x0, S1 = S1 ^ x1, S2 = S2 ^ x2, S3 = S3 ^ x3;

           I0 = x0, I1 = x1, I2 = x2, I3 = x3;
         }

         /**
          * OFB mode encryption / decryption
          * @param {number} x0 - 128-bit input block vector
          * @param {number} x1 - 128-bit input block vector
          * @param {number} x2 - 128-bit input block vector
          * @param {number} x3 - 128-bit input block vector
          */
         function _ofb(x0, x1, x2, x3) {
           x0 = x0 | 0;
           x1 = x1 | 0;
           x2 = x2 | 0;
           x3 = x3 | 0;

           _core(
             0x0000, 0x0800, 0x1000,
             R,
             I0,
             I1,
             I2,
             I3,
           );

           I0 = S0, I1 = S1, I2 = S2, I3 = S3;

           S0 = S0 ^ x0, S1 = S1 ^ x1, S2 = S2 ^ x2, S3 = S3 ^ x3;
         }

         /**
          * CTR mode encryption / decryption
          * @param {number} x0 - 128-bit input block vector
          * @param {number} x1 - 128-bit input block vector
          * @param {number} x2 - 128-bit input block vector
          * @param {number} x3 - 128-bit input block vector
          */
         function _ctr(x0, x1, x2, x3) {
           x0 = x0 | 0;
           x1 = x1 | 0;
           x2 = x2 | 0;
           x3 = x3 | 0;

           _core(
             0x0000, 0x0800, 0x1000,
             R,
             N0,
             N1,
             N2,
             N3,
           );

           N3 = (~M3 & N3) | M3 & (N3 + 1);
             N2 = (~M2 & N2) | M2 & (N2 + ((N3 | 0) == 0));
             N1 = (~M1 & N1) | M1 & (N1 + ((N2 | 0) == 0));
             N0 = (~M0 & N0) | M0 & (N0 + ((N1 | 0) == 0));

           S0 = S0 ^ x0;
             S1 = S1 ^ x1;
             S2 = S2 ^ x2;
             S3 = S3 ^ x3;
         }

         /**
          * GCM mode MAC calculation
          * @param {number} x0 - 128-bit input block vector
          * @param {number} x1 - 128-bit input block vector
          * @param {number} x2 - 128-bit input block vector
          * @param {number} x3 - 128-bit input block vector
          */
         function _gcm_mac(x0, x1, x2, x3) {
           x0 = x0 | 0;
           x1 = x1 | 0;
           x2 = x2 | 0;
           x3 = x3 | 0;

           var y0 = 0, y1 = 0, y2 = 0, y3 = 0,
             z0 = 0, z1 = 0, z2 = 0, z3 = 0,
             i = 0, c = 0;

           x0 = x0 ^ I0, x1 = x1 ^ I1, x2 = x2 ^ I2, x3 = x3 ^ I3;

           y0 = H0 | 0, y1 = H1 | 0, y2 = H2 | 0, y3 = H3 | 0;

           for (; (i | 0) < 128; i = (i + 1) | 0) {
             if (y0 >>> 31) {
               z0 = z0 ^ x0, z1 = z1 ^ x1, z2 = z2 ^ x2, z3 = z3 ^ x3;
             }

             y0 = (y0 << 1) | (y1 >>> 31), y1 = (y1 << 1) | (y2 >>> 31), y2 = (y2 << 1) | (y3 >>> 31), y3 = (y3 << 1);

             c = x3 & 1;

             x3 = (x3 >>> 1) | (x2 << 31), x2 = (x2 >>> 1) | (x1 << 31), x1 = (x1 >>> 1) | (x0 << 31), x0 = (x0 >>> 1);

             if (c) x0 = x0 ^ 0xe1000000;
           }

           I0 = z0, I1 = z1, I2 = z2, I3 = z3;
         }

         /**
          * Set the internal rounds number.
          * @instance
          * @memberof AES_asm
          * @param {number} r - number if inner AES rounds
          */
         function set_rounds(r) {
           r = r | 0;
           R = r;
         }

         /**
          * Populate the internal state of the module.
          * @instance
          * @memberof AES_asm
          * @param {number} s0 - state vector
          * @param {number} s1 - state vector
          * @param {number} s2 - state vector
          * @param {number} s3 - state vector
          */
         function set_state(s0, s1, s2, s3) {
           s0 = s0 | 0;
           s1 = s1 | 0;
           s2 = s2 | 0;
           s3 = s3 | 0;

           S0 = s0, S1 = s1, S2 = s2, S3 = s3;
         }

         /**
          * Populate the internal iv of the module.
          * @instance
          * @memberof AES_asm
          * @param {number} i0 - iv vector
          * @param {number} i1 - iv vector
          * @param {number} i2 - iv vector
          * @param {number} i3 - iv vector
          */
         function set_iv(i0, i1, i2, i3) {
           i0 = i0 | 0;
           i1 = i1 | 0;
           i2 = i2 | 0;
           i3 = i3 | 0;

           I0 = i0, I1 = i1, I2 = i2, I3 = i3;
         }

         /**
          * Set nonce for CTR-family modes.
          * @instance
          * @memberof AES_asm
          * @param {number} n0 - nonce vector
          * @param {number} n1 - nonce vector
          * @param {number} n2 - nonce vector
          * @param {number} n3 - nonce vector
          */
         function set_nonce(n0, n1, n2, n3) {
           n0 = n0 | 0;
           n1 = n1 | 0;
           n2 = n2 | 0;
           n3 = n3 | 0;

           N0 = n0, N1 = n1, N2 = n2, N3 = n3;
         }

         /**
          * Set counter mask for CTR-family modes.
          * @instance
          * @memberof AES_asm
          * @param {number} m0 - counter mask vector
          * @param {number} m1 - counter mask vector
          * @param {number} m2 - counter mask vector
          * @param {number} m3 - counter mask vector
          */
         function set_mask(m0, m1, m2, m3) {
           m0 = m0 | 0;
           m1 = m1 | 0;
           m2 = m2 | 0;
           m3 = m3 | 0;

           M0 = m0, M1 = m1, M2 = m2, M3 = m3;
         }

         /**
          * Set counter for CTR-family modes.
          * @instance
          * @memberof AES_asm
          * @param {number} c0 - counter vector
          * @param {number} c1 - counter vector
          * @param {number} c2 - counter vector
          * @param {number} c3 - counter vector
          */
         function set_counter(c0, c1, c2, c3) {
           c0 = c0 | 0;
           c1 = c1 | 0;
           c2 = c2 | 0;
           c3 = c3 | 0;

           N3 = (~M3 & N3) | M3 & c3, N2 = (~M2 & N2) | M2 & c2, N1 = (~M1 & N1) | M1 & c1, N0 = (~M0 & N0) | M0 & c0;
         }

         /**
          * Store the internal state vector into the heap.
          * @instance
          * @memberof AES_asm
          * @param {number} pos - offset where to put the data
          * @return {number} The number of bytes have been written into the heap, always 16.
          */
         function get_state(pos) {
           pos = pos | 0;

           if (pos & 15) return -1;

           DATA[pos | 0] = S0 >>> 24, DATA[pos | 1] = S0 >>> 16 & 255, DATA[pos | 2] = S0 >>> 8 & 255, DATA[pos | 3] = S0 & 255, DATA[pos | 4] = S1 >>> 24, DATA[pos | 5] = S1 >>> 16 & 255, DATA[pos | 6] = S1 >>> 8 & 255, DATA[pos | 7] = S1 & 255, DATA[pos | 8] = S2 >>> 24, DATA[pos | 9] = S2 >>> 16 & 255, DATA[pos | 10] = S2 >>> 8 & 255, DATA[pos | 11] = S2 & 255, DATA[pos | 12] = S3 >>> 24, DATA[pos | 13] = S3 >>> 16 & 255, DATA[pos | 14] = S3 >>> 8 & 255, DATA[pos | 15] = S3 & 255;

           return 16;
         }

         /**
          * Store the internal iv vector into the heap.
          * @instance
          * @memberof AES_asm
          * @param {number} pos - offset where to put the data
          * @return {number} The number of bytes have been written into the heap, always 16.
          */
         function get_iv(pos) {
           pos = pos | 0;

           if (pos & 15) return -1;

           DATA[pos | 0] = I0 >>> 24, DATA[pos | 1] = I0 >>> 16 & 255, DATA[pos | 2] = I0 >>> 8 & 255, DATA[pos | 3] = I0 & 255, DATA[pos | 4] = I1 >>> 24, DATA[pos | 5] = I1 >>> 16 & 255, DATA[pos | 6] = I1 >>> 8 & 255, DATA[pos | 7] = I1 & 255, DATA[pos | 8] = I2 >>> 24, DATA[pos | 9] = I2 >>> 16 & 255, DATA[pos | 10] = I2 >>> 8 & 255, DATA[pos | 11] = I2 & 255, DATA[pos | 12] = I3 >>> 24, DATA[pos | 13] = I3 >>> 16 & 255, DATA[pos | 14] = I3 >>> 8 & 255, DATA[pos | 15] = I3 & 255;

           return 16;
         }

         /**
          * GCM initialization.
          * @instance
          * @memberof AES_asm
          */
         function gcm_init() {
           _ecb_enc(0, 0, 0, 0);
           H0 = S0, H1 = S1, H2 = S2, H3 = S3;
         }

         /**
          * Perform ciphering operation on the supplied data.
          * @instance
          * @memberof AES_asm
          * @param {number} mode - block cipher mode (see {@link AES_asm} mode constants)
          * @param {number} pos - offset of the data being processed
          * @param {number} len - length of the data being processed
          * @return {number} Actual amount of data have been processed.
          */
         function cipher(mode, pos, len) {
           mode = mode | 0;
           pos = pos | 0;
           len = len | 0;

           var ret = 0;

           if (pos & 15) return -1;

           while ((len | 0) >= 16) {
             _cipher_modes[mode & 7](
               DATA[pos | 0] << 24 | DATA[pos | 1] << 16 | DATA[pos | 2] << 8 | DATA[pos | 3],
               DATA[pos | 4] << 24 | DATA[pos | 5] << 16 | DATA[pos | 6] << 8 | DATA[pos | 7],
               DATA[pos | 8] << 24 | DATA[pos | 9] << 16 | DATA[pos | 10] << 8 | DATA[pos | 11],
               DATA[pos | 12] << 24 | DATA[pos | 13] << 16 | DATA[pos | 14] << 8 | DATA[pos | 15],
             );

             DATA[pos | 0] = S0 >>> 24, DATA[pos | 1] = S0 >>> 16 & 255, DATA[pos | 2] = S0 >>> 8 & 255, DATA[pos | 3] = S0 & 255, DATA[pos | 4] = S1 >>> 24, DATA[pos | 5] = S1 >>> 16 & 255, DATA[pos | 6] = S1 >>> 8 & 255, DATA[pos | 7] = S1 & 255, DATA[pos | 8] = S2 >>> 24, DATA[pos | 9] = S2 >>> 16 & 255, DATA[pos | 10] = S2 >>> 8 & 255, DATA[pos | 11] = S2 & 255, DATA[pos | 12] = S3 >>> 24, DATA[pos | 13] = S3 >>> 16 & 255, DATA[pos | 14] = S3 >>> 8 & 255, DATA[pos | 15] = S3 & 255;

             ret = (ret + 16) | 0, pos = (pos + 16) | 0, len = (len - 16) | 0;
           }

           return ret | 0;
         }

         /**
          * Calculates MAC of the supplied data.
          * @instance
          * @memberof AES_asm
          * @param {number} mode - block cipher mode (see {@link AES_asm} mode constants)
          * @param {number} pos - offset of the data being processed
          * @param {number} len - length of the data being processed
          * @return {number} Actual amount of data have been processed.
          */
         function mac(mode, pos, len) {
           mode = mode | 0;
           pos = pos | 0;
           len = len | 0;

           var ret = 0;

           if (pos & 15) return -1;

           while ((len | 0) >= 16) {
             _mac_modes[mode & 1](
               DATA[pos | 0] << 24 | DATA[pos | 1] << 16 | DATA[pos | 2] << 8 | DATA[pos | 3],
               DATA[pos | 4] << 24 | DATA[pos | 5] << 16 | DATA[pos | 6] << 8 | DATA[pos | 7],
               DATA[pos | 8] << 24 | DATA[pos | 9] << 16 | DATA[pos | 10] << 8 | DATA[pos | 11],
               DATA[pos | 12] << 24 | DATA[pos | 13] << 16 | DATA[pos | 14] << 8 | DATA[pos | 15],
             );

             ret = (ret + 16) | 0, pos = (pos + 16) | 0, len = (len - 16) | 0;
           }

           return ret | 0;
         }

         /**
          * AES cipher modes table (virual methods)
          */
         var _cipher_modes = [_ecb_enc, _ecb_dec, _cbc_enc, _cbc_dec, _cfb_enc, _cfb_dec, _ofb, _ctr];

         /**
          * AES MAC modes table (virual methods)
          */
         var _mac_modes = [_cbc_enc, _gcm_mac];

         /**
          * Asm.js module exports
          */
         return {
           set_rounds: set_rounds,
           set_state: set_state,
           set_iv: set_iv,
           set_nonce: set_nonce,
           set_mask: set_mask,
           set_counter: set_counter,
           get_state: get_state,
           get_iv: get_iv,
           gcm_init: gcm_init,
           cipher: cipher,
           mac: mac,
         };
       }(stdlib, foreign, buffer);

       asm.set_key = set_key;

       return asm;
     };

     /**
      * AES enciphering mode constants
      * @enum {number}
      * @const
      */
     wrapper.ENC = {
       ECB: 0,
       CBC: 2,
       CFB: 4,
       OFB: 6,
       CTR: 7,
     }, wrapper.DEC = {
         ECB: 1,
         CBC: 3,
         CFB: 5,
         OFB: 6,
         CTR: 7,
       }, wrapper.MAC = {
         CBC: 0,
         GCM: 1,
       };

     /**
      * Heap data offset
      * @type {number}
      * @const
      */
     wrapper.HEAP_DATA = 0x4000;

     return wrapper;
   }();

   // shared asm.js module and heap
   var _AES_heap_instance = new Uint8Array(0x100000); // 1MB
   var _AES_asm_instance = AES_asm(null, _AES_heap_instance.buffer);

   class AES {
     constructor(key, iv, padding, heap, asm) {
       this.nonce = null;
       this.counter = 0;
       this.counterSize = 0;

       this.heap = _heap_init(Uint8Array, heap).subarray(AES_asm.HEAP_DATA);
       this.asm = asm || AES_asm(null, this.heap.buffer);
       this.mode = null;
       this.key = null;

       this.AES_reset(key, iv, padding);
     }

     /**
      * @param {Uint8Array} key
      */
     AES_set_key(key) {
       if (key !== undefined) {
         if (!is_bytes(key)) {
           throw new TypeError('unexpected key type');
         }

         var keylen = key.length;
         if (keylen !== 16 && keylen !== 24 && keylen !== 32) throw new IllegalArgumentError('illegal key size');

         var keyview = new DataView(key.buffer, key.byteOffset, key.byteLength);
         this.asm.set_key(
           keylen >> 2,
           keyview.getUint32(0),
           keyview.getUint32(4),
           keyview.getUint32(8),
           keyview.getUint32(12),
           keylen > 16 ? keyview.getUint32(16) : 0,
           keylen > 16 ? keyview.getUint32(20) : 0,
           keylen > 24 ? keyview.getUint32(24) : 0,
           keylen > 24 ? keyview.getUint32(28) : 0,
         );

         this.key = key;
       } else if (!this.key) {
         throw new Error('key is required');
       }
     }

     /**
      * This should be mixin instead of inheritance
      *
      * @param {Uint8Array} nonce
      * @param {number} [counter]
      * @param {number} [size]
      */
     AES_CTR_set_options(nonce, counter, size) {
       if (size !== undefined) {
         if (size < 8 || size > 48) throw new IllegalArgumentError('illegal counter size');

         this.counterSize = size;

         var mask = Math.pow(2, size) - 1;
         this.asm.set_mask(0, 0, (mask / 0x100000000) | 0, mask | 0);
       } else {
         this.counterSize = size = 48;
         this.asm.set_mask(0, 0, 0xffff, 0xffffffff);
       }

       if (nonce !== undefined) {
         if (!is_bytes(nonce)) {
           throw new TypeError('unexpected nonce type');
         }

         var len = nonce.length;
         if (!len || len > 16) throw new IllegalArgumentError('illegal nonce size');

         this.nonce = nonce;

         var view = new DataView(new ArrayBuffer(16));
         new Uint8Array(view.buffer).set(nonce);

         this.asm.set_nonce(view.getUint32(0), view.getUint32(4), view.getUint32(8), view.getUint32(12));
       } else {
         throw new Error('nonce is required');
       }

       if (counter !== undefined) {
         if (!is_number(counter)) throw new TypeError('unexpected counter type');

         if (counter < 0 || counter >= Math.pow(2, size)) throw new IllegalArgumentError('illegal counter value');

         this.counter = counter;

         this.asm.set_counter(0, 0, (counter / 0x100000000) | 0, counter | 0);
       } else {
         this.counter = 0;
       }
     }

     /**
      * @param {Uint8Array} iv
      */
     AES_set_iv(iv) {
       if (iv !== undefined) {
         if (!is_bytes(iv)) {
           throw new TypeError('unexpected iv type');
         }

         if (iv.length !== 16) throw new IllegalArgumentError('illegal iv size');

         var ivview = new DataView(iv.buffer, iv.byteOffset, iv.byteLength);

         this.iv = iv;
         this.asm.set_iv(ivview.getUint32(0), ivview.getUint32(4), ivview.getUint32(8), ivview.getUint32(12));
       } else {
         this.iv = null;
         this.asm.set_iv(0, 0, 0, 0);
       }
     }

     /**
      * @param {boolean} padding
      */
     AES_set_padding(padding) {
       if (padding !== undefined) {
         this.padding = !!padding;
       } else {
         this.padding = true;
       }
     }

     /**
      * @param {Uint8Array} key
      * @param {Uint8Array} [iv]
      * @param {boolean} [padding]
      */
     AES_reset(key, iv, padding) {
       this.result = null;
       this.pos = 0;
       this.len = 0;

       this.AES_set_key(key);
       this.AES_set_iv(iv);
       this.AES_set_padding(padding);

       return this;
     }

     /**
      * @param {Uint8Array} data
      */
     AES_Encrypt_process(data) {
       if (!is_bytes(data)) throw new TypeError("data isn't of expected type");

       var asm = this.asm,
         heap = this.heap,
         amode = AES_asm.ENC[this.mode],
         hpos = AES_asm.HEAP_DATA,
         pos = this.pos,
         len = this.len,
         dpos = 0,
         dlen = data.length || 0,
         rpos = 0,
         rlen = (len + dlen) & -16,
         wlen = 0;

       var result = new Uint8Array(rlen);

       while (dlen > 0) {
         wlen = _heap_write(heap, pos + len, data, dpos, dlen);
         len += wlen;
         dpos += wlen;
         dlen -= wlen;

         wlen = asm.cipher(amode, hpos + pos, len);

         if (wlen) result.set(heap.subarray(pos, pos + wlen), rpos);
         rpos += wlen;

         if (wlen < len) {
           pos += wlen;
           len -= wlen;
         } else {
           pos = 0;
           len = 0;
         }
       }

       this.result = result;
       this.pos = pos;
       this.len = len;

       return this;
     }

     /**
      * @param {Uint8Array} data
      */
     AES_Encrypt_finish(data) {
       var presult = null,
         prlen = 0;

       if (data !== undefined) {
         presult = this.AES_Encrypt_process(data).result;
         prlen = presult.length;
       }

       var asm = this.asm,
         heap = this.heap,
         amode = AES_asm.ENC[this.mode],
         hpos = AES_asm.HEAP_DATA,
         pos = this.pos,
         len = this.len,
         plen = 16 - len % 16,
         rlen = len;

       if (this.hasOwnProperty('padding')) {
         if (this.padding) {
           for (var p = 0; p < plen; ++p) heap[pos + len + p] = plen;
           len += plen;
           rlen = len;
         } else if (len % 16) {
           throw new IllegalArgumentError('data length must be a multiple of the block size');
         }
       } else {
         len += plen;
       }

       var result = new Uint8Array(prlen + rlen);

       if (prlen) result.set(presult);

       if (len) asm.cipher(amode, hpos + pos, len);

       if (rlen) result.set(heap.subarray(pos, pos + rlen), prlen);

       this.result = result;
       this.pos = 0;
       this.len = 0;

       return this;
     }

     /**
      * @param {Uint8Array} data
      */
     AES_Decrypt_process(data) {
       if (!is_bytes(data)) throw new TypeError("data isn't of expected type");

       var asm = this.asm,
         heap = this.heap,
         amode = AES_asm.DEC[this.mode],
         hpos = AES_asm.HEAP_DATA,
         pos = this.pos,
         len = this.len,
         dpos = 0,
         dlen = data.length || 0,
         rpos = 0,
         rlen = (len + dlen) & -16,
         plen = 0,
         wlen = 0;

       if (this.padding) {
         plen = len + dlen - rlen || 16;
         rlen -= plen;
       }

       var result = new Uint8Array(rlen);

       while (dlen > 0) {
         wlen = _heap_write(heap, pos + len, data, dpos, dlen);
         len += wlen;
         dpos += wlen;
         dlen -= wlen;

         wlen = asm.cipher(amode, hpos + pos, len - (!dlen ? plen : 0));

         if (wlen) result.set(heap.subarray(pos, pos + wlen), rpos);
         rpos += wlen;

         if (wlen < len) {
           pos += wlen;
           len -= wlen;
         } else {
           pos = 0;
           len = 0;
         }
       }

       this.result = result;
       this.pos = pos;
       this.len = len;

       return this;
     }

     /**
      * @param {Uint8Array} data
      */
     AES_Decrypt_finish(data) {
       var presult = null,
         prlen = 0;

       if (data !== undefined) {
         presult = this.AES_Decrypt_process(data).result;
         prlen = presult.length;
       }

       var asm = this.asm,
         heap = this.heap,
         amode = AES_asm.DEC[this.mode],
         hpos = AES_asm.HEAP_DATA,
         pos = this.pos,
         len = this.len,
         rlen = len;

       if (len > 0) {
         if (len % 16) {
           if (this.hasOwnProperty('padding')) {
             throw new IllegalArgumentError('data length must be a multiple of the block size');
           } else {
             len += 16 - len % 16;
           }
         }

         asm.cipher(amode, hpos + pos, len);

         if (this.hasOwnProperty('padding') && this.padding) {
           var pad = heap[pos + rlen - 1];
           if (pad < 1 || pad > 16 || pad > rlen) throw new SecurityError('bad padding');

           var pcheck = 0;
           for (var i = pad; i > 1; i--) pcheck |= pad ^ heap[pos + rlen - i];
           if (pcheck) throw new SecurityError('bad padding');

           rlen -= pad;
         }
       }

       var result = new Uint8Array(prlen + rlen);

       if (prlen > 0) {
         result.set(presult);
       }

       if (rlen > 0) {
         result.set(heap.subarray(pos, pos + rlen), prlen);
       }

       this.result = result;
       this.pos = 0;
       this.len = 0;

       return this;
     }
   }

   /**
    * Cipher Block Chaining Mode (CBC)
    */
   class AES_CBC extends AES {
     /**
      * @param {Uint8Array} key
      * @param {Uint8Array} [iv=null]
      * @param {boolean} [padding=true]
      * @param {Uint8Array} [heap]
      * @param {Uint8Array} [asm]
      */
     constructor(key, iv = null, padding = true, heap, asm) {
       super(key, iv, padding, heap, asm);

       this.mode = 'CBC';
       this.BLOCK_SIZE = 16;
     }

     encrypt(data) {
       return this.AES_Encrypt_finish(data);
     }

     decrypt(data) {
       return this.AES_Decrypt_finish(data);
     }
   }

   class AES_CBC_Encrypt extends AES_CBC {
     /**
      * @param {Uint8Array} key
      * @param {Uint8Array} [iv=null]
      * @param {boolean} [padding=true]
      * @param {Uint8Array} [heap]
      * @param {Uint8Array} [asm]
      */
     constructor(key, iv, padding, heap, asm) {
       super(key, iv, padding, heap, asm);
     }

     /**
      * @param {Uint8Array} key
      * @returns {AES_CBC_Encrypt}
      */
     reset(key) {
       return this.AES_reset(key, null, true);
     }

     /**
      * @param {Uint8Array} data
      * @returns {AES_CBC_Encrypt}
      */
     process(data) {
       return this.AES_Encrypt_process(data);
     }

     /**
      * @param {Uint8Array} data
      * @returns {AES_CBC_Encrypt}
      */
     finish(data) {
       return this.AES_Encrypt_finish(data);
     }
   }

   class AES_CBC_Decrypt extends AES_CBC {
     /**
      * @param {Uint8Array} key
      * @param {Uint8Array} [iv=null]
      * @param {boolean} [padding=true]
      * @param {Uint8Array} [heap]
      * @param {Uint8Array} [asm]
      */
     constructor(key, iv, padding, heap, asm) {
       super(key, iv, padding, heap, asm);
     }

     /**
      * @param {Uint8Array} key
      * @returns {AES_CBC_Decrypt}
      */
     reset(key) {
       return this.AES_reset(key, null, true);
     }

     /**
      * @param {Uint8Array} data
      * @returns {AES_CBC_Decrypt}
      */
     process(data) {
       return this.AES_Decrypt_process(data);
     }

     /**
      * @param {Uint8Array} data
      * @returns {AES_CBC_Decrypt}
      */
     finish(data) {
       return this.AES_Decrypt_finish(data);
     }
   }

   /**
    * @param {Uint8Array} data
    * @param {Uint8Array} key
    * @param {boolean} [padding]
    * @param {Uint8Array} [iv]
    * @returns {Uint8Array}
    */
   function AES_CBC_encrypt_bytes(data, key, padding, iv) {
     if (data === undefined) throw new SyntaxError('data required');
     if (key === undefined) throw new SyntaxError('key required');
     return new AES_CBC(key, iv, padding, _AES_heap_instance, _AES_asm_instance).encrypt(data).result;
   }

   /**
    * @param {Uint8Array} data
    * @param {Uint8Array} key
    * @param {boolean} [padding]
    * @param {Uint8Array} [iv]
    * @returns {Uint8Array}
    */
   function AES_CBC_decrypt_bytes(data, key, padding, iv) {
     if (data === undefined) throw new SyntaxError('data required');
     if (key === undefined) throw new SyntaxError('key required');
     return new AES_CBC(key, iv, padding, _AES_heap_instance, _AES_asm_instance).decrypt(data).result;
   }

   AES_CBC.encrypt = AES_CBC_encrypt_bytes;
   AES_CBC.decrypt = AES_CBC_decrypt_bytes;

   /**
    * Galois/Counter mode
    */

   var _AES_GCM_data_maxLength = 68719476704; // 2^36 - 2^5

   class AES_GCM extends AES {
     constructor(key, nonce, adata, tagSize, heap, asm) {
       super(key, undefined, false, heap, asm);

       this.nonce = null;
       this.adata = null;
       this.iv = null;
       this.counter = 1;
       this.tagSize = 16;
       this.mode = 'GCM';
       this.BLOCK_SIZE = 16;

       this.reset(key, tagSize, nonce, adata);
     }

     reset(key, tagSize, nonce, adata) {
       return this.AES_GCM_reset(key, tagSize, nonce, adata);
     }

     encrypt(data) {
       return this.AES_GCM_encrypt(data);
     }

     decrypt(data) {
       return this.AES_GCM_decrypt(data);
     }

     AES_GCM_Encrypt_process(data) {
       if (!is_bytes(data)) throw new TypeError("data isn't of expected type");

       var dpos = 0,
         dlen = data.length || 0,
         asm = this.asm,
         heap = this.heap,
         counter = this.counter,
         pos = this.pos,
         len = this.len,
         rpos = 0,
         rlen = (len + dlen) & -16,
         wlen = 0;

       if (((counter - 1) << 4) + len + dlen > _AES_GCM_data_maxLength) throw new RangeError('counter overflow');

       var result = new Uint8Array(rlen);

       while (dlen > 0) {
         wlen = _heap_write(heap, pos + len, data, dpos, dlen);
         len += wlen;
         dpos += wlen;
         dlen -= wlen;

         wlen = asm.cipher(AES_asm.ENC.CTR, AES_asm.HEAP_DATA + pos, len);
         wlen = asm.mac(AES_asm.MAC.GCM, AES_asm.HEAP_DATA + pos, wlen);

         if (wlen) result.set(heap.subarray(pos, pos + wlen), rpos);
         counter += wlen >>> 4;
         rpos += wlen;

         if (wlen < len) {
           pos += wlen;
           len -= wlen;
         } else {
           pos = 0;
           len = 0;
         }
       }

       this.result = result;
       this.counter = counter;
       this.pos = pos;
       this.len = len;

       return this;
     }

     AES_GCM_Encrypt_finish() {
       var asm = this.asm,
         heap = this.heap,
         counter = this.counter,
         tagSize = this.tagSize,
         adata = this.adata,
         pos = this.pos,
         len = this.len;

       var result = new Uint8Array(len + tagSize);

       asm.cipher(AES_asm.ENC.CTR, AES_asm.HEAP_DATA + pos, (len + 15) & -16);
       if (len) result.set(heap.subarray(pos, pos + len));

       for (var i = len; i & 15; i++) heap[pos + i] = 0;
       asm.mac(AES_asm.MAC.GCM, AES_asm.HEAP_DATA + pos, i);

       var alen = adata !== null ? adata.length : 0,
         clen = ((counter - 1) << 4) + len;
       heap[0] = heap[1] = heap[2] = 0, heap[3] = alen >>> 29, heap[4] = alen >>> 21, heap[5] = (alen >>> 13) & 255, heap[6] = (alen >>> 5) & 255, heap[7] = (alen << 3) & 255, heap[8] = heap[9] = heap[10] = 0, heap[11] = clen >>> 29, heap[12] = (clen >>> 21) & 255, heap[13] = (clen >>> 13) & 255, heap[14] = (clen >>> 5) & 255, heap[15] = (clen << 3) & 255;
       asm.mac(AES_asm.MAC.GCM, AES_asm.HEAP_DATA, 16);
       asm.get_iv(AES_asm.HEAP_DATA);

       asm.set_counter(0, 0, 0, this.gamma0);
       asm.cipher(AES_asm.ENC.CTR, AES_asm.HEAP_DATA, 16);
       result.set(heap.subarray(0, tagSize), len);

       this.result = result;
       this.counter = 1;
       this.pos = 0;
       this.len = 0;

       return this;
     }

     AES_GCM_Decrypt_process(data) {
       if (!is_bytes(data)) throw new TypeError("data isn't of expected type");

       var dpos = 0,
         dlen = data.length || 0,
         asm = this.asm,
         heap = this.heap,
         counter = this.counter,
         tagSize = this.tagSize,
         pos = this.pos,
         len = this.len,
         rpos = 0,
         rlen = len + dlen > tagSize ? (len + dlen - tagSize) & -16 : 0,
         tlen = len + dlen - rlen,
         wlen = 0;

       if (((counter - 1) << 4) + len + dlen > _AES_GCM_data_maxLength) throw new RangeError('counter overflow');

       var result = new Uint8Array(rlen);

       while (dlen > tlen) {
         wlen = _heap_write(heap, pos + len, data, dpos, dlen - tlen);
         len += wlen;
         dpos += wlen;
         dlen -= wlen;

         wlen = asm.mac(AES_asm.MAC.GCM, AES_asm.HEAP_DATA + pos, wlen);
         wlen = asm.cipher(AES_asm.DEC.CTR, AES_asm.HEAP_DATA + pos, wlen);

         if (wlen) result.set(heap.subarray(pos, pos + wlen), rpos);
         counter += wlen >>> 4;
         rpos += wlen;

         pos = 0;
         len = 0;
       }

       if (dlen > 0) {
         len += _heap_write(heap, 0, data, dpos, dlen);
       }

       this.result = result;
       this.counter = counter;
       this.pos = pos;
       this.len = len;

       return this;
     }

     AES_GCM_Decrypt_finish() {
       var asm = this.asm,
         heap = this.heap,
         tagSize = this.tagSize,
         adata = this.adata,
         counter = this.counter,
         pos = this.pos,
         len = this.len,
         rlen = len - tagSize,
         wlen = 0;

       if (len < tagSize) throw new IllegalStateError('authentication tag not found');

       var result = new Uint8Array(rlen),
         atag = new Uint8Array(heap.subarray(pos + rlen, pos + len));

       for (var i = rlen; i & 15; i++) heap[pos + i] = 0;

       wlen = asm.mac(AES_asm.MAC.GCM, AES_asm.HEAP_DATA + pos, i);
       wlen = asm.cipher(AES_asm.DEC.CTR, AES_asm.HEAP_DATA + pos, i);
       if (rlen) result.set(heap.subarray(pos, pos + rlen));

       var alen = adata !== null ? adata.length : 0,
         clen = ((counter - 1) << 4) + len - tagSize;
       heap[0] = heap[1] = heap[2] = 0, heap[3] = alen >>> 29, heap[4] = alen >>> 21, heap[5] = (alen >>> 13) & 255, heap[6] = (alen >>> 5) & 255, heap[7] = (alen << 3) & 255, heap[8] = heap[9] = heap[10] = 0, heap[11] = clen >>> 29, heap[12] = (clen >>> 21) & 255, heap[13] = (clen >>> 13) & 255, heap[14] = (clen >>> 5) & 255, heap[15] = (clen << 3) & 255;
       asm.mac(AES_asm.MAC.GCM, AES_asm.HEAP_DATA, 16);
       asm.get_iv(AES_asm.HEAP_DATA);

       asm.set_counter(0, 0, 0, this.gamma0);
       asm.cipher(AES_asm.ENC.CTR, AES_asm.HEAP_DATA, 16);

       var acheck = 0;
       for (var i = 0; i < tagSize; ++i) acheck |= atag[i] ^ heap[i];
       if (acheck) throw new SecurityError('data integrity check failed');

       this.result = result;
       this.counter = 1;
       this.pos = 0;
       this.len = 0;

       return this;
     }

     AES_GCM_decrypt(data) {
       var result1 = this.AES_GCM_Decrypt_process(data).result;
       var result2 = this.AES_GCM_Decrypt_finish().result;

       var result = new Uint8Array(result1.length + result2.length);
       if (result1.length) result.set(result1);
       if (result2.length) result.set(result2, result1.length);
       this.result = result;

       return this;
     }

     AES_GCM_encrypt(data) {
       var result1 = this.AES_GCM_Encrypt_process(data).result;
       var result2 = this.AES_GCM_Encrypt_finish().result;

       var result = new Uint8Array(result1.length + result2.length);
       if (result1.length) result.set(result1);
       if (result2.length) result.set(result2, result1.length);
       this.result = result;

       return this;
     }

     AES_GCM_reset(key, tagSize, nonce, adata, counter, iv) {
       this.AES_reset(key, undefined, false);

       var asm = this.asm;
       var heap = this.heap;

       asm.gcm_init();

       var tagSize = tagSize;
       if (tagSize !== undefined) {
         if (!is_number(tagSize)) throw new TypeError('tagSize must be a number');

         if (tagSize < 4 || tagSize > 16) throw new IllegalArgumentError('illegal tagSize value');

         this.tagSize = tagSize;
       } else {
         this.tagSize = 16;
       }

       if (nonce !== undefined) {
         if (!is_bytes(nonce)) {
           throw new TypeError('unexpected nonce type');
         }

         this.nonce = nonce;

         var noncelen = nonce.length || 0,
           noncebuf = new Uint8Array(16);
         if (noncelen !== 12) {
           this._gcm_mac_process(nonce);

           heap[0] = heap[1] = heap[2] = heap[3] = heap[4] = heap[5] = heap[6] = heap[7] = heap[8] = heap[9] = heap[10] = 0, heap[11] = noncelen >>> 29, heap[12] = (noncelen >>> 21) & 255, heap[13] = (noncelen >>> 13) & 255, heap[14] = (noncelen >>> 5) & 255, heap[15] = (noncelen << 3) & 255;
           asm.mac(AES_asm.MAC.GCM, AES_asm.HEAP_DATA, 16);

           asm.get_iv(AES_asm.HEAP_DATA);
           asm.set_iv();

           noncebuf.set(heap.subarray(0, 16));
         } else {
           noncebuf.set(nonce);
           noncebuf[15] = 1;
         }

         var nonceview = new DataView(noncebuf.buffer);
         this.gamma0 = nonceview.getUint32(12);

         asm.set_nonce(nonceview.getUint32(0), nonceview.getUint32(4), nonceview.getUint32(8), 0);
         asm.set_mask(0, 0, 0, 0xffffffff);
       } else {
         throw new Error('nonce is required');
       }

       if (adata !== undefined && adata !== null) {
         if (!is_bytes(adata)) {
           throw new TypeError('unexpected adata type');
         }

         if (adata.length > _AES_GCM_data_maxLength) throw new IllegalArgumentError('illegal adata length');

         if (adata.length) {
           this.adata = adata;
           this._gcm_mac_process(adata);
         } else {
           this.adata = null;
         }
       } else {
         this.adata = null;
       }

       if (counter !== undefined) {
         if (!is_number(counter)) throw new TypeError('counter must be a number');

         if (counter < 1 || counter > 0xffffffff) throw new RangeError('counter must be a positive 32-bit integer');

         this.counter = counter;
         asm.set_counter(0, 0, 0, (this.gamma0 + counter) | 0);
       } else {
         this.counter = 1;
         asm.set_counter(0, 0, 0, (this.gamma0 + 1) | 0);
       }

       if (iv !== undefined) {
         if (!is_number(iv)) throw new TypeError('iv must be a number');

         this.iv = iv;

         this.AES_set_iv(iv);
       }

       return this;
     }

     _gcm_mac_process(data) {
       var heap = this.heap,
         asm = this.asm,
         dpos = 0,
         dlen = data.length || 0,
         wlen = 0;

       while (dlen > 0) {
         wlen = _heap_write(heap, 0, data, dpos, dlen);
         dpos += wlen;
         dlen -= wlen;

         while (wlen & 15) heap[wlen++] = 0;

         asm.mac(AES_asm.MAC.GCM, AES_asm.HEAP_DATA, wlen);
       }
     }
   }

   class AES_GCM_Encrypt extends AES_GCM {
     constructor(key, nonce, adata, tagSize, heap, asm) {
       super(key, nonce, adata, tagSize, heap, asm);
     }
     process(data) {
       return this.AES_GCM_Encrypt_process(data);
     }
     finish() {
       return this.AES_GCM_Encrypt_finish();
     }
   }

   class AES_GCM_Decrypt extends AES_GCM {
     constructor(key, nonce, adata, tagSize, heap, asm) {
       super(key, nonce, adata, tagSize, heap, asm);
     }

     process(data) {
       return this.AES_GCM_Decrypt_process(data);
     }
     finish() {
       return this.AES_GCM_Decrypt_finish();
     }
   }

   /**
    * AES-GCM exports
    */

   /**
    * @param {Uint8Array} data
    * @param {Uint8Array} key
    * @param {Uint8Array} nonce
    * @param {Uint8Array} [adata]
    * @param {number} [tagSize]
    * @return {Uint8Array}
    */
   function AES_GCM_encrypt_bytes(data, key, nonce, adata, tagSize) {
     if (data === undefined) throw new SyntaxError('data required');
     if (key === undefined) throw new SyntaxError('key required');
     if (nonce === undefined) throw new SyntaxError('nonce required');
     return new AES_GCM(key, nonce, adata, tagSize, _AES_heap_instance, _AES_asm_instance).encrypt(data).result;
   }

   /**
    * @param {Uint8Array} data
    * @param {Uint8Array} key
    * @param {Uint8Array} nonce
    * @param {Uint8Array} [adata]
    * @param {number} [tagSize]
    * @return {Uint8Array}
    */
   function AES_GCM_decrypt_bytes(data, key, nonce, adata, tagSize) {
     if (data === undefined) throw new SyntaxError('data required');
     if (key === undefined) throw new SyntaxError('key required');
     if (nonce === undefined) throw new SyntaxError('nonce required');
     return new AES_GCM(key, nonce, adata, tagSize, _AES_heap_instance, _AES_asm_instance).decrypt(data).result;
   }

   AES_GCM.encrypt = AES_GCM_encrypt_bytes;
   AES_GCM.decrypt = AES_GCM_decrypt_bytes;

   function sha1_asm ( stdlib, foreign, buffer ) {
       "use asm";

       // SHA256 state
       var H0 = 0, H1 = 0, H2 = 0, H3 = 0, H4 = 0,
           TOTAL0 = 0, TOTAL1 = 0;

       // HMAC state
       var I0 = 0, I1 = 0, I2 = 0, I3 = 0, I4 = 0,
           O0 = 0, O1 = 0, O2 = 0, O3 = 0, O4 = 0;

       // I/O buffer
       var HEAP = new stdlib.Uint8Array(buffer);

       function _core ( w0, w1, w2, w3, w4, w5, w6, w7, w8, w9, w10, w11, w12, w13, w14, w15 ) {
           w0 = w0|0;
           w1 = w1|0;
           w2 = w2|0;
           w3 = w3|0;
           w4 = w4|0;
           w5 = w5|0;
           w6 = w6|0;
           w7 = w7|0;
           w8 = w8|0;
           w9 = w9|0;
           w10 = w10|0;
           w11 = w11|0;
           w12 = w12|0;
           w13 = w13|0;
           w14 = w14|0;
           w15 = w15|0;

           var a = 0, b = 0, c = 0, d = 0, e = 0, n = 0, t = 0,
               w16 = 0, w17 = 0, w18 = 0, w19 = 0,
               w20 = 0, w21 = 0, w22 = 0, w23 = 0, w24 = 0, w25 = 0, w26 = 0, w27 = 0, w28 = 0, w29 = 0,
               w30 = 0, w31 = 0, w32 = 0, w33 = 0, w34 = 0, w35 = 0, w36 = 0, w37 = 0, w38 = 0, w39 = 0,
               w40 = 0, w41 = 0, w42 = 0, w43 = 0, w44 = 0, w45 = 0, w46 = 0, w47 = 0, w48 = 0, w49 = 0,
               w50 = 0, w51 = 0, w52 = 0, w53 = 0, w54 = 0, w55 = 0, w56 = 0, w57 = 0, w58 = 0, w59 = 0,
               w60 = 0, w61 = 0, w62 = 0, w63 = 0, w64 = 0, w65 = 0, w66 = 0, w67 = 0, w68 = 0, w69 = 0,
               w70 = 0, w71 = 0, w72 = 0, w73 = 0, w74 = 0, w75 = 0, w76 = 0, w77 = 0, w78 = 0, w79 = 0;

           a = H0;
           b = H1;
           c = H2;
           d = H3;
           e = H4;

           // 0
           t = ( w0 + ((a << 5) | (a >>> 27)) + e + ((b & c) | (~b & d)) + 0x5a827999 )|0;
           e = d; d = c; c = (b << 30) | (b >>> 2); b = a; a = t;

           // 1
           t = ( w1 + ((a << 5) | (a >>> 27)) + e + ((b & c) | (~b & d)) + 0x5a827999 )|0;
           e = d; d = c; c = (b << 30) | (b >>> 2); b = a; a = t;

           // 2
           t = ( w2 + ((a << 5) | (a >>> 27)) + e + ((b & c) | (~b & d)) + 0x5a827999 )|0;
           e = d; d = c; c = (b << 30) | (b >>> 2); b = a; a = t;

           // 3
           t = ( w3 + ((a << 5) | (a >>> 27)) + e + ((b & c) | (~b & d)) + 0x5a827999 )|0;
           e = d; d = c; c = (b << 30) | (b >>> 2); b = a; a = t;

           // 4
           t = ( w4 + ((a << 5) | (a >>> 27)) + e + ((b & c) | (~b & d)) + 0x5a827999 )|0;
           e = d; d = c; c = (b << 30) | (b >>> 2); b = a; a = t;

           // 5
           t = ( w5 + ((a << 5) | (a >>> 27)) + e + ((b & c) | (~b & d)) + 0x5a827999 )|0;
           e = d; d = c; c = (b << 30) | (b >>> 2); b = a; a = t;

           // 6
           t = ( w6 + ((a << 5) | (a >>> 27)) + e + ((b & c) | (~b & d)) + 0x5a827999 )|0;
           e = d; d = c; c = (b << 30) | (b >>> 2); b = a; a = t;

           // 7
           t = ( w7 + ((a << 5) | (a >>> 27)) + e + ((b & c) | (~b & d)) + 0x5a827999 )|0;
           e = d; d = c; c = (b << 30) | (b >>> 2); b = a; a = t;

           // 8
           t = ( w8 + ((a << 5) | (a >>> 27)) + e + ((b & c) | (~b & d)) + 0x5a827999 )|0;
           e = d; d = c; c = (b << 30) | (b >>> 2); b = a; a = t;

           // 9
           t = ( w9 + ((a << 5) | (a >>> 27)) + e + ((b & c) | (~b & d)) + 0x5a827999 )|0;
           e = d; d = c; c = (b << 30) | (b >>> 2); b = a; a = t;

           // 10
           t = ( w10 + ((a << 5) | (a >>> 27)) + e + ((b & c) | (~b & d)) + 0x5a827999 )|0;
           e = d; d = c; c = (b << 30) | (b >>> 2); b = a; a = t;

           // 11
           t = ( w11 + ((a << 5) | (a >>> 27)) + e + ((b & c) | (~b & d)) + 0x5a827999 )|0;
           e = d; d = c; c = (b << 30) | (b >>> 2); b = a; a = t;

           // 12
           t = ( w12 + ((a << 5) | (a >>> 27)) + e + ((b & c) | (~b & d)) + 0x5a827999 )|0;
           e = d; d = c; c = (b << 30) | (b >>> 2); b = a; a = t;

           // 13
           t = ( w13 + ((a << 5) | (a >>> 27)) + e + ((b & c) | (~b & d)) + 0x5a827999 )|0;
           e = d; d = c; c = (b << 30) | (b >>> 2); b = a; a = t;

           // 14
           t = ( w14 + ((a << 5) | (a >>> 27)) + e + ((b & c) | (~b & d)) + 0x5a827999 )|0;
           e = d; d = c; c = (b << 30) | (b >>> 2); b = a; a = t;

           // 15
           t = ( w15 + ((a << 5) | (a >>> 27)) + e + ((b & c) | (~b & d)) + 0x5a827999 )|0;
           e = d; d = c; c = (b << 30) | (b >>> 2); b = a; a = t;

           // 16
           n = w13 ^ w8 ^ w2 ^ w0;
           w16 = (n << 1) | (n >>> 31);
           t = (w16 + ((a << 5) | (a >>> 27)) + e + ((b & c) | (~b & d)) + 0x5a827999 )|0;
           e = d; d = c; c = (b << 30) | (b >>> 2); b = a; a = t;

           // 17
           n = w14 ^ w9 ^ w3 ^ w1;
           w17 = (n << 1) | (n >>> 31);
           t = (w17 + ((a << 5) | (a >>> 27)) + e + ((b & c) | (~b & d)) + 0x5a827999 )|0;
           e = d; d = c; c = (b << 30) | (b >>> 2); b = a; a = t;

           // 18
           n = w15 ^ w10 ^ w4 ^ w2;
           w18 = (n << 1) | (n >>> 31);
           t = (w18 + ((a << 5) | (a >>> 27)) + e + ((b & c) | (~b & d)) + 0x5a827999 )|0;
           e = d; d = c; c = (b << 30) | (b >>> 2); b = a; a = t;

           // 19
           n = w16 ^ w11 ^ w5 ^ w3;
           w19 = (n << 1) | (n >>> 31);
           t = (w19 + ((a << 5) | (a >>> 27)) + e + ((b & c) | (~b & d)) + 0x5a827999 )|0;
           e = d; d = c; c = (b << 30) | (b >>> 2); b = a; a = t;

           // 20
           n = w17 ^ w12 ^ w6 ^ w4;
           w20 = (n << 1) | (n >>> 31);
           t = (w20 + ((a << 5) | (a >>> 27)) + e + (b ^ c ^ d) + 0x6ed9eba1 )|0;
           e = d; d = c; c = (b << 30) | (b >>> 2); b = a; a = t;

           // 21
           n = w18 ^ w13 ^ w7 ^ w5;
           w21 = (n << 1) | (n >>> 31);
           t = (w21 + ((a << 5) | (a >>> 27)) + e + (b ^ c ^ d) + 0x6ed9eba1 )|0;
           e = d; d = c; c = (b << 30) | (b >>> 2); b = a; a = t;

           // 22
           n = w19 ^ w14 ^ w8 ^ w6;
           w22 = (n << 1) | (n >>> 31);
           t = (w22 + ((a << 5) | (a >>> 27)) + e + (b ^ c ^ d) + 0x6ed9eba1 )|0;
           e = d; d = c; c = (b << 30) | (b >>> 2); b = a; a = t;

           // 23
           n = w20 ^ w15 ^ w9 ^ w7;
           w23 = (n << 1) | (n >>> 31);
           t = (w23 + ((a << 5) | (a >>> 27)) + e + (b ^ c ^ d) + 0x6ed9eba1 )|0;
           e = d; d = c; c = (b << 30) | (b >>> 2); b = a; a = t;

           // 24
           n = w21 ^ w16 ^ w10 ^ w8;
           w24 = (n << 1) | (n >>> 31);
           t = (w24 + ((a << 5) | (a >>> 27)) + e + (b ^ c ^ d) + 0x6ed9eba1 )|0;
           e = d; d = c; c = (b << 30) | (b >>> 2); b = a; a = t;

           // 25
           n = w22 ^ w17 ^ w11 ^ w9;
           w25 = (n << 1) | (n >>> 31);
           t = (w25 + ((a << 5) | (a >>> 27)) + e + (b ^ c ^ d) + 0x6ed9eba1 )|0;
           e = d; d = c; c = (b << 30) | (b >>> 2); b = a; a = t;

           // 26
           n = w23 ^ w18 ^ w12 ^ w10;
           w26 = (n << 1) | (n >>> 31);
           t = (w26 + ((a << 5) | (a >>> 27)) + e + (b ^ c ^ d) + 0x6ed9eba1 )|0;
           e = d; d = c; c = (b << 30) | (b >>> 2); b = a; a = t;

           // 27
           n = w24 ^ w19 ^ w13 ^ w11;
           w27 = (n << 1) | (n >>> 31);
           t = (w27 + ((a << 5) | (a >>> 27)) + e + (b ^ c ^ d) + 0x6ed9eba1 )|0;
           e = d; d = c; c = (b << 30) | (b >>> 2); b = a; a = t;

           // 28
           n = w25 ^ w20 ^ w14 ^ w12;
           w28 = (n << 1) | (n >>> 31);
           t = (w28 + ((a << 5) | (a >>> 27)) + e + (b ^ c ^ d) + 0x6ed9eba1 )|0;
           e = d; d = c; c = (b << 30) | (b >>> 2); b = a; a = t;

           // 29
           n = w26 ^ w21 ^ w15 ^ w13;
           w29 = (n << 1) | (n >>> 31);
           t = (w29 + ((a << 5) | (a >>> 27)) + e + (b ^ c ^ d) + 0x6ed9eba1 )|0;
           e = d; d = c; c = (b << 30) | (b >>> 2); b = a; a = t;

           // 30
           n = w27 ^ w22 ^ w16 ^ w14;
           w30 = (n << 1) | (n >>> 31);
           t = (w30 + ((a << 5) | (a >>> 27)) + e + (b ^ c ^ d) + 0x6ed9eba1 )|0;
           e = d; d = c; c = (b << 30) | (b >>> 2); b = a; a = t;

           // 31
           n = w28 ^ w23 ^ w17 ^ w15;
           w31 = (n << 1) | (n >>> 31);
           t = (w31 + ((a << 5) | (a >>> 27)) + e + (b ^ c ^ d) + 0x6ed9eba1 )|0;
           e = d; d = c; c = (b << 30) | (b >>> 2); b = a; a = t;

           // 32
           n = w29 ^ w24 ^ w18 ^ w16;
           w32 = (n << 1) | (n >>> 31);
           t = (w32 + ((a << 5) | (a >>> 27)) + e + (b ^ c ^ d) + 0x6ed9eba1 )|0;
           e = d; d = c; c = (b << 30) | (b >>> 2); b = a; a = t;

           // 33
           n = w30 ^ w25 ^ w19 ^ w17;
           w33 = (n << 1) | (n >>> 31);
           t = (w33 + ((a << 5) | (a >>> 27)) + e + (b ^ c ^ d) + 0x6ed9eba1 )|0;
           e = d; d = c; c = (b << 30) | (b >>> 2); b = a; a = t;

           // 34
           n = w31 ^ w26 ^ w20 ^ w18;
           w34 = (n << 1) | (n >>> 31);
           t = (w34 + ((a << 5) | (a >>> 27)) + e + (b ^ c ^ d) + 0x6ed9eba1 )|0;
           e = d; d = c; c = (b << 30) | (b >>> 2); b = a; a = t;

           // 35
           n = w32 ^ w27 ^ w21 ^ w19;
           w35 = (n << 1) | (n >>> 31);
           t = (w35 + ((a << 5) | (a >>> 27)) + e + (b ^ c ^ d) + 0x6ed9eba1 )|0;
           e = d; d = c; c = (b << 30) | (b >>> 2); b = a; a = t;

           // 36
           n = w33 ^ w28 ^ w22 ^ w20;
           w36 = (n << 1) | (n >>> 31);
           t = (w36 + ((a << 5) | (a >>> 27)) + e + (b ^ c ^ d) + 0x6ed9eba1 )|0;
           e = d; d = c; c = (b << 30) | (b >>> 2); b = a; a = t;

           // 37
           n = w34 ^ w29 ^ w23 ^ w21;
           w37 = (n << 1) | (n >>> 31);
           t = (w37 + ((a << 5) | (a >>> 27)) + e + (b ^ c ^ d) + 0x6ed9eba1 )|0;
           e = d; d = c; c = (b << 30) | (b >>> 2); b = a; a = t;

           // 38
           n = w35 ^ w30 ^ w24 ^ w22;
           w38 = (n << 1) | (n >>> 31);
           t = (w38 + ((a << 5) | (a >>> 27)) + e + (b ^ c ^ d) + 0x6ed9eba1 )|0;
           e = d; d = c; c = (b << 30) | (b >>> 2); b = a; a = t;

           // 39
           n = w36 ^ w31 ^ w25 ^ w23;
           w39 = (n << 1) | (n >>> 31);
           t = (w39 + ((a << 5) | (a >>> 27)) + e + (b ^ c ^ d) + 0x6ed9eba1 )|0;
           e = d; d = c; c = (b << 30) | (b >>> 2); b = a; a = t;

           // 40
           n = w37 ^ w32 ^ w26 ^ w24;
           w40 = (n << 1) | (n >>> 31);
           t = (w40 + ((a << 5) | (a >>> 27)) + e + ((b & c) | (b & d) | (c & d)) - 0x70e44324 )|0;
           e = d; d = c; c = (b << 30) | (b >>> 2); b = a; a = t;

           // 41
           n = w38 ^ w33 ^ w27 ^ w25;
           w41 = (n << 1) | (n >>> 31);
           t = (w41 + ((a << 5) | (a >>> 27)) + e + ((b & c) | (b & d) | (c & d)) - 0x70e44324 )|0;
           e = d; d = c; c = (b << 30) | (b >>> 2); b = a; a = t;

           // 42
           n = w39 ^ w34 ^ w28 ^ w26;
           w42 = (n << 1) | (n >>> 31);
           t = (w42 + ((a << 5) | (a >>> 27)) + e + ((b & c) | (b & d) | (c & d)) - 0x70e44324 )|0;
           e = d; d = c; c = (b << 30) | (b >>> 2); b = a; a = t;

           // 43
           n = w40 ^ w35 ^ w29 ^ w27;
           w43 = (n << 1) | (n >>> 31);
           t = (w43 + ((a << 5) | (a >>> 27)) + e + ((b & c) | (b & d) | (c & d)) - 0x70e44324 )|0;
           e = d; d = c; c = (b << 30) | (b >>> 2); b = a; a = t;

           // 44
           n = w41 ^ w36 ^ w30 ^ w28;
           w44 = (n << 1) | (n >>> 31);
           t = (w44 + ((a << 5) | (a >>> 27)) + e + ((b & c) | (b & d) | (c & d)) - 0x70e44324 )|0;
           e = d; d = c; c = (b << 30) | (b >>> 2); b = a; a = t;

           // 45
           n = w42 ^ w37 ^ w31 ^ w29;
           w45 = (n << 1) | (n >>> 31);
           t = (w45 + ((a << 5) | (a >>> 27)) + e + ((b & c) | (b & d) | (c & d)) - 0x70e44324 )|0;
           e = d; d = c; c = (b << 30) | (b >>> 2); b = a; a = t;

           // 46
           n = w43 ^ w38 ^ w32 ^ w30;
           w46 = (n << 1) | (n >>> 31);
           t = (w46 + ((a << 5) | (a >>> 27)) + e + ((b & c) | (b & d) | (c & d)) - 0x70e44324 )|0;
           e = d; d = c; c = (b << 30) | (b >>> 2); b = a; a = t;

           // 47
           n = w44 ^ w39 ^ w33 ^ w31;
           w47 = (n << 1) | (n >>> 31);
           t = (w47 + ((a << 5) | (a >>> 27)) + e + ((b & c) | (b & d) | (c & d)) - 0x70e44324 )|0;
           e = d; d = c; c = (b << 30) | (b >>> 2); b = a; a = t;

           // 48
           n = w45 ^ w40 ^ w34 ^ w32;
           w48 = (n << 1) | (n >>> 31);
           t = (w48 + ((a << 5) | (a >>> 27)) + e + ((b & c) | (b & d) | (c & d)) - 0x70e44324 )|0;
           e = d; d = c; c = (b << 30) | (b >>> 2); b = a; a = t;

           // 49
           n = w46 ^ w41 ^ w35 ^ w33;
           w49 = (n << 1) | (n >>> 31);
           t = (w49 + ((a << 5) | (a >>> 27)) + e + ((b & c) | (b & d) | (c & d)) - 0x70e44324 )|0;
           e = d; d = c; c = (b << 30) | (b >>> 2); b = a; a = t;

           // 50
           n = w47 ^ w42 ^ w36 ^ w34;
           w50 = (n << 1) | (n >>> 31);
           t = (w50 + ((a << 5) | (a >>> 27)) + e + ((b & c) | (b & d) | (c & d)) - 0x70e44324 )|0;
           e = d; d = c; c = (b << 30) | (b >>> 2); b = a; a = t;

           // 51
           n = w48 ^ w43 ^ w37 ^ w35;
           w51 = (n << 1) | (n >>> 31);
           t = (w51 + ((a << 5) | (a >>> 27)) + e + ((b & c) | (b & d) | (c & d)) - 0x70e44324 )|0;
           e = d; d = c; c = (b << 30) | (b >>> 2); b = a; a = t;

           // 52
           n = w49 ^ w44 ^ w38 ^ w36;
           w52 = (n << 1) | (n >>> 31);
           t = (w52 + ((a << 5) | (a >>> 27)) + e + ((b & c) | (b & d) | (c & d)) - 0x70e44324 )|0;
           e = d; d = c; c = (b << 30) | (b >>> 2); b = a; a = t;

           // 53
           n = w50 ^ w45 ^ w39 ^ w37;
           w53 = (n << 1) | (n >>> 31);
           t = (w53 + ((a << 5) | (a >>> 27)) + e + ((b & c) | (b & d) | (c & d)) - 0x70e44324 )|0;
           e = d; d = c; c = (b << 30) | (b >>> 2); b = a; a = t;

           // 54
           n = w51 ^ w46 ^ w40 ^ w38;
           w54 = (n << 1) | (n >>> 31);
           t = (w54 + ((a << 5) | (a >>> 27)) + e + ((b & c) | (b & d) | (c & d)) - 0x70e44324 )|0;
           e = d; d = c; c = (b << 30) | (b >>> 2); b = a; a = t;

           // 55
           n = w52 ^ w47 ^ w41 ^ w39;
           w55 = (n << 1) | (n >>> 31);
           t = (w55 + ((a << 5) | (a >>> 27)) + e + ((b & c) | (b & d) | (c & d)) - 0x70e44324 )|0;
           e = d; d = c; c = (b << 30) | (b >>> 2); b = a; a = t;

           // 56
           n = w53 ^ w48 ^ w42 ^ w40;
           w56 = (n << 1) | (n >>> 31);
           t = (w56 + ((a << 5) | (a >>> 27)) + e + ((b & c) | (b & d) | (c & d)) - 0x70e44324 )|0;
           e = d; d = c; c = (b << 30) | (b >>> 2); b = a; a = t;

           // 57
           n = w54 ^ w49 ^ w43 ^ w41;
           w57 = (n << 1) | (n >>> 31);
           t = (w57 + ((a << 5) | (a >>> 27)) + e + ((b & c) | (b & d) | (c & d)) - 0x70e44324 )|0;
           e = d; d = c; c = (b << 30) | (b >>> 2); b = a; a = t;

           // 58
           n = w55 ^ w50 ^ w44 ^ w42;
           w58 = (n << 1) | (n >>> 31);
           t = (w58 + ((a << 5) | (a >>> 27)) + e + ((b & c) | (b & d) | (c & d)) - 0x70e44324 )|0;
           e = d; d = c; c = (b << 30) | (b >>> 2); b = a; a = t;

           // 59
           n = w56 ^ w51 ^ w45 ^ w43;
           w59 = (n << 1) | (n >>> 31);
           t = (w59 + ((a << 5) | (a >>> 27)) + e + ((b & c) | (b & d) | (c & d)) - 0x70e44324 )|0;
           e = d; d = c; c = (b << 30) | (b >>> 2); b = a; a = t;

           // 60
           n = w57 ^ w52 ^ w46 ^ w44;
           w60 = (n << 1) | (n >>> 31);
           t = (w60 + ((a << 5) | (a >>> 27)) + e + (b ^ c ^ d) - 0x359d3e2a )|0;
           e = d; d = c; c = (b << 30) | (b >>> 2); b = a; a = t;

           // 61
           n = w58 ^ w53 ^ w47 ^ w45;
           w61 = (n << 1) | (n >>> 31);
           t = (w61 + ((a << 5) | (a >>> 27)) + e + (b ^ c ^ d) - 0x359d3e2a )|0;
           e = d; d = c; c = (b << 30) | (b >>> 2); b = a; a = t;

           // 62
           n = w59 ^ w54 ^ w48 ^ w46;
           w62 = (n << 1) | (n >>> 31);
           t = (w62 + ((a << 5) | (a >>> 27)) + e + (b ^ c ^ d) - 0x359d3e2a )|0;
           e = d; d = c; c = (b << 30) | (b >>> 2); b = a; a = t;

           // 63
           n = w60 ^ w55 ^ w49 ^ w47;
           w63 = (n << 1) | (n >>> 31);
           t = (w63 + ((a << 5) | (a >>> 27)) + e + (b ^ c ^ d) - 0x359d3e2a )|0;
           e = d; d = c; c = (b << 30) | (b >>> 2); b = a; a = t;

           // 64
           n = w61 ^ w56 ^ w50 ^ w48;
           w64 = (n << 1) | (n >>> 31);
           t = (w64 + ((a << 5) | (a >>> 27)) + e + (b ^ c ^ d) - 0x359d3e2a )|0;
           e = d; d = c; c = (b << 30) | (b >>> 2); b = a; a = t;

           // 65
           n = w62 ^ w57 ^ w51 ^ w49;
           w65 = (n << 1) | (n >>> 31);
           t = (w65 + ((a << 5) | (a >>> 27)) + e + (b ^ c ^ d) - 0x359d3e2a )|0;
           e = d; d = c; c = (b << 30) | (b >>> 2); b = a; a = t;

           // 66
           n = w63 ^ w58 ^ w52 ^ w50;
           w66 = (n << 1) | (n >>> 31);
           t = (w66 + ((a << 5) | (a >>> 27)) + e + (b ^ c ^ d) - 0x359d3e2a )|0;
           e = d; d = c; c = (b << 30) | (b >>> 2); b = a; a = t;

           // 67
           n = w64 ^ w59 ^ w53 ^ w51;
           w67 = (n << 1) | (n >>> 31);
           t = (w67 + ((a << 5) | (a >>> 27)) + e + (b ^ c ^ d) - 0x359d3e2a )|0;
           e = d; d = c; c = (b << 30) | (b >>> 2); b = a; a = t;

           // 68
           n = w65 ^ w60 ^ w54 ^ w52;
           w68 = (n << 1) | (n >>> 31);
           t = (w68 + ((a << 5) | (a >>> 27)) + e + (b ^ c ^ d) - 0x359d3e2a )|0;
           e = d; d = c; c = (b << 30) | (b >>> 2); b = a; a = t;

           // 69
           n = w66 ^ w61 ^ w55 ^ w53;
           w69 = (n << 1) | (n >>> 31);
           t = (w69 + ((a << 5) | (a >>> 27)) + e + (b ^ c ^ d) - 0x359d3e2a )|0;
           e = d; d = c; c = (b << 30) | (b >>> 2); b = a; a = t;

           // 70
           n = w67 ^ w62 ^ w56 ^ w54;
           w70 = (n << 1) | (n >>> 31);
           t = (w70 + ((a << 5) | (a >>> 27)) + e + (b ^ c ^ d) - 0x359d3e2a )|0;
           e = d; d = c; c = (b << 30) | (b >>> 2); b = a; a = t;

           // 71
           n = w68 ^ w63 ^ w57 ^ w55;
           w71 = (n << 1) | (n >>> 31);
           t = (w71 + ((a << 5) | (a >>> 27)) + e + (b ^ c ^ d) - 0x359d3e2a )|0;
           e = d; d = c; c = (b << 30) | (b >>> 2); b = a; a = t;

           // 72
           n = w69 ^ w64 ^ w58 ^ w56;
           w72 = (n << 1) | (n >>> 31);
           t = (w72 + ((a << 5) | (a >>> 27)) + e + (b ^ c ^ d) - 0x359d3e2a )|0;
           e = d; d = c; c = (b << 30) | (b >>> 2); b = a; a = t;

           // 73
           n = w70 ^ w65 ^ w59 ^ w57;
           w73 = (n << 1) | (n >>> 31);
           t = (w73 + ((a << 5) | (a >>> 27)) + e + (b ^ c ^ d) - 0x359d3e2a )|0;
           e = d; d = c; c = (b << 30) | (b >>> 2); b = a; a = t;

           // 74
           n = w71 ^ w66 ^ w60 ^ w58;
           w74 = (n << 1) | (n >>> 31);
           t = (w74 + ((a << 5) | (a >>> 27)) + e + (b ^ c ^ d) - 0x359d3e2a )|0;
           e = d; d = c; c = (b << 30) | (b >>> 2); b = a; a = t;

           // 75
           n = w72 ^ w67 ^ w61 ^ w59;
           w75 = (n << 1) | (n >>> 31);
           t = (w75 + ((a << 5) | (a >>> 27)) + e + (b ^ c ^ d) - 0x359d3e2a )|0;
           e = d; d = c; c = (b << 30) | (b >>> 2); b = a; a = t;

           // 76
           n = w73 ^ w68 ^ w62 ^ w60;
           w76 = (n << 1) | (n >>> 31);
           t = (w76 + ((a << 5) | (a >>> 27)) + e + (b ^ c ^ d) - 0x359d3e2a )|0;
           e = d; d = c; c = (b << 30) | (b >>> 2); b = a; a = t;

           // 77
           n = w74 ^ w69 ^ w63 ^ w61;
           w77 = (n << 1) | (n >>> 31);
           t = (w77 + ((a << 5) | (a >>> 27)) + e + (b ^ c ^ d) - 0x359d3e2a )|0;
           e = d; d = c; c = (b << 30) | (b >>> 2); b = a; a = t;

           // 78
           n = w75 ^ w70 ^ w64 ^ w62;
           w78 = (n << 1) | (n >>> 31);
           t = (w78 + ((a << 5) | (a >>> 27)) + e + (b ^ c ^ d) - 0x359d3e2a )|0;
           e = d; d = c; c = (b << 30) | (b >>> 2); b = a; a = t;

           // 79
           n = w76 ^ w71 ^ w65 ^ w63;
           w79 = (n << 1) | (n >>> 31);
           t = (w79 + ((a << 5) | (a >>> 27)) + e + (b ^ c ^ d) - 0x359d3e2a )|0;
           e = d; d = c; c = (b << 30) | (b >>> 2); b = a; a = t;

           H0 = ( H0 + a )|0;
           H1 = ( H1 + b )|0;
           H2 = ( H2 + c )|0;
           H3 = ( H3 + d )|0;
           H4 = ( H4 + e )|0;

       }

       function _core_heap ( offset ) {
           offset = offset|0;

           _core(
               HEAP[offset|0]<<24 | HEAP[offset|1]<<16 | HEAP[offset|2]<<8 | HEAP[offset|3],
               HEAP[offset|4]<<24 | HEAP[offset|5]<<16 | HEAP[offset|6]<<8 | HEAP[offset|7],
               HEAP[offset|8]<<24 | HEAP[offset|9]<<16 | HEAP[offset|10]<<8 | HEAP[offset|11],
               HEAP[offset|12]<<24 | HEAP[offset|13]<<16 | HEAP[offset|14]<<8 | HEAP[offset|15],
               HEAP[offset|16]<<24 | HEAP[offset|17]<<16 | HEAP[offset|18]<<8 | HEAP[offset|19],
               HEAP[offset|20]<<24 | HEAP[offset|21]<<16 | HEAP[offset|22]<<8 | HEAP[offset|23],
               HEAP[offset|24]<<24 | HEAP[offset|25]<<16 | HEAP[offset|26]<<8 | HEAP[offset|27],
               HEAP[offset|28]<<24 | HEAP[offset|29]<<16 | HEAP[offset|30]<<8 | HEAP[offset|31],
               HEAP[offset|32]<<24 | HEAP[offset|33]<<16 | HEAP[offset|34]<<8 | HEAP[offset|35],
               HEAP[offset|36]<<24 | HEAP[offset|37]<<16 | HEAP[offset|38]<<8 | HEAP[offset|39],
               HEAP[offset|40]<<24 | HEAP[offset|41]<<16 | HEAP[offset|42]<<8 | HEAP[offset|43],
               HEAP[offset|44]<<24 | HEAP[offset|45]<<16 | HEAP[offset|46]<<8 | HEAP[offset|47],
               HEAP[offset|48]<<24 | HEAP[offset|49]<<16 | HEAP[offset|50]<<8 | HEAP[offset|51],
               HEAP[offset|52]<<24 | HEAP[offset|53]<<16 | HEAP[offset|54]<<8 | HEAP[offset|55],
               HEAP[offset|56]<<24 | HEAP[offset|57]<<16 | HEAP[offset|58]<<8 | HEAP[offset|59],
               HEAP[offset|60]<<24 | HEAP[offset|61]<<16 | HEAP[offset|62]<<8 | HEAP[offset|63]
           );
       }

       // offset — multiple of 32
       function _state_to_heap ( output ) {
           output = output|0;

           HEAP[output|0] = H0>>>24;
           HEAP[output|1] = H0>>>16&255;
           HEAP[output|2] = H0>>>8&255;
           HEAP[output|3] = H0&255;
           HEAP[output|4] = H1>>>24;
           HEAP[output|5] = H1>>>16&255;
           HEAP[output|6] = H1>>>8&255;
           HEAP[output|7] = H1&255;
           HEAP[output|8] = H2>>>24;
           HEAP[output|9] = H2>>>16&255;
           HEAP[output|10] = H2>>>8&255;
           HEAP[output|11] = H2&255;
           HEAP[output|12] = H3>>>24;
           HEAP[output|13] = H3>>>16&255;
           HEAP[output|14] = H3>>>8&255;
           HEAP[output|15] = H3&255;
           HEAP[output|16] = H4>>>24;
           HEAP[output|17] = H4>>>16&255;
           HEAP[output|18] = H4>>>8&255;
           HEAP[output|19] = H4&255;
       }

       function reset () {
           H0 = 0x67452301;
           H1 = 0xefcdab89;
           H2 = 0x98badcfe;
           H3 = 0x10325476;
           H4 = 0xc3d2e1f0;
           TOTAL0 = TOTAL1 = 0;
       }

       function init ( h0, h1, h2, h3, h4, total0, total1 ) {
           h0 = h0|0;
           h1 = h1|0;
           h2 = h2|0;
           h3 = h3|0;
           h4 = h4|0;
           total0 = total0|0;
           total1 = total1|0;

           H0 = h0;
           H1 = h1;
           H2 = h2;
           H3 = h3;
           H4 = h4;
           TOTAL0 = total0;
           TOTAL1 = total1;
       }

       // offset — multiple of 64
       function process ( offset, length ) {
           offset = offset|0;
           length = length|0;

           var hashed = 0;

           if ( offset & 63 )
               return -1;

           while ( (length|0) >= 64 ) {
               _core_heap(offset);

               offset = ( offset + 64 )|0;
               length = ( length - 64 )|0;

               hashed = ( hashed + 64 )|0;
           }

           TOTAL0 = ( TOTAL0 + hashed )|0;
           if ( TOTAL0>>>0 < hashed>>>0 ) TOTAL1 = ( TOTAL1 + 1 )|0;

           return hashed|0;
       }

       // offset — multiple of 64
       // output — multiple of 32
       function finish ( offset, length, output ) {
           offset = offset|0;
           length = length|0;
           output = output|0;

           var hashed = 0,
               i = 0;

           if ( offset & 63 )
               return -1;

           if ( ~output )
               if ( output & 31 )
                   return -1;

           if ( (length|0) >= 64 ) {
               hashed = process( offset, length )|0;
               if ( (hashed|0) == -1 )
                   return -1;

               offset = ( offset + hashed )|0;
               length = ( length - hashed )|0;
           }

           hashed = ( hashed + length )|0;
           TOTAL0 = ( TOTAL0 + length )|0;
           if ( TOTAL0>>>0 < length>>>0 ) TOTAL1 = (TOTAL1 + 1)|0;

           HEAP[offset|length] = 0x80;

           if ( (length|0) >= 56 ) {
               for ( i = (length+1)|0; (i|0) < 64; i = (i+1)|0 )
                   HEAP[offset|i] = 0x00;
               _core_heap(offset);

               length = 0;

               HEAP[offset|0] = 0;
           }

           for ( i = (length+1)|0; (i|0) < 59; i = (i+1)|0 )
               HEAP[offset|i] = 0;

           HEAP[offset|56] = TOTAL1>>>21&255;
           HEAP[offset|57] = TOTAL1>>>13&255;
           HEAP[offset|58] = TOTAL1>>>5&255;
           HEAP[offset|59] = TOTAL1<<3&255 | TOTAL0>>>29;
           HEAP[offset|60] = TOTAL0>>>21&255;
           HEAP[offset|61] = TOTAL0>>>13&255;
           HEAP[offset|62] = TOTAL0>>>5&255;
           HEAP[offset|63] = TOTAL0<<3&255;
           _core_heap(offset);

           if ( ~output )
               _state_to_heap(output);

           return hashed|0;
       }

       function hmac_reset () {
           H0 = I0;
           H1 = I1;
           H2 = I2;
           H3 = I3;
           H4 = I4;
           TOTAL0 = 64;
           TOTAL1 = 0;
       }

       function _hmac_opad () {
           H0 = O0;
           H1 = O1;
           H2 = O2;
           H3 = O3;
           H4 = O4;
           TOTAL0 = 64;
           TOTAL1 = 0;
       }

       function hmac_init ( p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15 ) {
           p0 = p0|0;
           p1 = p1|0;
           p2 = p2|0;
           p3 = p3|0;
           p4 = p4|0;
           p5 = p5|0;
           p6 = p6|0;
           p7 = p7|0;
           p8 = p8|0;
           p9 = p9|0;
           p10 = p10|0;
           p11 = p11|0;
           p12 = p12|0;
           p13 = p13|0;
           p14 = p14|0;
           p15 = p15|0;

           // opad
           reset();
           _core(
               p0 ^ 0x5c5c5c5c,
               p1 ^ 0x5c5c5c5c,
               p2 ^ 0x5c5c5c5c,
               p3 ^ 0x5c5c5c5c,
               p4 ^ 0x5c5c5c5c,
               p5 ^ 0x5c5c5c5c,
               p6 ^ 0x5c5c5c5c,
               p7 ^ 0x5c5c5c5c,
               p8 ^ 0x5c5c5c5c,
               p9 ^ 0x5c5c5c5c,
               p10 ^ 0x5c5c5c5c,
               p11 ^ 0x5c5c5c5c,
               p12 ^ 0x5c5c5c5c,
               p13 ^ 0x5c5c5c5c,
               p14 ^ 0x5c5c5c5c,
               p15 ^ 0x5c5c5c5c
           );
           O0 = H0;
           O1 = H1;
           O2 = H2;
           O3 = H3;
           O4 = H4;

           // ipad
           reset();
           _core(
               p0 ^ 0x36363636,
               p1 ^ 0x36363636,
               p2 ^ 0x36363636,
               p3 ^ 0x36363636,
               p4 ^ 0x36363636,
               p5 ^ 0x36363636,
               p6 ^ 0x36363636,
               p7 ^ 0x36363636,
               p8 ^ 0x36363636,
               p9 ^ 0x36363636,
               p10 ^ 0x36363636,
               p11 ^ 0x36363636,
               p12 ^ 0x36363636,
               p13 ^ 0x36363636,
               p14 ^ 0x36363636,
               p15 ^ 0x36363636
           );
           I0 = H0;
           I1 = H1;
           I2 = H2;
           I3 = H3;
           I4 = H4;

           TOTAL0 = 64;
           TOTAL1 = 0;
       }

       // offset — multiple of 64
       // output — multiple of 32
       function hmac_finish ( offset, length, output ) {
           offset = offset|0;
           length = length|0;
           output = output|0;

           var t0 = 0, t1 = 0, t2 = 0, t3 = 0, t4 = 0, hashed = 0;

           if ( offset & 63 )
               return -1;

           if ( ~output )
               if ( output & 31 )
                   return -1;

           hashed = finish( offset, length, -1 )|0;
           t0 = H0, t1 = H1, t2 = H2, t3 = H3, t4 = H4;

           _hmac_opad();
           _core( t0, t1, t2, t3, t4, 0x80000000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 672 );

           if ( ~output )
               _state_to_heap(output);

           return hashed|0;
       }

       // salt is assumed to be already processed
       // offset — multiple of 64
       // output — multiple of 32
       function pbkdf2_generate_block ( offset, length, block, count, output ) {
           offset = offset|0;
           length = length|0;
           block = block|0;
           count = count|0;
           output = output|0;

           var h0 = 0, h1 = 0, h2 = 0, h3 = 0, h4 = 0,
               t0 = 0, t1 = 0, t2 = 0, t3 = 0, t4 = 0;

           if ( offset & 63 )
               return -1;

           if ( ~output )
               if ( output & 31 )
                   return -1;

           // pad block number into heap
           // FIXME probable OOB write
           HEAP[(offset+length)|0]   = block>>>24;
           HEAP[(offset+length+1)|0] = block>>>16&255;
           HEAP[(offset+length+2)|0] = block>>>8&255;
           HEAP[(offset+length+3)|0] = block&255;

           // finish first iteration
           hmac_finish( offset, (length+4)|0, -1 )|0;
           h0 = t0 = H0, h1 = t1 = H1, h2 = t2 = H2, h3 = t3 = H3, h4 = t4 = H4;
           count = (count-1)|0;

           // perform the rest iterations
           while ( (count|0) > 0 ) {
               hmac_reset();
               _core( t0, t1, t2, t3, t4, 0x80000000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 672 );
               t0 = H0, t1 = H1, t2 = H2, t3 = H3, t4 = H4;

               _hmac_opad();
               _core( t0, t1, t2, t3, t4, 0x80000000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 672 );
               t0 = H0, t1 = H1, t2 = H2, t3 = H3, t4 = H4;

               h0 = h0 ^ H0;
               h1 = h1 ^ H1;
               h2 = h2 ^ H2;
               h3 = h3 ^ H3;
               h4 = h4 ^ H4;

               count = (count-1)|0;
           }

           H0 = h0;
           H1 = h1;
           H2 = h2;
           H3 = h3;
           H4 = h4;

           if ( ~output )
               _state_to_heap(output);

           return 0;
       }

       return {
           // SHA1
           reset: reset,
           init: init,
           process: process,
           finish: finish,

           // HMAC-SHA1
           hmac_reset: hmac_reset,
           hmac_init: hmac_init,
           hmac_finish: hmac_finish,

           // PBKDF2-HMAC-SHA1
           pbkdf2_generate_block: pbkdf2_generate_block
       }
   }

   function hash_reset() {
     this.result = null;
     this.pos = 0;
     this.len = 0;

     this.asm.reset();

     return this;
   }

   function hash_process(data) {
     if (this.result !== null) throw new IllegalStateError('state must be reset before processing new data');

     if (is_string(data)) data = string_to_bytes(data);

     if (is_buffer(data)) data = new Uint8Array(data);

     if (!is_bytes(data)) throw new TypeError("data isn't of expected type");

     var asm = this.asm,
       heap = this.heap,
       hpos = this.pos,
       hlen = this.len,
       dpos = 0,
       dlen = data.length,
       wlen = 0;

     while (dlen > 0) {
       wlen = _heap_write(heap, hpos + hlen, data, dpos, dlen);
       hlen += wlen;
       dpos += wlen;
       dlen -= wlen;

       wlen = asm.process(hpos, hlen);

       hpos += wlen;
       hlen -= wlen;

       if (!hlen) hpos = 0;
     }

     this.pos = hpos;
     this.len = hlen;

     return this;
   }

   function hash_finish() {
     if (this.result !== null) throw new IllegalStateError('state must be reset before processing new data');

     this.asm.finish(this.pos, this.len, 0);

     this.result = new Uint8Array(this.HASH_SIZE);
     this.result.set(this.heap.subarray(0, this.HASH_SIZE));

     this.pos = 0;
     this.len = 0;

     return this;
   }

   var _sha1_block_size = 64;
   var _sha1_hash_size = 20;

   function sha1_constructor(options) {
     options = options || {};

     this.heap = _heap_init(Uint8Array, options.heap);
     this.asm = options.asm || sha1_asm({ Uint8Array: Uint8Array }, null, this.heap.buffer);

     this.BLOCK_SIZE = _sha1_block_size;
     this.HASH_SIZE = _sha1_hash_size;

     this.reset();
   }

   sha1_constructor.BLOCK_SIZE = _sha1_block_size;
   sha1_constructor.NAME = 'sha1';

   sha1_constructor.HASH_SIZE = _sha1_hash_size;
   var sha1_prototype = sha1_constructor.prototype;
   sha1_prototype.reset = hash_reset;
   sha1_prototype.process = hash_process;
   sha1_prototype.finish = hash_finish;

   var sha1_instance = null;

   function get_sha1_instance() {
     if (sha1_instance === null) sha1_instance = new sha1_constructor({ heapSize: 0x100000 });
     return sha1_instance;
   }

   /**
    * SHA1 exports
    */

   function sha1_bytes(data) {
     if (data === undefined) throw new SyntaxError('data required');
     return get_sha1_instance()
       .reset()
       .process(data)
       .finish().result;
   }

   function sha1_hex(data) {
     var result = sha1_bytes(data);
     return bytes_to_hex(result);
   }

   function sha1_base64(data) {
     var result = sha1_bytes(data);
     return bytes_to_base64(result);
   }

   var SHA1 = sha1_constructor;

   SHA1.bytes = sha1_bytes;
   SHA1.hex = sha1_hex;
   SHA1.base64 = sha1_base64;

   function sha256_asm ( stdlib, foreign, buffer ) {
       "use asm";

       // SHA256 state
       var H0 = 0, H1 = 0, H2 = 0, H3 = 0, H4 = 0, H5 = 0, H6 = 0, H7 = 0,
           TOTAL0 = 0, TOTAL1 = 0;

       // HMAC state
       var I0 = 0, I1 = 0, I2 = 0, I3 = 0, I4 = 0, I5 = 0, I6 = 0, I7 = 0,
           O0 = 0, O1 = 0, O2 = 0, O3 = 0, O4 = 0, O5 = 0, O6 = 0, O7 = 0;

       // I/O buffer
       var HEAP = new stdlib.Uint8Array(buffer);

       function _core ( w0, w1, w2, w3, w4, w5, w6, w7, w8, w9, w10, w11, w12, w13, w14, w15 ) {
           w0 = w0|0;
           w1 = w1|0;
           w2 = w2|0;
           w3 = w3|0;
           w4 = w4|0;
           w5 = w5|0;
           w6 = w6|0;
           w7 = w7|0;
           w8 = w8|0;
           w9 = w9|0;
           w10 = w10|0;
           w11 = w11|0;
           w12 = w12|0;
           w13 = w13|0;
           w14 = w14|0;
           w15 = w15|0;

           var a = 0, b = 0, c = 0, d = 0, e = 0, f = 0, g = 0, h = 0;

           a = H0;
           b = H1;
           c = H2;
           d = H3;
           e = H4;
           f = H5;
           g = H6;
           h = H7;
           
           // 0
           h = ( w0 + h + ( e>>>6 ^ e>>>11 ^ e>>>25 ^ e<<26 ^ e<<21 ^ e<<7 ) +  ( g ^ e & (f^g) ) + 0x428a2f98 )|0;
           d = ( d + h )|0;
           h = ( h + ( (a & b) ^ ( c & (a ^ b) ) ) + ( a>>>2 ^ a>>>13 ^ a>>>22 ^ a<<30 ^ a<<19 ^ a<<10 ) )|0;

           // 1
           g = ( w1 + g + ( d>>>6 ^ d>>>11 ^ d>>>25 ^ d<<26 ^ d<<21 ^ d<<7 ) +  ( f ^ d & (e^f) ) + 0x71374491 )|0;
           c = ( c + g )|0;
           g = ( g + ( (h & a) ^ ( b & (h ^ a) ) ) + ( h>>>2 ^ h>>>13 ^ h>>>22 ^ h<<30 ^ h<<19 ^ h<<10 ) )|0;

           // 2
           f = ( w2 + f + ( c>>>6 ^ c>>>11 ^ c>>>25 ^ c<<26 ^ c<<21 ^ c<<7 ) +  ( e ^ c & (d^e) ) + 0xb5c0fbcf )|0;
           b = ( b + f )|0;
           f = ( f + ( (g & h) ^ ( a & (g ^ h) ) ) + ( g>>>2 ^ g>>>13 ^ g>>>22 ^ g<<30 ^ g<<19 ^ g<<10 ) )|0;

           // 3
           e = ( w3 + e + ( b>>>6 ^ b>>>11 ^ b>>>25 ^ b<<26 ^ b<<21 ^ b<<7 ) +  ( d ^ b & (c^d) ) + 0xe9b5dba5 )|0;
           a = ( a + e )|0;
           e = ( e + ( (f & g) ^ ( h & (f ^ g) ) ) + ( f>>>2 ^ f>>>13 ^ f>>>22 ^ f<<30 ^ f<<19 ^ f<<10 ) )|0;

           // 4
           d = ( w4 + d + ( a>>>6 ^ a>>>11 ^ a>>>25 ^ a<<26 ^ a<<21 ^ a<<7 ) +  ( c ^ a & (b^c) ) + 0x3956c25b )|0;
           h = ( h + d )|0;
           d = ( d + ( (e & f) ^ ( g & (e ^ f) ) ) + ( e>>>2 ^ e>>>13 ^ e>>>22 ^ e<<30 ^ e<<19 ^ e<<10 ) )|0;

           // 5
           c = ( w5 + c + ( h>>>6 ^ h>>>11 ^ h>>>25 ^ h<<26 ^ h<<21 ^ h<<7 ) +  ( b ^ h & (a^b) ) + 0x59f111f1 )|0;
           g = ( g + c )|0;
           c = ( c + ( (d & e) ^ ( f & (d ^ e) ) ) + ( d>>>2 ^ d>>>13 ^ d>>>22 ^ d<<30 ^ d<<19 ^ d<<10 ) )|0;

           // 6
           b = ( w6 + b + ( g>>>6 ^ g>>>11 ^ g>>>25 ^ g<<26 ^ g<<21 ^ g<<7 ) +  ( a ^ g & (h^a) ) + 0x923f82a4 )|0;
           f = ( f + b )|0;
           b = ( b + ( (c & d) ^ ( e & (c ^ d) ) ) + ( c>>>2 ^ c>>>13 ^ c>>>22 ^ c<<30 ^ c<<19 ^ c<<10 ) )|0;

           // 7
           a = ( w7 + a + ( f>>>6 ^ f>>>11 ^ f>>>25 ^ f<<26 ^ f<<21 ^ f<<7 ) +  ( h ^ f & (g^h) ) + 0xab1c5ed5 )|0;
           e = ( e + a )|0;
           a = ( a + ( (b & c) ^ ( d & (b ^ c) ) ) + ( b>>>2 ^ b>>>13 ^ b>>>22 ^ b<<30 ^ b<<19 ^ b<<10 ) )|0;

           // 8
           h = ( w8 + h + ( e>>>6 ^ e>>>11 ^ e>>>25 ^ e<<26 ^ e<<21 ^ e<<7 ) +  ( g ^ e & (f^g) ) + 0xd807aa98 )|0;
           d = ( d + h )|0;
           h = ( h + ( (a & b) ^ ( c & (a ^ b) ) ) + ( a>>>2 ^ a>>>13 ^ a>>>22 ^ a<<30 ^ a<<19 ^ a<<10 ) )|0;

           // 9
           g = ( w9 + g + ( d>>>6 ^ d>>>11 ^ d>>>25 ^ d<<26 ^ d<<21 ^ d<<7 ) +  ( f ^ d & (e^f) ) + 0x12835b01 )|0;
           c = ( c + g )|0;
           g = ( g + ( (h & a) ^ ( b & (h ^ a) ) ) + ( h>>>2 ^ h>>>13 ^ h>>>22 ^ h<<30 ^ h<<19 ^ h<<10 ) )|0;

           // 10
           f = ( w10 + f + ( c>>>6 ^ c>>>11 ^ c>>>25 ^ c<<26 ^ c<<21 ^ c<<7 ) +  ( e ^ c & (d^e) ) + 0x243185be )|0;
           b = ( b + f )|0;
           f = ( f + ( (g & h) ^ ( a & (g ^ h) ) ) + ( g>>>2 ^ g>>>13 ^ g>>>22 ^ g<<30 ^ g<<19 ^ g<<10 ) )|0;

           // 11
           e = ( w11 + e + ( b>>>6 ^ b>>>11 ^ b>>>25 ^ b<<26 ^ b<<21 ^ b<<7 ) +  ( d ^ b & (c^d) ) + 0x550c7dc3 )|0;
           a = ( a + e )|0;
           e = ( e + ( (f & g) ^ ( h & (f ^ g) ) ) + ( f>>>2 ^ f>>>13 ^ f>>>22 ^ f<<30 ^ f<<19 ^ f<<10 ) )|0;

           // 12
           d = ( w12 + d + ( a>>>6 ^ a>>>11 ^ a>>>25 ^ a<<26 ^ a<<21 ^ a<<7 ) +  ( c ^ a & (b^c) ) + 0x72be5d74 )|0;
           h = ( h + d )|0;
           d = ( d + ( (e & f) ^ ( g & (e ^ f) ) ) + ( e>>>2 ^ e>>>13 ^ e>>>22 ^ e<<30 ^ e<<19 ^ e<<10 ) )|0;

           // 13
           c = ( w13 + c + ( h>>>6 ^ h>>>11 ^ h>>>25 ^ h<<26 ^ h<<21 ^ h<<7 ) +  ( b ^ h & (a^b) ) + 0x80deb1fe )|0;
           g = ( g + c )|0;
           c = ( c + ( (d & e) ^ ( f & (d ^ e) ) ) + ( d>>>2 ^ d>>>13 ^ d>>>22 ^ d<<30 ^ d<<19 ^ d<<10 ) )|0;

           // 14
           b = ( w14 + b + ( g>>>6 ^ g>>>11 ^ g>>>25 ^ g<<26 ^ g<<21 ^ g<<7 ) +  ( a ^ g & (h^a) ) + 0x9bdc06a7 )|0;
           f = ( f + b )|0;
           b = ( b + ( (c & d) ^ ( e & (c ^ d) ) ) + ( c>>>2 ^ c>>>13 ^ c>>>22 ^ c<<30 ^ c<<19 ^ c<<10 ) )|0;

           // 15
           a = ( w15 + a + ( f>>>6 ^ f>>>11 ^ f>>>25 ^ f<<26 ^ f<<21 ^ f<<7 ) +  ( h ^ f & (g^h) ) + 0xc19bf174 )|0;
           e = ( e + a )|0;
           a = ( a + ( (b & c) ^ ( d & (b ^ c) ) ) + ( b>>>2 ^ b>>>13 ^ b>>>22 ^ b<<30 ^ b<<19 ^ b<<10 ) )|0;

           // 16
           w0 = ( ( w1>>>7  ^ w1>>>18 ^ w1>>>3  ^ w1<<25 ^ w1<<14 ) + ( w14>>>17 ^ w14>>>19 ^ w14>>>10 ^ w14<<15 ^ w14<<13 ) + w0 + w9 )|0;
           h = ( w0 + h + ( e>>>6 ^ e>>>11 ^ e>>>25 ^ e<<26 ^ e<<21 ^ e<<7 ) +  ( g ^ e & (f^g) ) + 0xe49b69c1 )|0;
           d = ( d + h )|0;
           h = ( h + ( (a & b) ^ ( c & (a ^ b) ) ) + ( a>>>2 ^ a>>>13 ^ a>>>22 ^ a<<30 ^ a<<19 ^ a<<10 ) )|0;

           // 17
           w1 = ( ( w2>>>7  ^ w2>>>18 ^ w2>>>3  ^ w2<<25 ^ w2<<14 ) + ( w15>>>17 ^ w15>>>19 ^ w15>>>10 ^ w15<<15 ^ w15<<13 ) + w1 + w10 )|0;
           g = ( w1 + g + ( d>>>6 ^ d>>>11 ^ d>>>25 ^ d<<26 ^ d<<21 ^ d<<7 ) +  ( f ^ d & (e^f) ) + 0xefbe4786 )|0;
           c = ( c + g )|0;
           g = ( g + ( (h & a) ^ ( b & (h ^ a) ) ) + ( h>>>2 ^ h>>>13 ^ h>>>22 ^ h<<30 ^ h<<19 ^ h<<10 ) )|0;

           // 18
           w2 = ( ( w3>>>7  ^ w3>>>18 ^ w3>>>3  ^ w3<<25 ^ w3<<14 ) + ( w0>>>17 ^ w0>>>19 ^ w0>>>10 ^ w0<<15 ^ w0<<13 ) + w2 + w11 )|0;
           f = ( w2 + f + ( c>>>6 ^ c>>>11 ^ c>>>25 ^ c<<26 ^ c<<21 ^ c<<7 ) +  ( e ^ c & (d^e) ) + 0x0fc19dc6 )|0;
           b = ( b + f )|0;
           f = ( f + ( (g & h) ^ ( a & (g ^ h) ) ) + ( g>>>2 ^ g>>>13 ^ g>>>22 ^ g<<30 ^ g<<19 ^ g<<10 ) )|0;

           // 19
           w3 = ( ( w4>>>7  ^ w4>>>18 ^ w4>>>3  ^ w4<<25 ^ w4<<14 ) + ( w1>>>17 ^ w1>>>19 ^ w1>>>10 ^ w1<<15 ^ w1<<13 ) + w3 + w12 )|0;
           e = ( w3 + e + ( b>>>6 ^ b>>>11 ^ b>>>25 ^ b<<26 ^ b<<21 ^ b<<7 ) +  ( d ^ b & (c^d) ) + 0x240ca1cc )|0;
           a = ( a + e )|0;
           e = ( e + ( (f & g) ^ ( h & (f ^ g) ) ) + ( f>>>2 ^ f>>>13 ^ f>>>22 ^ f<<30 ^ f<<19 ^ f<<10 ) )|0;

           // 20
           w4 = ( ( w5>>>7  ^ w5>>>18 ^ w5>>>3  ^ w5<<25 ^ w5<<14 ) + ( w2>>>17 ^ w2>>>19 ^ w2>>>10 ^ w2<<15 ^ w2<<13 ) + w4 + w13 )|0;
           d = ( w4 + d + ( a>>>6 ^ a>>>11 ^ a>>>25 ^ a<<26 ^ a<<21 ^ a<<7 ) +  ( c ^ a & (b^c) ) + 0x2de92c6f )|0;
           h = ( h + d )|0;
           d = ( d + ( (e & f) ^ ( g & (e ^ f) ) ) + ( e>>>2 ^ e>>>13 ^ e>>>22 ^ e<<30 ^ e<<19 ^ e<<10 ) )|0;

           // 21
           w5 = ( ( w6>>>7  ^ w6>>>18 ^ w6>>>3  ^ w6<<25 ^ w6<<14 ) + ( w3>>>17 ^ w3>>>19 ^ w3>>>10 ^ w3<<15 ^ w3<<13 ) + w5 + w14 )|0;
           c = ( w5 + c + ( h>>>6 ^ h>>>11 ^ h>>>25 ^ h<<26 ^ h<<21 ^ h<<7 ) +  ( b ^ h & (a^b) ) + 0x4a7484aa )|0;
           g = ( g + c )|0;
           c = ( c + ( (d & e) ^ ( f & (d ^ e) ) ) + ( d>>>2 ^ d>>>13 ^ d>>>22 ^ d<<30 ^ d<<19 ^ d<<10 ) )|0;

           // 22
           w6 = ( ( w7>>>7  ^ w7>>>18 ^ w7>>>3  ^ w7<<25 ^ w7<<14 ) + ( w4>>>17 ^ w4>>>19 ^ w4>>>10 ^ w4<<15 ^ w4<<13 ) + w6 + w15 )|0;
           b = ( w6 + b + ( g>>>6 ^ g>>>11 ^ g>>>25 ^ g<<26 ^ g<<21 ^ g<<7 ) +  ( a ^ g & (h^a) ) + 0x5cb0a9dc )|0;
           f = ( f + b )|0;
           b = ( b + ( (c & d) ^ ( e & (c ^ d) ) ) + ( c>>>2 ^ c>>>13 ^ c>>>22 ^ c<<30 ^ c<<19 ^ c<<10 ) )|0;

           // 23
           w7 = ( ( w8>>>7  ^ w8>>>18 ^ w8>>>3  ^ w8<<25 ^ w8<<14 ) + ( w5>>>17 ^ w5>>>19 ^ w5>>>10 ^ w5<<15 ^ w5<<13 ) + w7 + w0 )|0;
           a = ( w7 + a + ( f>>>6 ^ f>>>11 ^ f>>>25 ^ f<<26 ^ f<<21 ^ f<<7 ) +  ( h ^ f & (g^h) ) + 0x76f988da )|0;
           e = ( e + a )|0;
           a = ( a + ( (b & c) ^ ( d & (b ^ c) ) ) + ( b>>>2 ^ b>>>13 ^ b>>>22 ^ b<<30 ^ b<<19 ^ b<<10 ) )|0;

           // 24
           w8 = ( ( w9>>>7  ^ w9>>>18 ^ w9>>>3  ^ w9<<25 ^ w9<<14 ) + ( w6>>>17 ^ w6>>>19 ^ w6>>>10 ^ w6<<15 ^ w6<<13 ) + w8 + w1 )|0;
           h = ( w8 + h + ( e>>>6 ^ e>>>11 ^ e>>>25 ^ e<<26 ^ e<<21 ^ e<<7 ) +  ( g ^ e & (f^g) ) + 0x983e5152 )|0;
           d = ( d + h )|0;
           h = ( h + ( (a & b) ^ ( c & (a ^ b) ) ) + ( a>>>2 ^ a>>>13 ^ a>>>22 ^ a<<30 ^ a<<19 ^ a<<10 ) )|0;

           // 25
           w9 = ( ( w10>>>7  ^ w10>>>18 ^ w10>>>3  ^ w10<<25 ^ w10<<14 ) + ( w7>>>17 ^ w7>>>19 ^ w7>>>10 ^ w7<<15 ^ w7<<13 ) + w9 + w2 )|0;
           g = ( w9 + g + ( d>>>6 ^ d>>>11 ^ d>>>25 ^ d<<26 ^ d<<21 ^ d<<7 ) +  ( f ^ d & (e^f) ) + 0xa831c66d )|0;
           c = ( c + g )|0;
           g = ( g + ( (h & a) ^ ( b & (h ^ a) ) ) + ( h>>>2 ^ h>>>13 ^ h>>>22 ^ h<<30 ^ h<<19 ^ h<<10 ) )|0;

           // 26
           w10 = ( ( w11>>>7  ^ w11>>>18 ^ w11>>>3  ^ w11<<25 ^ w11<<14 ) + ( w8>>>17 ^ w8>>>19 ^ w8>>>10 ^ w8<<15 ^ w8<<13 ) + w10 + w3 )|0;
           f = ( w10 + f + ( c>>>6 ^ c>>>11 ^ c>>>25 ^ c<<26 ^ c<<21 ^ c<<7 ) +  ( e ^ c & (d^e) ) + 0xb00327c8 )|0;
           b = ( b + f )|0;
           f = ( f + ( (g & h) ^ ( a & (g ^ h) ) ) + ( g>>>2 ^ g>>>13 ^ g>>>22 ^ g<<30 ^ g<<19 ^ g<<10 ) )|0;

           // 27
           w11 = ( ( w12>>>7  ^ w12>>>18 ^ w12>>>3  ^ w12<<25 ^ w12<<14 ) + ( w9>>>17 ^ w9>>>19 ^ w9>>>10 ^ w9<<15 ^ w9<<13 ) + w11 + w4 )|0;
           e = ( w11 + e + ( b>>>6 ^ b>>>11 ^ b>>>25 ^ b<<26 ^ b<<21 ^ b<<7 ) +  ( d ^ b & (c^d) ) + 0xbf597fc7 )|0;
           a = ( a + e )|0;
           e = ( e + ( (f & g) ^ ( h & (f ^ g) ) ) + ( f>>>2 ^ f>>>13 ^ f>>>22 ^ f<<30 ^ f<<19 ^ f<<10 ) )|0;

           // 28
           w12 = ( ( w13>>>7  ^ w13>>>18 ^ w13>>>3  ^ w13<<25 ^ w13<<14 ) + ( w10>>>17 ^ w10>>>19 ^ w10>>>10 ^ w10<<15 ^ w10<<13 ) + w12 + w5 )|0;
           d = ( w12 + d + ( a>>>6 ^ a>>>11 ^ a>>>25 ^ a<<26 ^ a<<21 ^ a<<7 ) +  ( c ^ a & (b^c) ) + 0xc6e00bf3 )|0;
           h = ( h + d )|0;
           d = ( d + ( (e & f) ^ ( g & (e ^ f) ) ) + ( e>>>2 ^ e>>>13 ^ e>>>22 ^ e<<30 ^ e<<19 ^ e<<10 ) )|0;

           // 29
           w13 = ( ( w14>>>7  ^ w14>>>18 ^ w14>>>3  ^ w14<<25 ^ w14<<14 ) + ( w11>>>17 ^ w11>>>19 ^ w11>>>10 ^ w11<<15 ^ w11<<13 ) + w13 + w6 )|0;
           c = ( w13 + c + ( h>>>6 ^ h>>>11 ^ h>>>25 ^ h<<26 ^ h<<21 ^ h<<7 ) +  ( b ^ h & (a^b) ) + 0xd5a79147 )|0;
           g = ( g + c )|0;
           c = ( c + ( (d & e) ^ ( f & (d ^ e) ) ) + ( d>>>2 ^ d>>>13 ^ d>>>22 ^ d<<30 ^ d<<19 ^ d<<10 ) )|0;

           // 30
           w14 = ( ( w15>>>7  ^ w15>>>18 ^ w15>>>3  ^ w15<<25 ^ w15<<14 ) + ( w12>>>17 ^ w12>>>19 ^ w12>>>10 ^ w12<<15 ^ w12<<13 ) + w14 + w7 )|0;
           b = ( w14 + b + ( g>>>6 ^ g>>>11 ^ g>>>25 ^ g<<26 ^ g<<21 ^ g<<7 ) +  ( a ^ g & (h^a) ) + 0x06ca6351 )|0;
           f = ( f + b )|0;
           b = ( b + ( (c & d) ^ ( e & (c ^ d) ) ) + ( c>>>2 ^ c>>>13 ^ c>>>22 ^ c<<30 ^ c<<19 ^ c<<10 ) )|0;

           // 31
           w15 = ( ( w0>>>7  ^ w0>>>18 ^ w0>>>3  ^ w0<<25 ^ w0<<14 ) + ( w13>>>17 ^ w13>>>19 ^ w13>>>10 ^ w13<<15 ^ w13<<13 ) + w15 + w8 )|0;
           a = ( w15 + a + ( f>>>6 ^ f>>>11 ^ f>>>25 ^ f<<26 ^ f<<21 ^ f<<7 ) +  ( h ^ f & (g^h) ) + 0x14292967 )|0;
           e = ( e + a )|0;
           a = ( a + ( (b & c) ^ ( d & (b ^ c) ) ) + ( b>>>2 ^ b>>>13 ^ b>>>22 ^ b<<30 ^ b<<19 ^ b<<10 ) )|0;

           // 32
           w0 = ( ( w1>>>7  ^ w1>>>18 ^ w1>>>3  ^ w1<<25 ^ w1<<14 ) + ( w14>>>17 ^ w14>>>19 ^ w14>>>10 ^ w14<<15 ^ w14<<13 ) + w0 + w9 )|0;
           h = ( w0 + h + ( e>>>6 ^ e>>>11 ^ e>>>25 ^ e<<26 ^ e<<21 ^ e<<7 ) +  ( g ^ e & (f^g) ) + 0x27b70a85 )|0;
           d = ( d + h )|0;
           h = ( h + ( (a & b) ^ ( c & (a ^ b) ) ) + ( a>>>2 ^ a>>>13 ^ a>>>22 ^ a<<30 ^ a<<19 ^ a<<10 ) )|0;

           // 33
           w1 = ( ( w2>>>7  ^ w2>>>18 ^ w2>>>3  ^ w2<<25 ^ w2<<14 ) + ( w15>>>17 ^ w15>>>19 ^ w15>>>10 ^ w15<<15 ^ w15<<13 ) + w1 + w10 )|0;
           g = ( w1 + g + ( d>>>6 ^ d>>>11 ^ d>>>25 ^ d<<26 ^ d<<21 ^ d<<7 ) +  ( f ^ d & (e^f) ) + 0x2e1b2138 )|0;
           c = ( c + g )|0;
           g = ( g + ( (h & a) ^ ( b & (h ^ a) ) ) + ( h>>>2 ^ h>>>13 ^ h>>>22 ^ h<<30 ^ h<<19 ^ h<<10 ) )|0;

           // 34
           w2 = ( ( w3>>>7  ^ w3>>>18 ^ w3>>>3  ^ w3<<25 ^ w3<<14 ) + ( w0>>>17 ^ w0>>>19 ^ w0>>>10 ^ w0<<15 ^ w0<<13 ) + w2 + w11 )|0;
           f = ( w2 + f + ( c>>>6 ^ c>>>11 ^ c>>>25 ^ c<<26 ^ c<<21 ^ c<<7 ) +  ( e ^ c & (d^e) ) + 0x4d2c6dfc )|0;
           b = ( b + f )|0;
           f = ( f + ( (g & h) ^ ( a & (g ^ h) ) ) + ( g>>>2 ^ g>>>13 ^ g>>>22 ^ g<<30 ^ g<<19 ^ g<<10 ) )|0;

           // 35
           w3 = ( ( w4>>>7  ^ w4>>>18 ^ w4>>>3  ^ w4<<25 ^ w4<<14 ) + ( w1>>>17 ^ w1>>>19 ^ w1>>>10 ^ w1<<15 ^ w1<<13 ) + w3 + w12 )|0;
           e = ( w3 + e + ( b>>>6 ^ b>>>11 ^ b>>>25 ^ b<<26 ^ b<<21 ^ b<<7 ) +  ( d ^ b & (c^d) ) + 0x53380d13 )|0;
           a = ( a + e )|0;
           e = ( e + ( (f & g) ^ ( h & (f ^ g) ) ) + ( f>>>2 ^ f>>>13 ^ f>>>22 ^ f<<30 ^ f<<19 ^ f<<10 ) )|0;

           // 36
           w4 = ( ( w5>>>7  ^ w5>>>18 ^ w5>>>3  ^ w5<<25 ^ w5<<14 ) + ( w2>>>17 ^ w2>>>19 ^ w2>>>10 ^ w2<<15 ^ w2<<13 ) + w4 + w13 )|0;
           d = ( w4 + d + ( a>>>6 ^ a>>>11 ^ a>>>25 ^ a<<26 ^ a<<21 ^ a<<7 ) +  ( c ^ a & (b^c) ) + 0x650a7354 )|0;
           h = ( h + d )|0;
           d = ( d + ( (e & f) ^ ( g & (e ^ f) ) ) + ( e>>>2 ^ e>>>13 ^ e>>>22 ^ e<<30 ^ e<<19 ^ e<<10 ) )|0;

           // 37
           w5 = ( ( w6>>>7  ^ w6>>>18 ^ w6>>>3  ^ w6<<25 ^ w6<<14 ) + ( w3>>>17 ^ w3>>>19 ^ w3>>>10 ^ w3<<15 ^ w3<<13 ) + w5 + w14 )|0;
           c = ( w5 + c + ( h>>>6 ^ h>>>11 ^ h>>>25 ^ h<<26 ^ h<<21 ^ h<<7 ) +  ( b ^ h & (a^b) ) + 0x766a0abb )|0;
           g = ( g + c )|0;
           c = ( c + ( (d & e) ^ ( f & (d ^ e) ) ) + ( d>>>2 ^ d>>>13 ^ d>>>22 ^ d<<30 ^ d<<19 ^ d<<10 ) )|0;

           // 38
           w6 = ( ( w7>>>7  ^ w7>>>18 ^ w7>>>3  ^ w7<<25 ^ w7<<14 ) + ( w4>>>17 ^ w4>>>19 ^ w4>>>10 ^ w4<<15 ^ w4<<13 ) + w6 + w15 )|0;
           b = ( w6 + b + ( g>>>6 ^ g>>>11 ^ g>>>25 ^ g<<26 ^ g<<21 ^ g<<7 ) +  ( a ^ g & (h^a) ) + 0x81c2c92e )|0;
           f = ( f + b )|0;
           b = ( b + ( (c & d) ^ ( e & (c ^ d) ) ) + ( c>>>2 ^ c>>>13 ^ c>>>22 ^ c<<30 ^ c<<19 ^ c<<10 ) )|0;

           // 39
           w7 = ( ( w8>>>7  ^ w8>>>18 ^ w8>>>3  ^ w8<<25 ^ w8<<14 ) + ( w5>>>17 ^ w5>>>19 ^ w5>>>10 ^ w5<<15 ^ w5<<13 ) + w7 + w0 )|0;
           a = ( w7 + a + ( f>>>6 ^ f>>>11 ^ f>>>25 ^ f<<26 ^ f<<21 ^ f<<7 ) +  ( h ^ f & (g^h) ) + 0x92722c85 )|0;
           e = ( e + a )|0;
           a = ( a + ( (b & c) ^ ( d & (b ^ c) ) ) + ( b>>>2 ^ b>>>13 ^ b>>>22 ^ b<<30 ^ b<<19 ^ b<<10 ) )|0;

           // 40
           w8 = ( ( w9>>>7  ^ w9>>>18 ^ w9>>>3  ^ w9<<25 ^ w9<<14 ) + ( w6>>>17 ^ w6>>>19 ^ w6>>>10 ^ w6<<15 ^ w6<<13 ) + w8 + w1 )|0;
           h = ( w8 + h + ( e>>>6 ^ e>>>11 ^ e>>>25 ^ e<<26 ^ e<<21 ^ e<<7 ) +  ( g ^ e & (f^g) ) + 0xa2bfe8a1 )|0;
           d = ( d + h )|0;
           h = ( h + ( (a & b) ^ ( c & (a ^ b) ) ) + ( a>>>2 ^ a>>>13 ^ a>>>22 ^ a<<30 ^ a<<19 ^ a<<10 ) )|0;

           // 41
           w9 = ( ( w10>>>7  ^ w10>>>18 ^ w10>>>3  ^ w10<<25 ^ w10<<14 ) + ( w7>>>17 ^ w7>>>19 ^ w7>>>10 ^ w7<<15 ^ w7<<13 ) + w9 + w2 )|0;
           g = ( w9 + g + ( d>>>6 ^ d>>>11 ^ d>>>25 ^ d<<26 ^ d<<21 ^ d<<7 ) +  ( f ^ d & (e^f) ) + 0xa81a664b )|0;
           c = ( c + g )|0;
           g = ( g + ( (h & a) ^ ( b & (h ^ a) ) ) + ( h>>>2 ^ h>>>13 ^ h>>>22 ^ h<<30 ^ h<<19 ^ h<<10 ) )|0;

           // 42
           w10 = ( ( w11>>>7  ^ w11>>>18 ^ w11>>>3  ^ w11<<25 ^ w11<<14 ) + ( w8>>>17 ^ w8>>>19 ^ w8>>>10 ^ w8<<15 ^ w8<<13 ) + w10 + w3 )|0;
           f = ( w10 + f + ( c>>>6 ^ c>>>11 ^ c>>>25 ^ c<<26 ^ c<<21 ^ c<<7 ) +  ( e ^ c & (d^e) ) + 0xc24b8b70 )|0;
           b = ( b + f )|0;
           f = ( f + ( (g & h) ^ ( a & (g ^ h) ) ) + ( g>>>2 ^ g>>>13 ^ g>>>22 ^ g<<30 ^ g<<19 ^ g<<10 ) )|0;

           // 43
           w11 = ( ( w12>>>7  ^ w12>>>18 ^ w12>>>3  ^ w12<<25 ^ w12<<14 ) + ( w9>>>17 ^ w9>>>19 ^ w9>>>10 ^ w9<<15 ^ w9<<13 ) + w11 + w4 )|0;
           e = ( w11 + e + ( b>>>6 ^ b>>>11 ^ b>>>25 ^ b<<26 ^ b<<21 ^ b<<7 ) +  ( d ^ b & (c^d) ) + 0xc76c51a3 )|0;
           a = ( a + e )|0;
           e = ( e + ( (f & g) ^ ( h & (f ^ g) ) ) + ( f>>>2 ^ f>>>13 ^ f>>>22 ^ f<<30 ^ f<<19 ^ f<<10 ) )|0;

           // 44
           w12 = ( ( w13>>>7  ^ w13>>>18 ^ w13>>>3  ^ w13<<25 ^ w13<<14 ) + ( w10>>>17 ^ w10>>>19 ^ w10>>>10 ^ w10<<15 ^ w10<<13 ) + w12 + w5 )|0;
           d = ( w12 + d + ( a>>>6 ^ a>>>11 ^ a>>>25 ^ a<<26 ^ a<<21 ^ a<<7 ) +  ( c ^ a & (b^c) ) + 0xd192e819 )|0;
           h = ( h + d )|0;
           d = ( d + ( (e & f) ^ ( g & (e ^ f) ) ) + ( e>>>2 ^ e>>>13 ^ e>>>22 ^ e<<30 ^ e<<19 ^ e<<10 ) )|0;

           // 45
           w13 = ( ( w14>>>7  ^ w14>>>18 ^ w14>>>3  ^ w14<<25 ^ w14<<14 ) + ( w11>>>17 ^ w11>>>19 ^ w11>>>10 ^ w11<<15 ^ w11<<13 ) + w13 + w6 )|0;
           c = ( w13 + c + ( h>>>6 ^ h>>>11 ^ h>>>25 ^ h<<26 ^ h<<21 ^ h<<7 ) +  ( b ^ h & (a^b) ) + 0xd6990624 )|0;
           g = ( g + c )|0;
           c = ( c + ( (d & e) ^ ( f & (d ^ e) ) ) + ( d>>>2 ^ d>>>13 ^ d>>>22 ^ d<<30 ^ d<<19 ^ d<<10 ) )|0;

           // 46
           w14 = ( ( w15>>>7  ^ w15>>>18 ^ w15>>>3  ^ w15<<25 ^ w15<<14 ) + ( w12>>>17 ^ w12>>>19 ^ w12>>>10 ^ w12<<15 ^ w12<<13 ) + w14 + w7 )|0;
           b = ( w14 + b + ( g>>>6 ^ g>>>11 ^ g>>>25 ^ g<<26 ^ g<<21 ^ g<<7 ) +  ( a ^ g & (h^a) ) + 0xf40e3585 )|0;
           f = ( f + b )|0;
           b = ( b + ( (c & d) ^ ( e & (c ^ d) ) ) + ( c>>>2 ^ c>>>13 ^ c>>>22 ^ c<<30 ^ c<<19 ^ c<<10 ) )|0;

           // 47
           w15 = ( ( w0>>>7  ^ w0>>>18 ^ w0>>>3  ^ w0<<25 ^ w0<<14 ) + ( w13>>>17 ^ w13>>>19 ^ w13>>>10 ^ w13<<15 ^ w13<<13 ) + w15 + w8 )|0;
           a = ( w15 + a + ( f>>>6 ^ f>>>11 ^ f>>>25 ^ f<<26 ^ f<<21 ^ f<<7 ) +  ( h ^ f & (g^h) ) + 0x106aa070 )|0;
           e = ( e + a )|0;
           a = ( a + ( (b & c) ^ ( d & (b ^ c) ) ) + ( b>>>2 ^ b>>>13 ^ b>>>22 ^ b<<30 ^ b<<19 ^ b<<10 ) )|0;

           // 48
           w0 = ( ( w1>>>7  ^ w1>>>18 ^ w1>>>3  ^ w1<<25 ^ w1<<14 ) + ( w14>>>17 ^ w14>>>19 ^ w14>>>10 ^ w14<<15 ^ w14<<13 ) + w0 + w9 )|0;
           h = ( w0 + h + ( e>>>6 ^ e>>>11 ^ e>>>25 ^ e<<26 ^ e<<21 ^ e<<7 ) +  ( g ^ e & (f^g) ) + 0x19a4c116 )|0;
           d = ( d + h )|0;
           h = ( h + ( (a & b) ^ ( c & (a ^ b) ) ) + ( a>>>2 ^ a>>>13 ^ a>>>22 ^ a<<30 ^ a<<19 ^ a<<10 ) )|0;

           // 49
           w1 = ( ( w2>>>7  ^ w2>>>18 ^ w2>>>3  ^ w2<<25 ^ w2<<14 ) + ( w15>>>17 ^ w15>>>19 ^ w15>>>10 ^ w15<<15 ^ w15<<13 ) + w1 + w10 )|0;
           g = ( w1 + g + ( d>>>6 ^ d>>>11 ^ d>>>25 ^ d<<26 ^ d<<21 ^ d<<7 ) +  ( f ^ d & (e^f) ) + 0x1e376c08 )|0;
           c = ( c + g )|0;
           g = ( g + ( (h & a) ^ ( b & (h ^ a) ) ) + ( h>>>2 ^ h>>>13 ^ h>>>22 ^ h<<30 ^ h<<19 ^ h<<10 ) )|0;

           // 50
           w2 = ( ( w3>>>7  ^ w3>>>18 ^ w3>>>3  ^ w3<<25 ^ w3<<14 ) + ( w0>>>17 ^ w0>>>19 ^ w0>>>10 ^ w0<<15 ^ w0<<13 ) + w2 + w11 )|0;
           f = ( w2 + f + ( c>>>6 ^ c>>>11 ^ c>>>25 ^ c<<26 ^ c<<21 ^ c<<7 ) +  ( e ^ c & (d^e) ) + 0x2748774c )|0;
           b = ( b + f )|0;
           f = ( f + ( (g & h) ^ ( a & (g ^ h) ) ) + ( g>>>2 ^ g>>>13 ^ g>>>22 ^ g<<30 ^ g<<19 ^ g<<10 ) )|0;

           // 51
           w3 = ( ( w4>>>7  ^ w4>>>18 ^ w4>>>3  ^ w4<<25 ^ w4<<14 ) + ( w1>>>17 ^ w1>>>19 ^ w1>>>10 ^ w1<<15 ^ w1<<13 ) + w3 + w12 )|0;
           e = ( w3 + e + ( b>>>6 ^ b>>>11 ^ b>>>25 ^ b<<26 ^ b<<21 ^ b<<7 ) +  ( d ^ b & (c^d) ) + 0x34b0bcb5 )|0;
           a = ( a + e )|0;
           e = ( e + ( (f & g) ^ ( h & (f ^ g) ) ) + ( f>>>2 ^ f>>>13 ^ f>>>22 ^ f<<30 ^ f<<19 ^ f<<10 ) )|0;

           // 52
           w4 = ( ( w5>>>7  ^ w5>>>18 ^ w5>>>3  ^ w5<<25 ^ w5<<14 ) + ( w2>>>17 ^ w2>>>19 ^ w2>>>10 ^ w2<<15 ^ w2<<13 ) + w4 + w13 )|0;
           d = ( w4 + d + ( a>>>6 ^ a>>>11 ^ a>>>25 ^ a<<26 ^ a<<21 ^ a<<7 ) +  ( c ^ a & (b^c) ) + 0x391c0cb3 )|0;
           h = ( h + d )|0;
           d = ( d + ( (e & f) ^ ( g & (e ^ f) ) ) + ( e>>>2 ^ e>>>13 ^ e>>>22 ^ e<<30 ^ e<<19 ^ e<<10 ) )|0;

           // 53
           w5 = ( ( w6>>>7  ^ w6>>>18 ^ w6>>>3  ^ w6<<25 ^ w6<<14 ) + ( w3>>>17 ^ w3>>>19 ^ w3>>>10 ^ w3<<15 ^ w3<<13 ) + w5 + w14 )|0;
           c = ( w5 + c + ( h>>>6 ^ h>>>11 ^ h>>>25 ^ h<<26 ^ h<<21 ^ h<<7 ) +  ( b ^ h & (a^b) ) + 0x4ed8aa4a )|0;
           g = ( g + c )|0;
           c = ( c + ( (d & e) ^ ( f & (d ^ e) ) ) + ( d>>>2 ^ d>>>13 ^ d>>>22 ^ d<<30 ^ d<<19 ^ d<<10 ) )|0;

           // 54
           w6 = ( ( w7>>>7  ^ w7>>>18 ^ w7>>>3  ^ w7<<25 ^ w7<<14 ) + ( w4>>>17 ^ w4>>>19 ^ w4>>>10 ^ w4<<15 ^ w4<<13 ) + w6 + w15 )|0;
           b = ( w6 + b + ( g>>>6 ^ g>>>11 ^ g>>>25 ^ g<<26 ^ g<<21 ^ g<<7 ) +  ( a ^ g & (h^a) ) + 0x5b9cca4f )|0;
           f = ( f + b )|0;
           b = ( b + ( (c & d) ^ ( e & (c ^ d) ) ) + ( c>>>2 ^ c>>>13 ^ c>>>22 ^ c<<30 ^ c<<19 ^ c<<10 ) )|0;

           // 55
           w7 = ( ( w8>>>7  ^ w8>>>18 ^ w8>>>3  ^ w8<<25 ^ w8<<14 ) + ( w5>>>17 ^ w5>>>19 ^ w5>>>10 ^ w5<<15 ^ w5<<13 ) + w7 + w0 )|0;
           a = ( w7 + a + ( f>>>6 ^ f>>>11 ^ f>>>25 ^ f<<26 ^ f<<21 ^ f<<7 ) +  ( h ^ f & (g^h) ) + 0x682e6ff3 )|0;
           e = ( e + a )|0;
           a = ( a + ( (b & c) ^ ( d & (b ^ c) ) ) + ( b>>>2 ^ b>>>13 ^ b>>>22 ^ b<<30 ^ b<<19 ^ b<<10 ) )|0;

           // 56
           w8 = ( ( w9>>>7  ^ w9>>>18 ^ w9>>>3  ^ w9<<25 ^ w9<<14 ) + ( w6>>>17 ^ w6>>>19 ^ w6>>>10 ^ w6<<15 ^ w6<<13 ) + w8 + w1 )|0;
           h = ( w8 + h + ( e>>>6 ^ e>>>11 ^ e>>>25 ^ e<<26 ^ e<<21 ^ e<<7 ) +  ( g ^ e & (f^g) ) + 0x748f82ee )|0;
           d = ( d + h )|0;
           h = ( h + ( (a & b) ^ ( c & (a ^ b) ) ) + ( a>>>2 ^ a>>>13 ^ a>>>22 ^ a<<30 ^ a<<19 ^ a<<10 ) )|0;

           // 57
           w9 = ( ( w10>>>7  ^ w10>>>18 ^ w10>>>3  ^ w10<<25 ^ w10<<14 ) + ( w7>>>17 ^ w7>>>19 ^ w7>>>10 ^ w7<<15 ^ w7<<13 ) + w9 + w2 )|0;
           g = ( w9 + g + ( d>>>6 ^ d>>>11 ^ d>>>25 ^ d<<26 ^ d<<21 ^ d<<7 ) +  ( f ^ d & (e^f) ) + 0x78a5636f )|0;
           c = ( c + g )|0;
           g = ( g + ( (h & a) ^ ( b & (h ^ a) ) ) + ( h>>>2 ^ h>>>13 ^ h>>>22 ^ h<<30 ^ h<<19 ^ h<<10 ) )|0;

           // 58
           w10 = ( ( w11>>>7  ^ w11>>>18 ^ w11>>>3  ^ w11<<25 ^ w11<<14 ) + ( w8>>>17 ^ w8>>>19 ^ w8>>>10 ^ w8<<15 ^ w8<<13 ) + w10 + w3 )|0;
           f = ( w10 + f + ( c>>>6 ^ c>>>11 ^ c>>>25 ^ c<<26 ^ c<<21 ^ c<<7 ) +  ( e ^ c & (d^e) ) + 0x84c87814 )|0;
           b = ( b + f )|0;
           f = ( f + ( (g & h) ^ ( a & (g ^ h) ) ) + ( g>>>2 ^ g>>>13 ^ g>>>22 ^ g<<30 ^ g<<19 ^ g<<10 ) )|0;

           // 59
           w11 = ( ( w12>>>7  ^ w12>>>18 ^ w12>>>3  ^ w12<<25 ^ w12<<14 ) + ( w9>>>17 ^ w9>>>19 ^ w9>>>10 ^ w9<<15 ^ w9<<13 ) + w11 + w4 )|0;
           e = ( w11 + e + ( b>>>6 ^ b>>>11 ^ b>>>25 ^ b<<26 ^ b<<21 ^ b<<7 ) +  ( d ^ b & (c^d) ) + 0x8cc70208 )|0;
           a = ( a + e )|0;
           e = ( e + ( (f & g) ^ ( h & (f ^ g) ) ) + ( f>>>2 ^ f>>>13 ^ f>>>22 ^ f<<30 ^ f<<19 ^ f<<10 ) )|0;

           // 60
           w12 = ( ( w13>>>7  ^ w13>>>18 ^ w13>>>3  ^ w13<<25 ^ w13<<14 ) + ( w10>>>17 ^ w10>>>19 ^ w10>>>10 ^ w10<<15 ^ w10<<13 ) + w12 + w5 )|0;
           d = ( w12 + d + ( a>>>6 ^ a>>>11 ^ a>>>25 ^ a<<26 ^ a<<21 ^ a<<7 ) +  ( c ^ a & (b^c) ) + 0x90befffa )|0;
           h = ( h + d )|0;
           d = ( d + ( (e & f) ^ ( g & (e ^ f) ) ) + ( e>>>2 ^ e>>>13 ^ e>>>22 ^ e<<30 ^ e<<19 ^ e<<10 ) )|0;

           // 61
           w13 = ( ( w14>>>7  ^ w14>>>18 ^ w14>>>3  ^ w14<<25 ^ w14<<14 ) + ( w11>>>17 ^ w11>>>19 ^ w11>>>10 ^ w11<<15 ^ w11<<13 ) + w13 + w6 )|0;
           c = ( w13 + c + ( h>>>6 ^ h>>>11 ^ h>>>25 ^ h<<26 ^ h<<21 ^ h<<7 ) +  ( b ^ h & (a^b) ) + 0xa4506ceb )|0;
           g = ( g + c )|0;
           c = ( c + ( (d & e) ^ ( f & (d ^ e) ) ) + ( d>>>2 ^ d>>>13 ^ d>>>22 ^ d<<30 ^ d<<19 ^ d<<10 ) )|0;

           // 62
           w14 = ( ( w15>>>7  ^ w15>>>18 ^ w15>>>3  ^ w15<<25 ^ w15<<14 ) + ( w12>>>17 ^ w12>>>19 ^ w12>>>10 ^ w12<<15 ^ w12<<13 ) + w14 + w7 )|0;
           b = ( w14 + b + ( g>>>6 ^ g>>>11 ^ g>>>25 ^ g<<26 ^ g<<21 ^ g<<7 ) +  ( a ^ g & (h^a) ) + 0xbef9a3f7 )|0;
           f = ( f + b )|0;
           b = ( b + ( (c & d) ^ ( e & (c ^ d) ) ) + ( c>>>2 ^ c>>>13 ^ c>>>22 ^ c<<30 ^ c<<19 ^ c<<10 ) )|0;

           // 63
           w15 = ( ( w0>>>7  ^ w0>>>18 ^ w0>>>3  ^ w0<<25 ^ w0<<14 ) + ( w13>>>17 ^ w13>>>19 ^ w13>>>10 ^ w13<<15 ^ w13<<13 ) + w15 + w8 )|0;
           a = ( w15 + a + ( f>>>6 ^ f>>>11 ^ f>>>25 ^ f<<26 ^ f<<21 ^ f<<7 ) +  ( h ^ f & (g^h) ) + 0xc67178f2 )|0;
           e = ( e + a )|0;
           a = ( a + ( (b & c) ^ ( d & (b ^ c) ) ) + ( b>>>2 ^ b>>>13 ^ b>>>22 ^ b<<30 ^ b<<19 ^ b<<10 ) )|0;

           H0 = ( H0 + a )|0;
           H1 = ( H1 + b )|0;
           H2 = ( H2 + c )|0;
           H3 = ( H3 + d )|0;
           H4 = ( H4 + e )|0;
           H5 = ( H5 + f )|0;
           H6 = ( H6 + g )|0;
           H7 = ( H7 + h )|0;
       }

       function _core_heap ( offset ) {
           offset = offset|0;

           _core(
               HEAP[offset|0]<<24 | HEAP[offset|1]<<16 | HEAP[offset|2]<<8 | HEAP[offset|3],
               HEAP[offset|4]<<24 | HEAP[offset|5]<<16 | HEAP[offset|6]<<8 | HEAP[offset|7],
               HEAP[offset|8]<<24 | HEAP[offset|9]<<16 | HEAP[offset|10]<<8 | HEAP[offset|11],
               HEAP[offset|12]<<24 | HEAP[offset|13]<<16 | HEAP[offset|14]<<8 | HEAP[offset|15],
               HEAP[offset|16]<<24 | HEAP[offset|17]<<16 | HEAP[offset|18]<<8 | HEAP[offset|19],
               HEAP[offset|20]<<24 | HEAP[offset|21]<<16 | HEAP[offset|22]<<8 | HEAP[offset|23],
               HEAP[offset|24]<<24 | HEAP[offset|25]<<16 | HEAP[offset|26]<<8 | HEAP[offset|27],
               HEAP[offset|28]<<24 | HEAP[offset|29]<<16 | HEAP[offset|30]<<8 | HEAP[offset|31],
               HEAP[offset|32]<<24 | HEAP[offset|33]<<16 | HEAP[offset|34]<<8 | HEAP[offset|35],
               HEAP[offset|36]<<24 | HEAP[offset|37]<<16 | HEAP[offset|38]<<8 | HEAP[offset|39],
               HEAP[offset|40]<<24 | HEAP[offset|41]<<16 | HEAP[offset|42]<<8 | HEAP[offset|43],
               HEAP[offset|44]<<24 | HEAP[offset|45]<<16 | HEAP[offset|46]<<8 | HEAP[offset|47],
               HEAP[offset|48]<<24 | HEAP[offset|49]<<16 | HEAP[offset|50]<<8 | HEAP[offset|51],
               HEAP[offset|52]<<24 | HEAP[offset|53]<<16 | HEAP[offset|54]<<8 | HEAP[offset|55],
               HEAP[offset|56]<<24 | HEAP[offset|57]<<16 | HEAP[offset|58]<<8 | HEAP[offset|59],
               HEAP[offset|60]<<24 | HEAP[offset|61]<<16 | HEAP[offset|62]<<8 | HEAP[offset|63]
           );
       }

       // offset — multiple of 32
       function _state_to_heap ( output ) {
           output = output|0;

           HEAP[output|0] = H0>>>24;
           HEAP[output|1] = H0>>>16&255;
           HEAP[output|2] = H0>>>8&255;
           HEAP[output|3] = H0&255;
           HEAP[output|4] = H1>>>24;
           HEAP[output|5] = H1>>>16&255;
           HEAP[output|6] = H1>>>8&255;
           HEAP[output|7] = H1&255;
           HEAP[output|8] = H2>>>24;
           HEAP[output|9] = H2>>>16&255;
           HEAP[output|10] = H2>>>8&255;
           HEAP[output|11] = H2&255;
           HEAP[output|12] = H3>>>24;
           HEAP[output|13] = H3>>>16&255;
           HEAP[output|14] = H3>>>8&255;
           HEAP[output|15] = H3&255;
           HEAP[output|16] = H4>>>24;
           HEAP[output|17] = H4>>>16&255;
           HEAP[output|18] = H4>>>8&255;
           HEAP[output|19] = H4&255;
           HEAP[output|20] = H5>>>24;
           HEAP[output|21] = H5>>>16&255;
           HEAP[output|22] = H5>>>8&255;
           HEAP[output|23] = H5&255;
           HEAP[output|24] = H6>>>24;
           HEAP[output|25] = H6>>>16&255;
           HEAP[output|26] = H6>>>8&255;
           HEAP[output|27] = H6&255;
           HEAP[output|28] = H7>>>24;
           HEAP[output|29] = H7>>>16&255;
           HEAP[output|30] = H7>>>8&255;
           HEAP[output|31] = H7&255;
       }

       function reset () {
           H0 = 0x6a09e667;
           H1 = 0xbb67ae85;
           H2 = 0x3c6ef372;
           H3 = 0xa54ff53a;
           H4 = 0x510e527f;
           H5 = 0x9b05688c;
           H6 = 0x1f83d9ab;
           H7 = 0x5be0cd19;
           TOTAL0 = TOTAL1 = 0;
       }

       function init ( h0, h1, h2, h3, h4, h5, h6, h7, total0, total1 ) {
           h0 = h0|0;
           h1 = h1|0;
           h2 = h2|0;
           h3 = h3|0;
           h4 = h4|0;
           h5 = h5|0;
           h6 = h6|0;
           h7 = h7|0;
           total0 = total0|0;
           total1 = total1|0;

           H0 = h0;
           H1 = h1;
           H2 = h2;
           H3 = h3;
           H4 = h4;
           H5 = h5;
           H6 = h6;
           H7 = h7;
           TOTAL0 = total0;
           TOTAL1 = total1;
       }

       // offset — multiple of 64
       function process ( offset, length ) {
           offset = offset|0;
           length = length|0;

           var hashed = 0;

           if ( offset & 63 )
               return -1;

           while ( (length|0) >= 64 ) {
               _core_heap(offset);

               offset = ( offset + 64 )|0;
               length = ( length - 64 )|0;

               hashed = ( hashed + 64 )|0;
           }

           TOTAL0 = ( TOTAL0 + hashed )|0;
           if ( TOTAL0>>>0 < hashed>>>0 ) TOTAL1 = ( TOTAL1 + 1 )|0;

           return hashed|0;
       }

       // offset — multiple of 64
       // output — multiple of 32
       function finish ( offset, length, output ) {
           offset = offset|0;
           length = length|0;
           output = output|0;

           var hashed = 0,
               i = 0;

           if ( offset & 63 )
               return -1;

           if ( ~output )
               if ( output & 31 )
                   return -1;

           if ( (length|0) >= 64 ) {
               hashed = process( offset, length )|0;
               if ( (hashed|0) == -1 )
                   return -1;

               offset = ( offset + hashed )|0;
               length = ( length - hashed )|0;
           }

           hashed = ( hashed + length )|0;
           TOTAL0 = ( TOTAL0 + length )|0;
           if ( TOTAL0>>>0 < length>>>0 ) TOTAL1 = ( TOTAL1 + 1 )|0;

           HEAP[offset|length] = 0x80;

           if ( (length|0) >= 56 ) {
               for ( i = (length+1)|0; (i|0) < 64; i = (i+1)|0 )
                   HEAP[offset|i] = 0x00;

               _core_heap(offset);

               length = 0;

               HEAP[offset|0] = 0;
           }

           for ( i = (length+1)|0; (i|0) < 59; i = (i+1)|0 )
               HEAP[offset|i] = 0;

           HEAP[offset|56] = TOTAL1>>>21&255;
           HEAP[offset|57] = TOTAL1>>>13&255;
           HEAP[offset|58] = TOTAL1>>>5&255;
           HEAP[offset|59] = TOTAL1<<3&255 | TOTAL0>>>29;
           HEAP[offset|60] = TOTAL0>>>21&255;
           HEAP[offset|61] = TOTAL0>>>13&255;
           HEAP[offset|62] = TOTAL0>>>5&255;
           HEAP[offset|63] = TOTAL0<<3&255;
           _core_heap(offset);

           if ( ~output )
               _state_to_heap(output);

           return hashed|0;
       }

       function hmac_reset () {
           H0 = I0;
           H1 = I1;
           H2 = I2;
           H3 = I3;
           H4 = I4;
           H5 = I5;
           H6 = I6;
           H7 = I7;
           TOTAL0 = 64;
           TOTAL1 = 0;
       }

       function _hmac_opad () {
           H0 = O0;
           H1 = O1;
           H2 = O2;
           H3 = O3;
           H4 = O4;
           H5 = O5;
           H6 = O6;
           H7 = O7;
           TOTAL0 = 64;
           TOTAL1 = 0;
       }

       function hmac_init ( p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15 ) {
           p0 = p0|0;
           p1 = p1|0;
           p2 = p2|0;
           p3 = p3|0;
           p4 = p4|0;
           p5 = p5|0;
           p6 = p6|0;
           p7 = p7|0;
           p8 = p8|0;
           p9 = p9|0;
           p10 = p10|0;
           p11 = p11|0;
           p12 = p12|0;
           p13 = p13|0;
           p14 = p14|0;
           p15 = p15|0;

           // opad
           reset();
           _core(
               p0 ^ 0x5c5c5c5c,
               p1 ^ 0x5c5c5c5c,
               p2 ^ 0x5c5c5c5c,
               p3 ^ 0x5c5c5c5c,
               p4 ^ 0x5c5c5c5c,
               p5 ^ 0x5c5c5c5c,
               p6 ^ 0x5c5c5c5c,
               p7 ^ 0x5c5c5c5c,
               p8 ^ 0x5c5c5c5c,
               p9 ^ 0x5c5c5c5c,
               p10 ^ 0x5c5c5c5c,
               p11 ^ 0x5c5c5c5c,
               p12 ^ 0x5c5c5c5c,
               p13 ^ 0x5c5c5c5c,
               p14 ^ 0x5c5c5c5c,
               p15 ^ 0x5c5c5c5c
           );
           O0 = H0;
           O1 = H1;
           O2 = H2;
           O3 = H3;
           O4 = H4;
           O5 = H5;
           O6 = H6;
           O7 = H7;

           // ipad
           reset();
           _core(
               p0 ^ 0x36363636,
               p1 ^ 0x36363636,
               p2 ^ 0x36363636,
               p3 ^ 0x36363636,
               p4 ^ 0x36363636,
               p5 ^ 0x36363636,
               p6 ^ 0x36363636,
               p7 ^ 0x36363636,
               p8 ^ 0x36363636,
               p9 ^ 0x36363636,
               p10 ^ 0x36363636,
               p11 ^ 0x36363636,
               p12 ^ 0x36363636,
               p13 ^ 0x36363636,
               p14 ^ 0x36363636,
               p15 ^ 0x36363636
           );
           I0 = H0;
           I1 = H1;
           I2 = H2;
           I3 = H3;
           I4 = H4;
           I5 = H5;
           I6 = H6;
           I7 = H7;

           TOTAL0 = 64;
           TOTAL1 = 0;
       }

       // offset — multiple of 64
       // output — multiple of 32
       function hmac_finish ( offset, length, output ) {
           offset = offset|0;
           length = length|0;
           output = output|0;

           var t0 = 0, t1 = 0, t2 = 0, t3 = 0, t4 = 0, t5 = 0, t6 = 0, t7 = 0,
               hashed = 0;

           if ( offset & 63 )
               return -1;

           if ( ~output )
               if ( output & 31 )
                   return -1;

           hashed = finish( offset, length, -1 )|0;
           t0 = H0, t1 = H1, t2 = H2, t3 = H3, t4 = H4, t5 = H5, t6 = H6, t7 = H7;

           _hmac_opad();
           _core( t0, t1, t2, t3, t4, t5, t6, t7, 0x80000000, 0, 0, 0, 0, 0, 0, 768 );

           if ( ~output )
               _state_to_heap(output);

           return hashed|0;
       }

       // salt is assumed to be already processed
       // offset — multiple of 64
       // output — multiple of 32
       function pbkdf2_generate_block ( offset, length, block, count, output ) {
           offset = offset|0;
           length = length|0;
           block = block|0;
           count = count|0;
           output = output|0;

           var h0 = 0, h1 = 0, h2 = 0, h3 = 0, h4 = 0, h5 = 0, h6 = 0, h7 = 0,
               t0 = 0, t1 = 0, t2 = 0, t3 = 0, t4 = 0, t5 = 0, t6 = 0, t7 = 0;

           if ( offset & 63 )
               return -1;

           if ( ~output )
               if ( output & 31 )
                   return -1;

           // pad block number into heap
           // FIXME probable OOB write
           HEAP[(offset+length)|0]   = block>>>24;
           HEAP[(offset+length+1)|0] = block>>>16&255;
           HEAP[(offset+length+2)|0] = block>>>8&255;
           HEAP[(offset+length+3)|0] = block&255;

           // finish first iteration
           hmac_finish( offset, (length+4)|0, -1 )|0;
           h0 = t0 = H0, h1 = t1 = H1, h2 = t2 = H2, h3 = t3 = H3, h4 = t4 = H4, h5 = t5 = H5, h6 = t6 = H6, h7 = t7 = H7;
           count = (count-1)|0;

           // perform the rest iterations
           while ( (count|0) > 0 ) {
               hmac_reset();
               _core( t0, t1, t2, t3, t4, t5, t6, t7, 0x80000000, 0, 0, 0, 0, 0, 0, 768 );
               t0 = H0, t1 = H1, t2 = H2, t3 = H3, t4 = H4, t5 = H5, t6 = H6, t7 = H7;

               _hmac_opad();
               _core( t0, t1, t2, t3, t4, t5, t6, t7, 0x80000000, 0, 0, 0, 0, 0, 0, 768 );
               t0 = H0, t1 = H1, t2 = H2, t3 = H3, t4 = H4, t5 = H5, t6 = H6, t7 = H7;

               h0 = h0 ^ H0;
               h1 = h1 ^ H1;
               h2 = h2 ^ H2;
               h3 = h3 ^ H3;
               h4 = h4 ^ H4;
               h5 = h5 ^ H5;
               h6 = h6 ^ H6;
               h7 = h7 ^ H7;

               count = (count-1)|0;
           }

           H0 = h0;
           H1 = h1;
           H2 = h2;
           H3 = h3;
           H4 = h4;
           H5 = h5;
           H6 = h6;
           H7 = h7;

           if ( ~output )
               _state_to_heap(output);

           return 0;
       }

       return {
           // SHA256
           reset: reset,
           init: init,
           process: process,
           finish: finish,

           // HMAC-SHA256
           hmac_reset: hmac_reset,
           hmac_init: hmac_init,
           hmac_finish: hmac_finish,

           // PBKDF2-HMAC-SHA256
           pbkdf2_generate_block: pbkdf2_generate_block
       }
   }

   var _sha256_block_size = 64;
   var _sha256_hash_size = 32;

   function sha256_constructor(options) {
     options = options || {};

     this.heap = _heap_init(Uint8Array, options.heap);
     this.asm = options.asm || sha256_asm({ Uint8Array: Uint8Array }, null, this.heap.buffer);

     this.BLOCK_SIZE = _sha256_block_size;
     this.HASH_SIZE = _sha256_hash_size;

     this.reset();
   }

   sha256_constructor.BLOCK_SIZE = _sha256_block_size;
   sha256_constructor.HASH_SIZE = _sha256_hash_size;
   sha256_constructor.NAME = 'sha256';

   var sha256_prototype = sha256_constructor.prototype;
   sha256_prototype.reset = hash_reset;
   sha256_prototype.process = hash_process;
   sha256_prototype.finish = hash_finish;

   var sha256_instance = null;

   function get_sha256_instance() {
     if (sha256_instance === null) sha256_instance = new sha256_constructor({ heapSize: 0x100000 });
     return sha256_instance;
   }

   /**
    * SHA256 exports
    */

   function sha256_bytes(data) {
     if (data === undefined) throw new SyntaxError('data required');
     return get_sha256_instance()
       .reset()
       .process(data)
       .finish().result;
   }

   function sha256_hex(data) {
     var result = sha256_bytes(data);
     return bytes_to_hex(result);
   }

   function sha256_base64(data) {
     var result = sha256_bytes(data);
     return bytes_to_base64(result);
   }

   var SHA256 = sha256_constructor;
   SHA256.bytes = sha256_bytes;
   SHA256.hex = sha256_hex;
   SHA256.base64 = sha256_base64;

   class hmac_constructor {
     constructor(options) {
       options = options || {};

       if (!options.hash) throw new SyntaxError("option 'hash' is required");

       if (!options.hash.HASH_SIZE)
         throw new SyntaxError("option 'hash' supplied doesn't seem to be a valid hash function");

       this.hash = options.hash;
       this.BLOCK_SIZE = this.hash.BLOCK_SIZE;
       this.HMAC_SIZE = this.hash.HASH_SIZE;

       this.key = null;
       this.verify = null;
       this.result = null;

       if (options.password !== undefined || options.verify !== undefined) this.reset(options);

       return this;
     }

     reset(options) {
       options = options || {};
       var password = options.password;

       if (this.key === null && !is_string(password) && !password)
         throw new IllegalStateError('no key is associated with the instance');

       this.result = null;
       this.hash.reset();

       if (password || is_string(password)) this.key = _hmac_key(this.hash, password);

       var ipad = new Uint8Array(this.key);
       for (var i = 0; i < ipad.length; ++i) ipad[i] ^= 0x36;

       this.hash.process(ipad);

       var verify = options.verify;
       if (verify !== undefined) {
         this._hmac_init_verify(verify);
       } else {
         this.verify = null;
       }

       return this;
     }

     process(data) {
       if (this.key === null) throw new IllegalStateError('no key is associated with the instance');

       if (this.result !== null) throw new IllegalStateError('state must be reset before processing new data');

       this.hash.process(data);

       return this;
     }

     finish() {
       if (this.key === null) throw new IllegalStateError('no key is associated with the instance');

       if (this.result !== null) throw new IllegalStateError('state must be reset before processing new data');

       var inner_result = this.hash.finish().result;

       var opad = new Uint8Array(this.key);
       for (var i = 0; i < opad.length; ++i) opad[i] ^= 0x5c;

       var verify = this.verify;
       var result = this.hash
         .reset()
         .process(opad)
         .process(inner_result)
         .finish().result;

       if (verify) {
         if (verify.length === result.length) {
           var diff = 0;
           for (var i = 0; i < verify.length; i++) {
             diff |= verify[i] ^ result[i];
           }
           this.result = !diff;
         } else {
           this.result = false;
         }
       } else {
         this.result = result;
       }

       return this;
     }

     _hmac_init_verify(verify) {
       if (is_buffer(verify) || is_bytes(verify)) {
         verify = new Uint8Array(verify);
       } else if (is_string(verify)) {
         verify = string_to_bytes(verify);
       } else {
         throw new TypeError("verify tag isn't of expected type");
       }

       if (verify.length !== this.HMAC_SIZE) throw new IllegalArgumentError('illegal verification tag size');

       this.verify = verify;
     }
   }

   function _hmac_key(hash, password) {
     if (is_buffer(password)) password = new Uint8Array(password);

     if (is_string(password)) password = string_to_bytes(password);

     if (!is_bytes(password)) throw new TypeError("password isn't of expected type");

     var key = new Uint8Array(hash.BLOCK_SIZE);

     if (password.length > hash.BLOCK_SIZE) {
       key.set(
         hash
           .reset()
           .process(password)
           .finish().result,
       );
     } else {
       key.set(password);
     }

     return key;
   }

   class hmac_sha1_constructor extends hmac_constructor {
     constructor(options) {
       options = options || {};

       if (!(options.hash instanceof sha1_constructor)) options.hash = get_sha1_instance();

       super(options);
     }

     reset(options) {
       options = options || {};

       this.result = null;
       this.hash.reset();

       var password = options.password;
       if (password !== undefined) {
         if (is_string(password)) password = string_to_bytes(password);

         var key = (this.key = _hmac_key(this.hash, password));
         this.hash
           .reset()
           .asm.hmac_init(
             (key[0] << 24) | (key[1] << 16) | (key[2] << 8) | key[3],
             (key[4] << 24) | (key[5] << 16) | (key[6] << 8) | key[7],
             (key[8] << 24) | (key[9] << 16) | (key[10] << 8) | key[11],
             (key[12] << 24) | (key[13] << 16) | (key[14] << 8) | key[15],
             (key[16] << 24) | (key[17] << 16) | (key[18] << 8) | key[19],
             (key[20] << 24) | (key[21] << 16) | (key[22] << 8) | key[23],
             (key[24] << 24) | (key[25] << 16) | (key[26] << 8) | key[27],
             (key[28] << 24) | (key[29] << 16) | (key[30] << 8) | key[31],
             (key[32] << 24) | (key[33] << 16) | (key[34] << 8) | key[35],
             (key[36] << 24) | (key[37] << 16) | (key[38] << 8) | key[39],
             (key[40] << 24) | (key[41] << 16) | (key[42] << 8) | key[43],
             (key[44] << 24) | (key[45] << 16) | (key[46] << 8) | key[47],
             (key[48] << 24) | (key[49] << 16) | (key[50] << 8) | key[51],
             (key[52] << 24) | (key[53] << 16) | (key[54] << 8) | key[55],
             (key[56] << 24) | (key[57] << 16) | (key[58] << 8) | key[59],
             (key[60] << 24) | (key[61] << 16) | (key[62] << 8) | key[63],
           );
       } else {
         this.hash.asm.hmac_reset();
       }

       var verify = options.verify;
       if (verify !== undefined) {
         this._hmac_init_verify(verify);
       } else {
         this.verify = null;
       }

       return this;
     }

     /**
      * @return {hmac_sha1_constructor}
      */
     finish() {
       if (this.key === null) throw new IllegalStateError('no key is associated with the instance');

       if (this.result !== null) throw new IllegalStateError('state must be reset before processing new data');

       var hash = this.hash,
         asm = this.hash.asm,
         heap = this.hash.heap;

       asm.hmac_finish(hash.pos, hash.len, 0);

       var verify = this.verify;
       var result = new Uint8Array(_sha1_hash_size);
       result.set(heap.subarray(0, _sha1_hash_size));

       if (verify) {
         if (verify.length === result.length) {
           var diff = 0;
           for (var i = 0; i < verify.length; i++) {
             diff |= verify[i] ^ result[i];
           }
           this.result = !diff;
         } else {
           this.result = false;
         }
       } else {
         this.result = result;
       }

       return this;
     }
   }

   hmac_sha1_constructor.BLOCK_SIZE = sha1_constructor.BLOCK_SIZE;
   hmac_sha1_constructor.HMAC_SIZE = sha1_constructor.HASH_SIZE;

   var hmac_sha1_instance = null;

   /**
    * @return {hmac_sha1_constructor}
    */
   function get_hmac_sha1_instance() {
     if (hmac_sha1_instance === null) hmac_sha1_instance = new hmac_sha1_constructor();
     return hmac_sha1_instance;
   }

   /**
    * HMAC-SHA1 exports
    */

   function hmac_sha1_bytes(data, password) {
     if (data === undefined) throw new SyntaxError('data required');
     if (password === undefined) throw new SyntaxError('password required');
     return get_hmac_sha1_instance()
       .reset({ password: password })
       .process(data)
       .finish().result;
   }

   function hmac_sha1_hex(data, password) {
     var result = hmac_sha1_bytes(data, password);
     return bytes_to_hex(result);
   }

   function hmac_sha1_base64(data, password) {
     var result = hmac_sha1_bytes(data, password);
     return bytes_to_base64(result);
   }

   var HMAC_SHA1 = hmac_sha1_constructor;

   HMAC_SHA1.bytes = hmac_sha1_bytes;
   HMAC_SHA1.hex = hmac_sha1_hex;
   HMAC_SHA1.base64 = hmac_sha1_base64;

   class hmac_sha256_constructor extends hmac_constructor {
     constructor(options) {
       options = options || {};

       if (!(options.hash instanceof sha256_constructor)) options.hash = get_sha256_instance();

       super(options);
     }

     reset(options) {
       options = options || {};

       this.result = null;
       this.hash.reset();

       var password = options.password;
       if (password !== undefined) {
         if (is_string(password)) password = string_to_bytes(password);

         var key = (this.key = _hmac_key(this.hash, password));
         this.hash
           .reset()
           .asm.hmac_init(
             (key[0] << 24) | (key[1] << 16) | (key[2] << 8) | key[3],
             (key[4] << 24) | (key[5] << 16) | (key[6] << 8) | key[7],
             (key[8] << 24) | (key[9] << 16) | (key[10] << 8) | key[11],
             (key[12] << 24) | (key[13] << 16) | (key[14] << 8) | key[15],
             (key[16] << 24) | (key[17] << 16) | (key[18] << 8) | key[19],
             (key[20] << 24) | (key[21] << 16) | (key[22] << 8) | key[23],
             (key[24] << 24) | (key[25] << 16) | (key[26] << 8) | key[27],
             (key[28] << 24) | (key[29] << 16) | (key[30] << 8) | key[31],
             (key[32] << 24) | (key[33] << 16) | (key[34] << 8) | key[35],
             (key[36] << 24) | (key[37] << 16) | (key[38] << 8) | key[39],
             (key[40] << 24) | (key[41] << 16) | (key[42] << 8) | key[43],
             (key[44] << 24) | (key[45] << 16) | (key[46] << 8) | key[47],
             (key[48] << 24) | (key[49] << 16) | (key[50] << 8) | key[51],
             (key[52] << 24) | (key[53] << 16) | (key[54] << 8) | key[55],
             (key[56] << 24) | (key[57] << 16) | (key[58] << 8) | key[59],
             (key[60] << 24) | (key[61] << 16) | (key[62] << 8) | key[63],
           );
       } else {
         this.hash.asm.hmac_reset();
       }

       var verify = options.verify;
       if (verify !== undefined) {
         this._hmac_init_verify(verify);
       } else {
         this.verify = null;
       }

       return this;
     }

     /**
      * @return {hmac_sha256_constructor}
      */
     finish() {
       if (this.key === null) throw new IllegalStateError('no key is associated with the instance');

       if (this.result !== null) throw new IllegalStateError('state must be reset before processing new data');

       var hash = this.hash,
         asm = this.hash.asm,
         heap = this.hash.heap;

       asm.hmac_finish(hash.pos, hash.len, 0);

       var verify = this.verify;
       var result = new Uint8Array(_sha256_hash_size);
       result.set(heap.subarray(0, _sha256_hash_size));

       if (verify) {
         if (verify.length === result.length) {
           var diff = 0;
           for (var i = 0; i < verify.length; i++) {
             diff |= verify[i] ^ result[i];
           }
           this.result = !diff;
         } else {
           this.result = false;
         }
       } else {
         this.result = result;
       }

       return this;
     }
   }

   hmac_sha256_constructor.BLOCK_SIZE = sha256_constructor.BLOCK_SIZE;
   hmac_sha256_constructor.HMAC_SIZE = sha256_constructor.HASH_SIZE;

   var hmac_sha256_instance = null;

   /**
    * @return {hmac_sha256_constructor}
    */
   function get_hmac_sha256_instance() {
     if (hmac_sha256_instance === null) hmac_sha256_instance = new hmac_sha256_constructor();
     return hmac_sha256_instance;
   }

   /**
    * HMAC-SHA256 exports
    */

   function hmac_sha256_bytes(data, password) {
     if (data === undefined) throw new SyntaxError('data required');
     if (password === undefined) throw new SyntaxError('password required');
     return get_hmac_sha256_instance()
       .reset({ password: password })
       .process(data)
       .finish().result;
   }

   function hmac_sha256_hex(data, password) {
     var result = hmac_sha256_bytes(data, password);
     return bytes_to_hex(result);
   }

   function hmac_sha256_base64(data, password) {
     var result = hmac_sha256_bytes(data, password);
     return bytes_to_base64(result);
   }

   var HMAC_SHA256 = hmac_sha256_constructor;

   HMAC_SHA256.bytes = hmac_sha256_bytes;
   HMAC_SHA256.hex = hmac_sha256_hex;
   HMAC_SHA256.base64 = hmac_sha256_base64;

   class pbkdf2_constructor {
     constructor(options) {
       options = options || {};

       if (!options.hmac) throw new SyntaxError("option 'hmac' is required");

       if (!options.hmac.HMAC_SIZE)
         throw new SyntaxError("option 'hmac' supplied doesn't seem to be a valid HMAC function");

       this.hmac = options.hmac;
       this.count = options.count || 4096;
       this.length = options.length || this.hmac.HMAC_SIZE;

       this.result = null;

       var password = options.password;
       if (password || is_string(password)) this.reset(options);

       return this;
     }

     reset(options) {
       this.result = null;

       this.hmac.reset(options);

       return this;
     }

     generate(salt, count, length) {
       if (this.result !== null) throw new IllegalStateError('state must be reset before processing new data');

       if (!salt && !is_string(salt)) throw new IllegalArgumentError("bad 'salt' value");

       count = count || this.count;
       length = length || this.length;

       this.result = new Uint8Array(length);

       var blocks = Math.ceil(length / this.hmac.HMAC_SIZE);

       for (var i = 1; i <= blocks; ++i) {
         var j = (i - 1) * this.hmac.HMAC_SIZE;
         var l = (i < blocks ? 0 : length % this.hmac.HMAC_SIZE) || this.hmac.HMAC_SIZE;
         var tmp = new Uint8Array(
           this.hmac
             .reset()
             .process(salt)
             .process(new Uint8Array([(i >>> 24) & 0xff, (i >>> 16) & 0xff, (i >>> 8) & 0xff, i & 0xff]))
             .finish().result,
         );
         this.result.set(tmp.subarray(0, l), j);
         for (var k = 1; k < count; ++k) {
           tmp = new Uint8Array(
             this.hmac
               .reset()
               .process(tmp)
               .finish().result,
           );
           for (var r = 0; r < l; ++r) this.result[j + r] ^= tmp[r];
         }
       }

       return this;
     }
   }

   class pbkdf2_hmac_sha1_constructor extends pbkdf2_constructor {
     constructor(options) {
       options = options || {};

       if (!(options.hmac instanceof hmac_sha1_constructor)) options.hmac = get_hmac_sha1_instance();

       super(options);
     }

     generate(salt, count, length) {
       if (this.result !== null) throw new IllegalStateError('state must be reset before processing new data');

       if (!salt && !is_string(salt)) throw new IllegalArgumentError("bad 'salt' value");

       count = count || this.count;
       length = length || this.length;

       this.result = new Uint8Array(length);

       var blocks = Math.ceil(length / this.hmac.HMAC_SIZE);

       for (var i = 1; i <= blocks; ++i) {
         var j = (i - 1) * this.hmac.HMAC_SIZE;
         var l = (i < blocks ? 0 : length % this.hmac.HMAC_SIZE) || this.hmac.HMAC_SIZE;

         this.hmac.reset().process(salt);
         this.hmac.hash.asm.pbkdf2_generate_block(this.hmac.hash.pos, this.hmac.hash.len, i, count, 0);

         this.result.set(this.hmac.hash.heap.subarray(0, l), j);
       }

       return this;
     }
   }

   var pbkdf2_hmac_sha1_instance = null;

   function get_pbkdf2_hmac_sha1_instance() {
     if (pbkdf2_hmac_sha1_instance === null) pbkdf2_hmac_sha1_instance = new pbkdf2_hmac_sha1_constructor();
     return pbkdf2_hmac_sha1_instance;
   }

   /**
    * PBKDF2-HMAC-SHA1 exports
    */

   function pbkdf2_hmac_sha1_bytes(password, salt, iterations, dklen) {
     if (password === undefined) throw new SyntaxError('password required');
     if (salt === undefined) throw new SyntaxError('salt required');
     return get_pbkdf2_hmac_sha1_instance()
       .reset({ password: password })
       .generate(salt, iterations, dklen).result;
   }

   function pbkdf2_hmac_sha1_hex(password, salt, iterations, dklen) {
     var result = pbkdf2_hmac_sha1_bytes(password, salt, iterations, dklen);
     return bytes_to_hex(result);
   }

   function pbkdf2_hmac_sha1_base64(password, salt, iterations, dklen) {
     var result = pbkdf2_hmac_sha1_bytes(password, salt, iterations, dklen);
     return bytes_to_base64(result);
   }

   var PBKDF2 = {
     bytes: pbkdf2_hmac_sha1_bytes,
     hex: pbkdf2_hmac_sha1_hex,
     base64: pbkdf2_hmac_sha1_base64,
   };

   var PBKDF2_HMAC_SHA1 = {
     bytes: pbkdf2_hmac_sha1_bytes,
     hex: pbkdf2_hmac_sha1_hex,
     base64: pbkdf2_hmac_sha1_base64,
   };

   class pbkdf2_hmac_sha256_constructor extends pbkdf2_constructor {
     constructor(options) {
       options = options || {};

       if (!(options.hmac instanceof hmac_sha256_constructor)) options.hmac = get_hmac_sha256_instance();

       super(options);
     }

     generate(salt, count, length) {
       if (this.result !== null) throw new IllegalStateError('state must be reset before processing new data');

       if (!salt && !is_string(salt)) throw new IllegalArgumentError("bad 'salt' value");

       count = count || this.count;
       length = length || this.length;

       this.result = new Uint8Array(length);

       var blocks = Math.ceil(length / this.hmac.HMAC_SIZE);

       for (var i = 1; i <= blocks; ++i) {
         var j = (i - 1) * this.hmac.HMAC_SIZE;
         var l = (i < blocks ? 0 : length % this.hmac.HMAC_SIZE) || this.hmac.HMAC_SIZE;

         this.hmac.reset().process(salt);
         this.hmac.hash.asm.pbkdf2_generate_block(this.hmac.hash.pos, this.hmac.hash.len, i, count, 0);

         this.result.set(this.hmac.hash.heap.subarray(0, l), j);
       }

       return this;
     }
   }

   var pbkdf2_hmac_sha256_instance = null;

   function get_pbkdf2_hmac_sha256_instance() {
     if (pbkdf2_hmac_sha256_instance === null) pbkdf2_hmac_sha256_instance = new pbkdf2_hmac_sha256_constructor();
     return pbkdf2_hmac_sha256_instance;
   }

   /**
    * PBKDF2-HMAC-SHA256 exports
    */

   function pbkdf2_hmac_sha256_bytes(password, salt, iterations, dklen) {
     if (password === undefined) throw new SyntaxError('password required');
     if (salt === undefined) throw new SyntaxError('salt required');
     return get_pbkdf2_hmac_sha256_instance()
       .reset({ password: password })
       .generate(salt, iterations, dklen).result;
   }

   function pbkdf2_hmac_sha256_hex(password, salt, iterations, dklen) {
     var result = pbkdf2_hmac_sha256_bytes(password, salt, iterations, dklen);
     return bytes_to_hex(result);
   }

   function pbkdf2_hmac_sha256_base64(password, salt, iterations, dklen) {
     var result = pbkdf2_hmac_sha256_bytes(password, salt, iterations, dklen);
     return bytes_to_base64(result);
   }

   var PBKDF2_HMAC_SHA256 = {
     bytes: pbkdf2_hmac_sha256_bytes,
     hex: pbkdf2_hmac_sha256_hex,
     base64: pbkdf2_hmac_sha256_base64,
   };

   /* ----------------------------------------------------------------------
    * Copyright (c) 2014 Artem S Vybornov
    *
    * Copyright (c) 2012 Yves-Marie K. Rinquin
    *
    * Permission is hereby granted, free of charge, to any person obtaining
    * a copy of this software and associated documentation files (the
    * "Software"), to deal in the Software without restriction, including
    * without limitation the rights to use, copy, modify, merge, publish,
    * distribute, sublicense, and/or sell copies of the Software, and to
    * permit persons to whom the Software is furnished to do so, subject to
    * the following conditions:
    *
    * The above copyright notice and this permission notice shall be
    * included in all copies or substantial portions of the Software.
    *
    * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
    * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
    * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
    * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
    * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
    * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
    * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
    *
    * ----------------------------------------------------------------------
    *
    * ISAAC is a cryptographically secure pseudo-random number generator
    * (or CSPRNG for short) designed by Robert J. Jenkins Jr. in 1996 and
    * based on RC4. It is designed for speed and security.
    *
    * ISAAC's informations & analysis:
    *   http://burtleburtle.net/bob/rand/isaac.html
    * ISAAC's implementation details:
    *   http://burtleburtle.net/bob/rand/isaacafa.html
    *
    * ISAAC succesfully passed TestU01
    */

   var ISAAC = (function() {
     var m = new Uint32Array(256), // internal memory
       r = new Uint32Array(256), // result array
       acc = 0, // accumulator
       brs = 0, // last result
       cnt = 0, // counter
       gnt = 0; // generation counter

     /* private: randinit function, same as ISAAC reference implementation */
     function randinit() {
       var a, b, c, d, e, f, g, h;

       /* private mixing function */
       function mix() {
         a ^= b << 11;
         d = (d + a) | 0;
         b = (b + c) | 0;
         b ^= c >>> 2;
         e = (e + b) | 0;
         c = (c + d) | 0;
         c ^= d << 8;
         f = (f + c) | 0;
         d = (d + e) | 0;
         d ^= e >>> 16;
         g = (g + d) | 0;
         e = (e + f) | 0;
         e ^= f << 10;
         h = (h + e) | 0;
         f = (f + g) | 0;
         f ^= g >>> 4;
         a = (a + f) | 0;
         g = (g + h) | 0;
         g ^= h << 8;
         b = (b + g) | 0;
         h = (h + a) | 0;
         h ^= a >>> 9;
         c = (c + h) | 0;
         a = (a + b) | 0;
       }

       acc = brs = cnt = 0;

       // the golden ratio
       a = b = c = d = e = f = g = h = 0x9e3779b9;

       // scramble it
       for (var i = 0; i < 4; i++) mix();

       // mix it and combine with the internal state
       for (var i = 0; i < 256; i += 8) {
         a = (a + r[i | 0]) | 0;
         b = (b + r[i | 1]) | 0;
         c = (c + r[i | 2]) | 0;
         d = (d + r[i | 3]) | 0;
         e = (e + r[i | 4]) | 0;
         f = (f + r[i | 5]) | 0;
         g = (g + r[i | 6]) | 0;
         h = (h + r[i | 7]) | 0;
         mix();
         m.set([a, b, c, d, e, f, g, h], i);
       }

       // mix it again
       for (var i = 0; i < 256; i += 8) {
         a = (a + m[i | 0]) | 0;
         b = (b + m[i | 1]) | 0;
         c = (c + m[i | 2]) | 0;
         d = (d + m[i | 3]) | 0;
         e = (e + m[i | 4]) | 0;
         f = (f + m[i | 5]) | 0;
         g = (g + m[i | 6]) | 0;
         h = (h + m[i | 7]) | 0;
         mix();
         m.set([a, b, c, d, e, f, g, h], i);
       }

       // fill in the first set of results
       prng(1), gnt = 256;
     }

     /* public: seeding function */
     function seed(s) {
       var i, j, k, n, l;

       if (!is_typed_array(s)) {
         if (is_number(s)) {
           n = new FloatArray(1), n[0] = s;
           s = new Uint8Array(n.buffer);
         } else if (is_string(s)) {
           s = string_to_bytes(s);
         } else if (is_buffer(s)) {
           s = new Uint8Array(s);
         } else {
           throw new TypeError('bad seed type');
         }
       } else {
         s = new Uint8Array(s.buffer);
       }

       // preprocess the seed
       l = s.length;
       for (j = 0; j < l; j += 1024) {
         // xor each chunk of 1024 bytes with r, for randinit() to mix in
         for (k = j, i = 0; i < 1024 && k < l; k = j | ++i) {
           r[i >> 2] ^= s[k] << ((i & 3) << 3);
         }
         randinit();
       }
     }

     /* public: isaac generator, n = number of run */
     function prng(n) {
       n = n || 1;

       var i, x, y;

       while (n--) {
         cnt = (cnt + 1) | 0;
         brs = (brs + cnt) | 0;

         for (i = 0; i < 256; i += 4) {
           acc ^= acc << 13;
           acc = (m[(i + 128) & 0xff] + acc) | 0;
           x = m[i | 0];
           m[i | 0] = y = (m[(x >>> 2) & 0xff] + ((acc + brs) | 0)) | 0;
           r[i | 0] = brs = (m[(y >>> 10) & 0xff] + x) | 0;

           acc ^= acc >>> 6;
           acc = (m[(i + 129) & 0xff] + acc) | 0;
           x = m[i | 1];
           m[i | 1] = y = (m[(x >>> 2) & 0xff] + ((acc + brs) | 0)) | 0;
           r[i | 1] = brs = (m[(y >>> 10) & 0xff] + x) | 0;

           acc ^= acc << 2;
           acc = (m[(i + 130) & 0xff] + acc) | 0;
           x = m[i | 2];
           m[i | 2] = y = (m[(x >>> 2) & 0xff] + ((acc + brs) | 0)) | 0;
           r[i | 2] = brs = (m[(y >>> 10) & 0xff] + x) | 0;

           acc ^= acc >>> 16;
           acc = (m[(i + 131) & 0xff] + acc) | 0;
           x = m[i | 3];
           m[i | 3] = y = (m[(x >>> 2) & 0xff] + ((acc + brs) | 0)) | 0;
           r[i | 3] = brs = (m[(y >>> 10) & 0xff] + x) | 0;
         }
       }
     }

     /* public: return a random number */
     function rand() {
       if (!gnt--) prng(1), gnt = 255;

       return r[gnt];
     }

     /* return class object */
     return {
       seed: seed,
       prng: prng,
       rand: rand,
     };
   })();

   var _global_console = typeof console !== 'undefined' ? console : undefined;
   var _global_date_now = Date.now;
   var _global_math_random = Math.random;
   var _global_performance = typeof performance !== 'undefined' ? performance : undefined;
   var _global_crypto = typeof crypto !== 'undefined' ? crypto : typeof msCrypto !== 'undefined' ? msCrypto : undefined;
   var _global_crypto_getRandomValues;

   if (_global_crypto !== undefined) _global_crypto_getRandomValues = _global_crypto.getRandomValues;

   var _isaac_rand = ISAAC.rand;
   var _isaac_seed = ISAAC.seed;
   var _isaac_counter = 0;
   var _isaac_weak_seeded = false;
   var _isaac_seeded = false;

   var _random_estimated_entropy = 0;
   var _random_required_entropy = 256;
   var _random_warn_callstacks = {};

   exports._random_skip_system_rng_warning = false;
   exports._random_allow_weak = false;

   var _hires_now;
   if (_global_performance !== undefined) {
     _hires_now = function() {
       return (1000 * _global_performance.now()) | 0;
     };
   } else {
     var _hires_epoch = (1000 * _global_date_now()) | 0;
     _hires_now = function() {
       return (1000 * _global_date_now() - _hires_epoch) | 0;
     };
   }

   /**
    * weak_seed
    *
    * Seeds RNG with native `crypto.getRandomValues` output or with high-resolution
    * time and single `Math.random()` value, and various other sources.
    *
    * We estimate this may give at least ~50 bits of unpredictableness,
    * but this has not been analysed thoroughly or precisely.
    */
   function Random_weak_seed() {
     if (_global_crypto !== undefined) {
       buffer = new Uint8Array(32);
       _global_crypto_getRandomValues.call(_global_crypto, buffer);

       _isaac_seed(buffer);
     } else {
       // Some clarification about brute-force attack cost:
       // - entire bitcoin network operates at ~10^16 hash guesses per second;
       // - each PBKDF2 iteration requires the same number of hashing operations as bitcoin nonce guess;
       // - attacker having such a hashing power is able to break worst-case 50 bits of the randomness in ~3 hours;
       // Sounds sad though attacker having such a hashing power more likely would prefer to mine bitcoins.
       var buffer = new FloatArray(3),
         i,
         t;

       buffer[0] = _global_math_random();
       buffer[1] = _global_date_now();
       buffer[2] = _hires_now();

       buffer = new Uint8Array(buffer.buffer);

       var salt = '';
       if (typeof location !== 'undefined') {
         salt += location.href;
       } else if (typeof process !== 'undefined') {
         salt += process.pid + process.title;
       }

       var pbkdf2 = get_pbkdf2_hmac_sha256_instance();
       for (i = 0; i < 100; i++) {
         buffer = pbkdf2.reset({ password: buffer }).generate(salt, 1000, 32).result;
         t = _hires_now();
         buffer[0] ^= t >>> 24, buffer[1] ^= t >>> 16, buffer[2] ^= t >>> 8, buffer[3] ^= t;
       }

       _isaac_seed(buffer);
     }

     _isaac_counter = 0;

     _isaac_weak_seeded = true;
   }

   /**
    * seed
    *
    * Seeds PRNG with supplied random values if these values have enough entropy.
    *
    * A false return value means the RNG is currently insecure; however a true
    * return value does not mean it is necessarily secure (depending on how you
    * collected the seed) though asmCrypto will be forced to assume this.
    *
    * The input buffer will be zeroed to discourage reuse. You should not copy it
    * or use it anywhere else before passing it into this function.
    *
    * **DISCLAIMER!** Seeding with a poor values is an easiest way shoot your legs, so
    * do not seed until you're know what entropy is and how to obtail high-quality random values,
    * **DO NOT SEED WITH CONSTANT VALUE! YOU'LL GET NO RANDOMNESS FROM CONSTANT!**
    */
   function Random_seed(seed) {
     if (!is_buffer(seed) && !is_typed_array(seed)) throw new TypeError('bad seed type');

     var bpos = seed.byteOffset || 0,
       blen = seed.byteLength || seed.length,
       buff = new Uint8Array(seed.buffer || seed, bpos, blen);

     _isaac_seed(buff);

     _isaac_counter = 0;

     // don't let the user use these bytes again
     var nonzero = 0;
     for (var i = 0; i < buff.length; i++) {
       nonzero |= buff[i];
       buff[i] = 0;
     }

     if (nonzero !== 0) {
       // TODO we could make a better estimate, but half-length is a prudent
       // simple measure that seems unlikely to over-estimate
       _random_estimated_entropy += 4 * blen;
     }

     _isaac_seeded = _random_estimated_entropy >= _random_required_entropy;

     return _isaac_seeded;
   }

   /**
    * getValues
    *
    * Populates the buffer with cryptographically secure random values. These are
    * calculated using `crypto.getRandomValues` if it is available, as well as our
    * own ISAAC PRNG implementation.
    *
    * If the former is not available (older browsers such as IE10 [1]), then the
    * latter *must* be seeded using `Random.seed`, unless `asmCrypto.random.allowWeak` is true.
    *
    * *We assume the system RNG is strong*; if you cannot afford this risk, then
    * you should also seed ISAAC using `Random.seed`. This is advisable for very
    * important situations, such as generation of long-term secrets. See also [2].
    *
    * [1] https://developer.mozilla.org/en-US/docs/Web/API/window.crypto.getRandomValues
    * [2] https://en.wikipedia.org/wiki/Dual_EC_DRBG
    *
    * In all cases, we opportunistically seed using various arbitrary sources
    * such as high-resolution time and one single value from the insecure
    * Math.random(); however this is not reliable as a strong security measure.
    */
   function Random_getValues(buffer) {
     // opportunistically seed ISAAC with a weak seed; this hopefully makes an
     // attack harder in the case where the system RNG is weak *and* we haven't
     // seeded ISAAC. but don't make any guarantees to the user about this.
     if (!_isaac_weak_seeded) Random_weak_seed();

     // if we have no strong sources then the RNG is weak, handle it
     if (!_isaac_seeded && _global_crypto === undefined) {
       if (!exports._random_allow_weak) throw new SecurityError('No strong PRNGs available. Use asmCrypto.random.seed().');

       if (_global_console !== undefined)
         _global_console.error(
           'No strong PRNGs available; your security is greatly lowered. Use asmCrypto.random.seed().',
         );
     }

     // separate warning about assuming system RNG strong
     if (
       !exports._random_skip_system_rng_warning &&
       !_isaac_seeded &&
       _global_crypto !== undefined &&
       _global_console !== undefined
     ) {
       // Hacky way to get call stack
       var s = new Error().stack;
       _random_warn_callstacks[s] |= 0;
       if (!_random_warn_callstacks[s]++)
         _global_console.warn(
           'asmCrypto PRNG not seeded; your security relies on your system PRNG. If this is not acceptable, use asmCrypto.random.seed().',
         );
     }

     // proceed to get random values
     if (!is_buffer(buffer) && !is_typed_array(buffer)) throw new TypeError('unexpected buffer type');

     var bpos = buffer.byteOffset || 0,
       blen = buffer.byteLength || buffer.length,
       bytes = new Uint8Array(buffer.buffer || buffer, bpos, blen),
       i,
       r;

     // apply system rng
     if (_global_crypto !== undefined) _global_crypto_getRandomValues.call(_global_crypto, bytes);

     // apply isaac rng
     for (i = 0; i < blen; i++) {
       if ((i & 3) === 0) {
         if (_isaac_counter >= 0x10000000000) Random_weak_seed();
         r = _isaac_rand();
         _isaac_counter++;
       }
       bytes[i] ^= r;
       r >>>= 8;
     }

     return buffer;
   }

   /**
    * getNumber
    *
    * A drop-in `Math.random` replacement.
    * Intended for prevention of random material leakage out of the user's host.
    */
   function Random_getNumber() {
     if (!_isaac_weak_seeded || _isaac_counter >= 0x10000000000) Random_weak_seed();

     var n = (0x100000 * _isaac_rand() + (_isaac_rand() >>> 12)) / 0x10000000000000;
     _isaac_counter += 2;

     return n;
   }

   Object.defineProperty(Random_getNumber, 'allowWeak', {
     get: function() {
       return exports._random_allow_weak;
     },
     set: function(a) {
       exports._random_allow_weak = a;
     },
   });

   Object.defineProperty(Random_getNumber, 'skipSystemRNGWarning', {
     get: function() {
       return exports._random_skip_system_rng_warning;
     },
     set: function(w) {
       exports._random_skip_system_rng_warning = w;
     },
   });

   Object.defineProperty(Random_getValues, 'allowWeak', {
     get: function() {
       return exports._random_allow_weak;
     },
     set: function(a) {
       exports._random_allow_weak = a;
     },
   });

   Object.defineProperty(Random_getValues, 'skipSystemRNGWarning', {
     get: function() {
       return exports._random_skip_system_rng_warning;
     },
     set: function(w) {
       exports._random_skip_system_rng_warning = w;
     },
   });

   Random_getNumber.seed = Random_seed;
   Random_getValues.seed = Random_seed;

   /**
    * Integers are represented as little endian array of 32-bit limbs.
    * Limbs number is a power of 2 and a multiple of 8 (256 bits).
    * Negative values use two's complement representation.
    */
   function bigint_asm ( stdlib, foreign, buffer ) {
       "use asm";

       var SP = 0;

       var HEAP32 = new stdlib.Uint32Array(buffer);

       var imul = stdlib.Math.imul;

       /**
        * Simple stack memory allocator
        *
        * Methods:
        *  sreset
        *  salloc
        *  sfree
        */

       function sreset ( p ) {
           p = p|0;
           SP = p = (p + 31) & -32;
           return p|0;
       }

       function salloc ( l ) {
           l = l|0;
           var p = 0; p = SP;
           SP = p + ((l + 31) & -32)|0;
           return p|0;
       }

       function sfree ( l ) {
           l = l|0;
           SP = SP - ((l + 31) & -32)|0;
       }

       /**
        * Utility functions:
        *  cp
        *  z
        */

       function cp ( l, A, B ) {
           l = l|0;
           A = A|0;
           B = B|0;

           var i = 0;

           if ( (A|0) > (B|0) ) {
               for ( ; (i|0) < (l|0); i = (i+4)|0 ) {
                   HEAP32[(B+i)>>2] = HEAP32[(A+i)>>2];
               }
           }
           else {
               for ( i = (l-4)|0; (i|0) >= 0; i = (i-4)|0 ) {
                   HEAP32[(B+i)>>2] = HEAP32[(A+i)>>2];
               }
           }
       }

       function z ( l, z, A ) {
           l = l|0;
           z = z|0;
           A = A|0;

           var i = 0;

           for ( ; (i|0) < (l|0); i = (i+4)|0 ) {
               HEAP32[(A+i)>>2] = z;
           }
       }

       /**
        * Negate the argument
        *
        * Perform two's complement transformation:
        *
        *  -A = ~A + 1
        *
        * @param A offset of the argment being negated, 32-byte aligned
        * @param lA length of the argument, multiple of 32
        *
        * @param R offset where to place the result to, 32-byte aligned
        * @param lR length to truncate the result to, multiple of 32
        */
       function neg ( A, lA, R, lR ) {
           A  =  A|0;
           lA = lA|0;
           R  =  R|0;
           lR = lR|0;

           var a = 0, c = 0, t = 0, r = 0, i = 0;

           if ( (lR|0) <= 0 )
               lR = lA;

           if ( (lR|0) < (lA|0) )
               lA = lR;

           c = 1;
           for ( ; (i|0) < (lA|0); i = (i+4)|0 ) {
               a = ~HEAP32[(A+i)>>2];
               t = (a & 0xffff) + c|0;
               r = (a >>> 16) + (t >>> 16)|0;
               HEAP32[(R+i)>>2] = (r << 16) | (t & 0xffff);
               c = r >>> 16;
           }

           for ( ; (i|0) < (lR|0); i = (i+4)|0 ) {
               HEAP32[(R+i)>>2] = (c-1)|0;
           }

           return c|0;
       }

       function cmp ( A, lA, B, lB ) {
           A  =  A|0;
           lA = lA|0;
           B  =  B|0;
           lB = lB|0;

           var a = 0, b = 0, i = 0;

           if ( (lA|0) > (lB|0) ) {
               for ( i = (lA-4)|0; (i|0) >= (lB|0); i = (i-4)|0 ) {
                   if ( HEAP32[(A+i)>>2]|0 ) return 1;
               }
           }
           else {
               for ( i = (lB-4)|0; (i|0) >= (lA|0); i = (i-4)|0 ) {
                   if ( HEAP32[(B+i)>>2]|0 ) return -1;
               }
           }

           for ( ; (i|0) >= 0; i = (i-4)|0 ) {
               a = HEAP32[(A+i)>>2]|0, b = HEAP32[(B+i)>>2]|0;
               if ( (a>>>0) < (b>>>0) ) return -1;
               if ( (a>>>0) > (b>>>0) ) return 1;
           }

           return 0;
       }

       /**
        * Test the argument
        *
        * Same as `cmp` with zero.
        */
       function tst ( A, lA ) {
           A  =  A|0;
           lA = lA|0;

           var i = 0;

           for ( i = (lA-4)|0; (i|0) >= 0; i = (i-4)|0 ) {
               if ( HEAP32[(A+i)>>2]|0 ) return (i+4)|0;
           }

           return 0;
       }

       /**
        * Conventional addition
        *
        * @param A offset of the first argument, 32-byte aligned
        * @param lA length of the first argument, multiple of 32
        *
        * @param B offset of the second argument, 32-bit aligned
        * @param lB length of the second argument, multiple of 32
        *
        * @param R offset where to place the result to, 32-byte aligned
        * @param lR length to truncate the result to, multiple of 32
        */
       function add ( A, lA, B, lB, R, lR ) {
           A  =  A|0;
           lA = lA|0;
           B  =  B|0;
           lB = lB|0;
           R  =  R|0;
           lR = lR|0;

           var a = 0, b = 0, c = 0, t = 0, r = 0, i = 0;

           if ( (lA|0) < (lB|0) ) {
               t = A, A = B, B = t;
               t = lA, lA = lB, lB = t;
           }

           if ( (lR|0) <= 0 )
               lR = lA+4|0;

           if ( (lR|0) < (lB|0) )
               lA = lB = lR;

           for ( ; (i|0) < (lB|0); i = (i+4)|0 ) {
               a = HEAP32[(A+i)>>2]|0;
               b = HEAP32[(B+i)>>2]|0;
               t = ( (a & 0xffff) + (b & 0xffff)|0 ) + c|0;
               r = ( (a >>> 16) + (b >>> 16)|0 ) + (t >>> 16)|0;
               HEAP32[(R+i)>>2] = (t & 0xffff) | (r << 16);
               c = r >>> 16;
           }

           for ( ; (i|0) < (lA|0); i = (i+4)|0 ) {
               a = HEAP32[(A+i)>>2]|0;
               t = (a & 0xffff) + c|0;
               r = (a >>> 16) + (t >>> 16)|0;
               HEAP32[(R+i)>>2] = (t & 0xffff) | (r << 16);
               c = r >>> 16;
           }

           for ( ; (i|0) < (lR|0); i = (i+4)|0 ) {
               HEAP32[(R+i)>>2] = c|0;
               c = 0;
           }

           return c|0;
       }

      /**
        * Conventional subtraction
        *
        * @param A offset of the first argument, 32-byte aligned
        * @param lA length of the first argument, multiple of 32
        *
        * @param B offset of the second argument, 32-bit aligned
        * @param lB length of the second argument, multiple of 32
        *
        * @param R offset where to place the result to, 32-byte aligned
        * @param lR length to truncate the result to, multiple of 32
        */
       function sub ( A, lA, B, lB, R, lR ) {
           A  =  A|0;
           lA = lA|0;
           B  =  B|0;
           lB = lB|0;
           R  =  R|0;
           lR = lR|0;

           var a = 0, b = 0, c = 0, t = 0, r = 0, i = 0;

           if ( (lR|0) <= 0 )
               lR = (lA|0) > (lB|0) ? lA+4|0 : lB+4|0;

           if ( (lR|0) < (lA|0) )
               lA = lR;

           if ( (lR|0) < (lB|0) )
               lB = lR;

           if ( (lA|0) < (lB|0) ) {
               for ( ; (i|0) < (lA|0); i = (i+4)|0 ) {
                   a = HEAP32[(A+i)>>2]|0;
                   b = HEAP32[(B+i)>>2]|0;
                   t = ( (a & 0xffff) - (b & 0xffff)|0 ) + c|0;
                   r = ( (a >>> 16) - (b >>> 16)|0 ) + (t >> 16)|0;
                   HEAP32[(R+i)>>2] = (t & 0xffff) | (r << 16);
                   c = r >> 16;
               }

               for ( ; (i|0) < (lB|0); i = (i+4)|0 ) {
                   b = HEAP32[(B+i)>>2]|0;
                   t = c - (b & 0xffff)|0;
                   r = (t >> 16) - (b >>> 16)|0;
                   HEAP32[(R+i)>>2] = (t & 0xffff) | (r << 16);
                   c = r >> 16;
               }
           }
           else {
               for ( ; (i|0) < (lB|0); i = (i+4)|0 ) {
                   a = HEAP32[(A+i)>>2]|0;
                   b = HEAP32[(B+i)>>2]|0;
                   t = ( (a & 0xffff) - (b & 0xffff)|0 ) + c|0;
                   r = ( (a >>> 16) - (b >>> 16)|0 ) + (t >> 16)|0;
                   HEAP32[(R+i)>>2] = (t & 0xffff) | (r << 16);
                   c = r >> 16;
               }

               for ( ; (i|0) < (lA|0); i = (i+4)|0 ) {
                   a = HEAP32[(A+i)>>2]|0;
                   t = (a & 0xffff) + c|0;
                   r = (a >>> 16) + (t >> 16)|0;
                   HEAP32[(R+i)>>2] = (t & 0xffff) | (r << 16);
                   c = r >> 16;
               }
           }

           for ( ; (i|0) < (lR|0); i = (i+4)|0 ) {
               HEAP32[(R+i)>>2] = c|0;
           }

           return c|0;
       }

       /**
        * Conventional multiplication
        *
        * TODO implement Karatsuba algorithm for large multiplicands
        *
        * @param A offset of the first argument, 32-byte aligned
        * @param lA length of the first argument, multiple of 32
        *
        * @param B offset of the second argument, 32-byte aligned
        * @param lB length of the second argument, multiple of 32
        *
        * @param R offset where to place the result to, 32-byte aligned
        * @param lR length to truncate the result to, multiple of 32
        */
       function mul ( A, lA, B, lB, R, lR ) {
           A  =  A|0;
           lA = lA|0;
           B  =  B|0;
           lB = lB|0;
           R  =  R|0;
           lR = lR|0;

           var al0 = 0, al1 = 0, al2 = 0, al3 = 0, al4 = 0, al5 = 0, al6 = 0, al7 = 0, ah0 = 0, ah1 = 0, ah2 = 0, ah3 = 0, ah4 = 0, ah5 = 0, ah6 = 0, ah7 = 0,
               bl0 = 0, bl1 = 0, bl2 = 0, bl3 = 0, bl4 = 0, bl5 = 0, bl6 = 0, bl7 = 0, bh0 = 0, bh1 = 0, bh2 = 0, bh3 = 0, bh4 = 0, bh5 = 0, bh6 = 0, bh7 = 0,
               r0 = 0, r1 = 0, r2 = 0, r3 = 0, r4 = 0, r5 = 0, r6 = 0, r7 = 0, r8 = 0, r9 = 0, r10 = 0, r11 = 0, r12 = 0, r13 = 0, r14 = 0, r15 = 0,
               u = 0, v = 0, w = 0, m = 0,
               i = 0, Ai = 0, j = 0, Bj = 0, Rk = 0;

           if ( (lA|0) > (lB|0) ) {
               u = A, v = lA;
               A = B, lA = lB;
               B = u, lB = v;
           }

           m = (lA+lB)|0;
           if ( ( (lR|0) > (m|0) ) | ( (lR|0) <= 0 ) )
               lR = m;

           if ( (lR|0) < (lA|0) )
               lA = lR;

           if ( (lR|0) < (lB|0) )
               lB = lR;

           for ( ; (i|0) < (lA|0); i = (i+32)|0 ) {
               Ai = (A+i)|0;

               ah0 = HEAP32[(Ai|0)>>2]|0, ah1 = HEAP32[(Ai|4)>>2]|0, ah2 = HEAP32[(Ai|8)>>2]|0, ah3 = HEAP32[(Ai|12)>>2]|0, ah4 = HEAP32[(Ai|16)>>2]|0, ah5 = HEAP32[(Ai|20)>>2]|0, ah6 = HEAP32[(Ai|24)>>2]|0, ah7 = HEAP32[(Ai|28)>>2]|0, al0 = ah0 & 0xffff, al1 = ah1 & 0xffff, al2 = ah2 & 0xffff, al3 = ah3 & 0xffff, al4 = ah4 & 0xffff, al5 = ah5 & 0xffff, al6 = ah6 & 0xffff, al7 = ah7 & 0xffff, ah0 = ah0 >>> 16, ah1 = ah1 >>> 16, ah2 = ah2 >>> 16, ah3 = ah3 >>> 16, ah4 = ah4 >>> 16, ah5 = ah5 >>> 16, ah6 = ah6 >>> 16, ah7 = ah7 >>> 16;

               r8 = r9 = r10 = r11 = r12 = r13 = r14 = r15 = 0;

               for ( j = 0; (j|0) < (lB|0); j = (j+32)|0 ) {
                   Bj = (B+j)|0;
                   Rk = (R+(i+j|0))|0;

                   bh0 = HEAP32[(Bj|0)>>2]|0, bh1 = HEAP32[(Bj|4)>>2]|0, bh2 = HEAP32[(Bj|8)>>2]|0, bh3 = HEAP32[(Bj|12)>>2]|0, bh4 = HEAP32[(Bj|16)>>2]|0, bh5 = HEAP32[(Bj|20)>>2]|0, bh6 = HEAP32[(Bj|24)>>2]|0, bh7 = HEAP32[(Bj|28)>>2]|0, bl0 = bh0 & 0xffff, bl1 = bh1 & 0xffff, bl2 = bh2 & 0xffff, bl3 = bh3 & 0xffff, bl4 = bh4 & 0xffff, bl5 = bh5 & 0xffff, bl6 = bh6 & 0xffff, bl7 = bh7 & 0xffff, bh0 = bh0 >>> 16, bh1 = bh1 >>> 16, bh2 = bh2 >>> 16, bh3 = bh3 >>> 16, bh4 = bh4 >>> 16, bh5 = bh5 >>> 16, bh6 = bh6 >>> 16, bh7 = bh7 >>> 16;

                   r0 = HEAP32[(Rk|0)>>2]|0, r1 = HEAP32[(Rk|4)>>2]|0, r2 = HEAP32[(Rk|8)>>2]|0, r3 = HEAP32[(Rk|12)>>2]|0, r4 = HEAP32[(Rk|16)>>2]|0, r5 = HEAP32[(Rk|20)>>2]|0, r6 = HEAP32[(Rk|24)>>2]|0, r7 = HEAP32[(Rk|28)>>2]|0;

                   u = ((imul(al0, bl0)|0) + (r8 & 0xffff)|0) + (r0 & 0xffff)|0;
                   v = ((imul(ah0, bl0)|0) + (r8 >>> 16)|0) + (r0 >>> 16)|0;
                   w = ((imul(al0, bh0)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                   m = ((imul(ah0, bh0)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                   r0 = (w << 16) | (u & 0xffff);

                   u = ((imul(al0, bl1)|0) + (m & 0xffff)|0) + (r1 & 0xffff)|0;
                   v = ((imul(ah0, bl1)|0) + (m >>> 16)|0) + (r1 >>> 16)|0;
                   w = ((imul(al0, bh1)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                   m = ((imul(ah0, bh1)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                   r1 = (w << 16) | (u & 0xffff);

                   u = ((imul(al0, bl2)|0) + (m & 0xffff)|0) + (r2 & 0xffff)|0;
                   v = ((imul(ah0, bl2)|0) + (m >>> 16)|0) + (r2 >>> 16)|0;
                   w = ((imul(al0, bh2)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                   m = ((imul(ah0, bh2)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                   r2 = (w << 16) | (u & 0xffff);

                   u = ((imul(al0, bl3)|0) + (m & 0xffff)|0) + (r3 & 0xffff)|0;
                   v = ((imul(ah0, bl3)|0) + (m >>> 16)|0) + (r3 >>> 16)|0;
                   w = ((imul(al0, bh3)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                   m = ((imul(ah0, bh3)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                   r3 = (w << 16) | (u & 0xffff);

                   u = ((imul(al0, bl4)|0) + (m & 0xffff)|0) + (r4 & 0xffff)|0;
                   v = ((imul(ah0, bl4)|0) + (m >>> 16)|0) + (r4 >>> 16)|0;
                   w = ((imul(al0, bh4)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                   m = ((imul(ah0, bh4)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                   r4 = (w << 16) | (u & 0xffff);

                   u = ((imul(al0, bl5)|0) + (m & 0xffff)|0) + (r5 & 0xffff)|0;
                   v = ((imul(ah0, bl5)|0) + (m >>> 16)|0) + (r5 >>> 16)|0;
                   w = ((imul(al0, bh5)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                   m = ((imul(ah0, bh5)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                   r5 = (w << 16) | (u & 0xffff);

                   u = ((imul(al0, bl6)|0) + (m & 0xffff)|0) + (r6 & 0xffff)|0;
                   v = ((imul(ah0, bl6)|0) + (m >>> 16)|0) + (r6 >>> 16)|0;
                   w = ((imul(al0, bh6)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                   m = ((imul(ah0, bh6)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                   r6 = (w << 16) | (u & 0xffff);

                   u = ((imul(al0, bl7)|0) + (m & 0xffff)|0) + (r7 & 0xffff)|0;
                   v = ((imul(ah0, bl7)|0) + (m >>> 16)|0) + (r7 >>> 16)|0;
                   w = ((imul(al0, bh7)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                   m = ((imul(ah0, bh7)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                   r7 = (w << 16) | (u & 0xffff);

                   r8 = m;

                   u = ((imul(al1, bl0)|0) + (r9 & 0xffff)|0) + (r1 & 0xffff)|0;
                   v = ((imul(ah1, bl0)|0) + (r9 >>> 16)|0) + (r1 >>> 16)|0;
                   w = ((imul(al1, bh0)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                   m = ((imul(ah1, bh0)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                   r1 = (w << 16) | (u & 0xffff);

                   u = ((imul(al1, bl1)|0) + (m & 0xffff)|0) + (r2 & 0xffff)|0;
                   v = ((imul(ah1, bl1)|0) + (m >>> 16)|0) + (r2 >>> 16)|0;
                   w = ((imul(al1, bh1)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                   m = ((imul(ah1, bh1)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                   r2 = (w << 16) | (u & 0xffff);

                   u = ((imul(al1, bl2)|0) + (m & 0xffff)|0) + (r3 & 0xffff)|0;
                   v = ((imul(ah1, bl2)|0) + (m >>> 16)|0) + (r3 >>> 16)|0;
                   w = ((imul(al1, bh2)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                   m = ((imul(ah1, bh2)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                   r3 = (w << 16) | (u & 0xffff);

                   u = ((imul(al1, bl3)|0) + (m & 0xffff)|0) + (r4 & 0xffff)|0;
                   v = ((imul(ah1, bl3)|0) + (m >>> 16)|0) + (r4 >>> 16)|0;
                   w = ((imul(al1, bh3)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                   m = ((imul(ah1, bh3)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                   r4 = (w << 16) | (u & 0xffff);

                   u = ((imul(al1, bl4)|0) + (m & 0xffff)|0) + (r5 & 0xffff)|0;
                   v = ((imul(ah1, bl4)|0) + (m >>> 16)|0) + (r5 >>> 16)|0;
                   w = ((imul(al1, bh4)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                   m = ((imul(ah1, bh4)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                   r5 = (w << 16) | (u & 0xffff);

                   u = ((imul(al1, bl5)|0) + (m & 0xffff)|0) + (r6 & 0xffff)|0;
                   v = ((imul(ah1, bl5)|0) + (m >>> 16)|0) + (r6 >>> 16)|0;
                   w = ((imul(al1, bh5)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                   m = ((imul(ah1, bh5)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                   r6 = (w << 16) | (u & 0xffff);

                   u = ((imul(al1, bl6)|0) + (m & 0xffff)|0) + (r7 & 0xffff)|0;
                   v = ((imul(ah1, bl6)|0) + (m >>> 16)|0) + (r7 >>> 16)|0;
                   w = ((imul(al1, bh6)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                   m = ((imul(ah1, bh6)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                   r7 = (w << 16) | (u & 0xffff);

                   u = ((imul(al1, bl7)|0) + (m & 0xffff)|0) + (r8 & 0xffff)|0;
                   v = ((imul(ah1, bl7)|0) + (m >>> 16)|0) + (r8 >>> 16)|0;
                   w = ((imul(al1, bh7)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                   m = ((imul(ah1, bh7)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                   r8 = (w << 16) | (u & 0xffff);

                   r9 = m;

                   u = ((imul(al2, bl0)|0) + (r10 & 0xffff)|0) + (r2 & 0xffff)|0;
                   v = ((imul(ah2, bl0)|0) + (r10 >>> 16)|0) + (r2 >>> 16)|0;
                   w = ((imul(al2, bh0)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                   m = ((imul(ah2, bh0)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                   r2 = (w << 16) | (u & 0xffff);

                   u = ((imul(al2, bl1)|0) + (m & 0xffff)|0) + (r3 & 0xffff)|0;
                   v = ((imul(ah2, bl1)|0) + (m >>> 16)|0) + (r3 >>> 16)|0;
                   w = ((imul(al2, bh1)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                   m = ((imul(ah2, bh1)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                   r3 = (w << 16) | (u & 0xffff);

                   u = ((imul(al2, bl2)|0) + (m & 0xffff)|0) + (r4 & 0xffff)|0;
                   v = ((imul(ah2, bl2)|0) + (m >>> 16)|0) + (r4 >>> 16)|0;
                   w = ((imul(al2, bh2)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                   m = ((imul(ah2, bh2)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                   r4 = (w << 16) | (u & 0xffff);

                   u = ((imul(al2, bl3)|0) + (m & 0xffff)|0) + (r5 & 0xffff)|0;
                   v = ((imul(ah2, bl3)|0) + (m >>> 16)|0) + (r5 >>> 16)|0;
                   w = ((imul(al2, bh3)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                   m = ((imul(ah2, bh3)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                   r5 = (w << 16) | (u & 0xffff);

                   u = ((imul(al2, bl4)|0) + (m & 0xffff)|0) + (r6 & 0xffff)|0;
                   v = ((imul(ah2, bl4)|0) + (m >>> 16)|0) + (r6 >>> 16)|0;
                   w = ((imul(al2, bh4)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                   m = ((imul(ah2, bh4)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                   r6 = (w << 16) | (u & 0xffff);

                   u = ((imul(al2, bl5)|0) + (m & 0xffff)|0) + (r7 & 0xffff)|0;
                   v = ((imul(ah2, bl5)|0) + (m >>> 16)|0) + (r7 >>> 16)|0;
                   w = ((imul(al2, bh5)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                   m = ((imul(ah2, bh5)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                   r7 = (w << 16) | (u & 0xffff);

                   u = ((imul(al2, bl6)|0) + (m & 0xffff)|0) + (r8 & 0xffff)|0;
                   v = ((imul(ah2, bl6)|0) + (m >>> 16)|0) + (r8 >>> 16)|0;
                   w = ((imul(al2, bh6)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                   m = ((imul(ah2, bh6)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                   r8 = (w << 16) | (u & 0xffff);

                   u = ((imul(al2, bl7)|0) + (m & 0xffff)|0) + (r9 & 0xffff)|0;
                   v = ((imul(ah2, bl7)|0) + (m >>> 16)|0) + (r9 >>> 16)|0;
                   w = ((imul(al2, bh7)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                   m = ((imul(ah2, bh7)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                   r9 = (w << 16) | (u & 0xffff);

                   r10 = m;

                   u = ((imul(al3, bl0)|0) + (r11 & 0xffff)|0) + (r3 & 0xffff)|0;
                   v = ((imul(ah3, bl0)|0) + (r11 >>> 16)|0) + (r3 >>> 16)|0;
                   w = ((imul(al3, bh0)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                   m = ((imul(ah3, bh0)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                   r3 = (w << 16) | (u & 0xffff);

                   u = ((imul(al3, bl1)|0) + (m & 0xffff)|0) + (r4 & 0xffff)|0;
                   v = ((imul(ah3, bl1)|0) + (m >>> 16)|0) + (r4 >>> 16)|0;
                   w = ((imul(al3, bh1)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                   m = ((imul(ah3, bh1)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                   r4 = (w << 16) | (u & 0xffff);

                   u = ((imul(al3, bl2)|0) + (m & 0xffff)|0) + (r5 & 0xffff)|0;
                   v = ((imul(ah3, bl2)|0) + (m >>> 16)|0) + (r5 >>> 16)|0;
                   w = ((imul(al3, bh2)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                   m = ((imul(ah3, bh2)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                   r5 = (w << 16) | (u & 0xffff);

                   u = ((imul(al3, bl3)|0) + (m & 0xffff)|0) + (r6 & 0xffff)|0;
                   v = ((imul(ah3, bl3)|0) + (m >>> 16)|0) + (r6 >>> 16)|0;
                   w = ((imul(al3, bh3)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                   m = ((imul(ah3, bh3)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                   r6 = (w << 16) | (u & 0xffff);

                   u = ((imul(al3, bl4)|0) + (m & 0xffff)|0) + (r7 & 0xffff)|0;
                   v = ((imul(ah3, bl4)|0) + (m >>> 16)|0) + (r7 >>> 16)|0;
                   w = ((imul(al3, bh4)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                   m = ((imul(ah3, bh4)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                   r7 = (w << 16) | (u & 0xffff);

                   u = ((imul(al3, bl5)|0) + (m & 0xffff)|0) + (r8 & 0xffff)|0;
                   v = ((imul(ah3, bl5)|0) + (m >>> 16)|0) + (r8 >>> 16)|0;
                   w = ((imul(al3, bh5)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                   m = ((imul(ah3, bh5)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                   r8 = (w << 16) | (u & 0xffff);

                   u = ((imul(al3, bl6)|0) + (m & 0xffff)|0) + (r9 & 0xffff)|0;
                   v = ((imul(ah3, bl6)|0) + (m >>> 16)|0) + (r9 >>> 16)|0;
                   w = ((imul(al3, bh6)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                   m = ((imul(ah3, bh6)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                   r9 = (w << 16) | (u & 0xffff);

                   u = ((imul(al3, bl7)|0) + (m & 0xffff)|0) + (r10 & 0xffff)|0;
                   v = ((imul(ah3, bl7)|0) + (m >>> 16)|0) + (r10 >>> 16)|0;
                   w = ((imul(al3, bh7)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                   m = ((imul(ah3, bh7)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                   r10 = (w << 16) | (u & 0xffff);

                   r11 = m;

                   u = ((imul(al4, bl0)|0) + (r12 & 0xffff)|0) + (r4 & 0xffff)|0;
                   v = ((imul(ah4, bl0)|0) + (r12 >>> 16)|0) + (r4 >>> 16)|0;
                   w = ((imul(al4, bh0)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                   m = ((imul(ah4, bh0)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                   r4 = (w << 16) | (u & 0xffff);

                   u = ((imul(al4, bl1)|0) + (m & 0xffff)|0) + (r5 & 0xffff)|0;
                   v = ((imul(ah4, bl1)|0) + (m >>> 16)|0) + (r5 >>> 16)|0;
                   w = ((imul(al4, bh1)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                   m = ((imul(ah4, bh1)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                   r5 = (w << 16) | (u & 0xffff);

                   u = ((imul(al4, bl2)|0) + (m & 0xffff)|0) + (r6 & 0xffff)|0;
                   v = ((imul(ah4, bl2)|0) + (m >>> 16)|0) + (r6 >>> 16)|0;
                   w = ((imul(al4, bh2)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                   m = ((imul(ah4, bh2)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                   r6 = (w << 16) | (u & 0xffff);

                   u = ((imul(al4, bl3)|0) + (m & 0xffff)|0) + (r7 & 0xffff)|0;
                   v = ((imul(ah4, bl3)|0) + (m >>> 16)|0) + (r7 >>> 16)|0;
                   w = ((imul(al4, bh3)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                   m = ((imul(ah4, bh3)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                   r7 = (w << 16) | (u & 0xffff);

                   u = ((imul(al4, bl4)|0) + (m & 0xffff)|0) + (r8 & 0xffff)|0;
                   v = ((imul(ah4, bl4)|0) + (m >>> 16)|0) + (r8 >>> 16)|0;
                   w = ((imul(al4, bh4)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                   m = ((imul(ah4, bh4)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                   r8 = (w << 16) | (u & 0xffff);

                   u = ((imul(al4, bl5)|0) + (m & 0xffff)|0) + (r9 & 0xffff)|0;
                   v = ((imul(ah4, bl5)|0) + (m >>> 16)|0) + (r9 >>> 16)|0;
                   w = ((imul(al4, bh5)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                   m = ((imul(ah4, bh5)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                   r9 = (w << 16) | (u & 0xffff);

                   u = ((imul(al4, bl6)|0) + (m & 0xffff)|0) + (r10 & 0xffff)|0;
                   v = ((imul(ah4, bl6)|0) + (m >>> 16)|0) + (r10 >>> 16)|0;
                   w = ((imul(al4, bh6)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                   m = ((imul(ah4, bh6)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                   r10 = (w << 16) | (u & 0xffff);

                   u = ((imul(al4, bl7)|0) + (m & 0xffff)|0) + (r11 & 0xffff)|0;
                   v = ((imul(ah4, bl7)|0) + (m >>> 16)|0) + (r11 >>> 16)|0;
                   w = ((imul(al4, bh7)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                   m = ((imul(ah4, bh7)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                   r11 = (w << 16) | (u & 0xffff);

                   r12 = m;

                   u = ((imul(al5, bl0)|0) + (r13 & 0xffff)|0) + (r5 & 0xffff)|0;
                   v = ((imul(ah5, bl0)|0) + (r13 >>> 16)|0) + (r5 >>> 16)|0;
                   w = ((imul(al5, bh0)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                   m = ((imul(ah5, bh0)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                   r5 = (w << 16) | (u & 0xffff);

                   u = ((imul(al5, bl1)|0) + (m & 0xffff)|0) + (r6 & 0xffff)|0;
                   v = ((imul(ah5, bl1)|0) + (m >>> 16)|0) + (r6 >>> 16)|0;
                   w = ((imul(al5, bh1)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                   m = ((imul(ah5, bh1)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                   r6 = (w << 16) | (u & 0xffff);

                   u = ((imul(al5, bl2)|0) + (m & 0xffff)|0) + (r7 & 0xffff)|0;
                   v = ((imul(ah5, bl2)|0) + (m >>> 16)|0) + (r7 >>> 16)|0;
                   w = ((imul(al5, bh2)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                   m = ((imul(ah5, bh2)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                   r7 = (w << 16) | (u & 0xffff);

                   u = ((imul(al5, bl3)|0) + (m & 0xffff)|0) + (r8 & 0xffff)|0;
                   v = ((imul(ah5, bl3)|0) + (m >>> 16)|0) + (r8 >>> 16)|0;
                   w = ((imul(al5, bh3)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                   m = ((imul(ah5, bh3)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                   r8 = (w << 16) | (u & 0xffff);

                   u = ((imul(al5, bl4)|0) + (m & 0xffff)|0) + (r9 & 0xffff)|0;
                   v = ((imul(ah5, bl4)|0) + (m >>> 16)|0) + (r9 >>> 16)|0;
                   w = ((imul(al5, bh4)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                   m = ((imul(ah5, bh4)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                   r9 = (w << 16) | (u & 0xffff);

                   u = ((imul(al5, bl5)|0) + (m & 0xffff)|0) + (r10 & 0xffff)|0;
                   v = ((imul(ah5, bl5)|0) + (m >>> 16)|0) + (r10 >>> 16)|0;
                   w = ((imul(al5, bh5)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                   m = ((imul(ah5, bh5)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                   r10 = (w << 16) | (u & 0xffff);

                   u = ((imul(al5, bl6)|0) + (m & 0xffff)|0) + (r11 & 0xffff)|0;
                   v = ((imul(ah5, bl6)|0) + (m >>> 16)|0) + (r11 >>> 16)|0;
                   w = ((imul(al5, bh6)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                   m = ((imul(ah5, bh6)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                   r11 = (w << 16) | (u & 0xffff);

                   u = ((imul(al5, bl7)|0) + (m & 0xffff)|0) + (r12 & 0xffff)|0;
                   v = ((imul(ah5, bl7)|0) + (m >>> 16)|0) + (r12 >>> 16)|0;
                   w = ((imul(al5, bh7)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                   m = ((imul(ah5, bh7)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                   r12 = (w << 16) | (u & 0xffff);

                   r13 = m;

                   u = ((imul(al6, bl0)|0) + (r14 & 0xffff)|0) + (r6 & 0xffff)|0;
                   v = ((imul(ah6, bl0)|0) + (r14 >>> 16)|0) + (r6 >>> 16)|0;
                   w = ((imul(al6, bh0)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                   m = ((imul(ah6, bh0)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                   r6 = (w << 16) | (u & 0xffff);

                   u = ((imul(al6, bl1)|0) + (m & 0xffff)|0) + (r7 & 0xffff)|0;
                   v = ((imul(ah6, bl1)|0) + (m >>> 16)|0) + (r7 >>> 16)|0;
                   w = ((imul(al6, bh1)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                   m = ((imul(ah6, bh1)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                   r7 = (w << 16) | (u & 0xffff);

                   u = ((imul(al6, bl2)|0) + (m & 0xffff)|0) + (r8 & 0xffff)|0;
                   v = ((imul(ah6, bl2)|0) + (m >>> 16)|0) + (r8 >>> 16)|0;
                   w = ((imul(al6, bh2)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                   m = ((imul(ah6, bh2)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                   r8 = (w << 16) | (u & 0xffff);

                   u = ((imul(al6, bl3)|0) + (m & 0xffff)|0) + (r9 & 0xffff)|0;
                   v = ((imul(ah6, bl3)|0) + (m >>> 16)|0) + (r9 >>> 16)|0;
                   w = ((imul(al6, bh3)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                   m = ((imul(ah6, bh3)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                   r9 = (w << 16) | (u & 0xffff);

                   u = ((imul(al6, bl4)|0) + (m & 0xffff)|0) + (r10 & 0xffff)|0;
                   v = ((imul(ah6, bl4)|0) + (m >>> 16)|0) + (r10 >>> 16)|0;
                   w = ((imul(al6, bh4)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                   m = ((imul(ah6, bh4)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                   r10 = (w << 16) | (u & 0xffff);

                   u = ((imul(al6, bl5)|0) + (m & 0xffff)|0) + (r11 & 0xffff)|0;
                   v = ((imul(ah6, bl5)|0) + (m >>> 16)|0) + (r11 >>> 16)|0;
                   w = ((imul(al6, bh5)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                   m = ((imul(ah6, bh5)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                   r11 = (w << 16) | (u & 0xffff);

                   u = ((imul(al6, bl6)|0) + (m & 0xffff)|0) + (r12 & 0xffff)|0;
                   v = ((imul(ah6, bl6)|0) + (m >>> 16)|0) + (r12 >>> 16)|0;
                   w = ((imul(al6, bh6)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                   m = ((imul(ah6, bh6)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                   r12 = (w << 16) | (u & 0xffff);

                   u = ((imul(al6, bl7)|0) + (m & 0xffff)|0) + (r13 & 0xffff)|0;
                   v = ((imul(ah6, bl7)|0) + (m >>> 16)|0) + (r13 >>> 16)|0;
                   w = ((imul(al6, bh7)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                   m = ((imul(ah6, bh7)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                   r13 = (w << 16) | (u & 0xffff);

                   r14 = m;

                   u = ((imul(al7, bl0)|0) + (r15 & 0xffff)|0) + (r7 & 0xffff)|0;
                   v = ((imul(ah7, bl0)|0) + (r15 >>> 16)|0) + (r7 >>> 16)|0;
                   w = ((imul(al7, bh0)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                   m = ((imul(ah7, bh0)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                   r7 = (w << 16) | (u & 0xffff);

                   u = ((imul(al7, bl1)|0) + (m & 0xffff)|0) + (r8 & 0xffff)|0;
                   v = ((imul(ah7, bl1)|0) + (m >>> 16)|0) + (r8 >>> 16)|0;
                   w = ((imul(al7, bh1)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                   m = ((imul(ah7, bh1)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                   r8 = (w << 16) | (u & 0xffff);

                   u = ((imul(al7, bl2)|0) + (m & 0xffff)|0) + (r9 & 0xffff)|0;
                   v = ((imul(ah7, bl2)|0) + (m >>> 16)|0) + (r9 >>> 16)|0;
                   w = ((imul(al7, bh2)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                   m = ((imul(ah7, bh2)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                   r9 = (w << 16) | (u & 0xffff);

                   u = ((imul(al7, bl3)|0) + (m & 0xffff)|0) + (r10 & 0xffff)|0;
                   v = ((imul(ah7, bl3)|0) + (m >>> 16)|0) + (r10 >>> 16)|0;
                   w = ((imul(al7, bh3)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                   m = ((imul(ah7, bh3)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                   r10 = (w << 16) | (u & 0xffff);

                   u = ((imul(al7, bl4)|0) + (m & 0xffff)|0) + (r11 & 0xffff)|0;
                   v = ((imul(ah7, bl4)|0) + (m >>> 16)|0) + (r11 >>> 16)|0;
                   w = ((imul(al7, bh4)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                   m = ((imul(ah7, bh4)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                   r11 = (w << 16) | (u & 0xffff);

                   u = ((imul(al7, bl5)|0) + (m & 0xffff)|0) + (r12 & 0xffff)|0;
                   v = ((imul(ah7, bl5)|0) + (m >>> 16)|0) + (r12 >>> 16)|0;
                   w = ((imul(al7, bh5)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                   m = ((imul(ah7, bh5)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                   r12 = (w << 16) | (u & 0xffff);

                   u = ((imul(al7, bl6)|0) + (m & 0xffff)|0) + (r13 & 0xffff)|0;
                   v = ((imul(ah7, bl6)|0) + (m >>> 16)|0) + (r13 >>> 16)|0;
                   w = ((imul(al7, bh6)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                   m = ((imul(ah7, bh6)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                   r13 = (w << 16) | (u & 0xffff);

                   u = ((imul(al7, bl7)|0) + (m & 0xffff)|0) + (r14 & 0xffff)|0;
                   v = ((imul(ah7, bl7)|0) + (m >>> 16)|0) + (r14 >>> 16)|0;
                   w = ((imul(al7, bh7)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                   m = ((imul(ah7, bh7)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                   r14 = (w << 16) | (u & 0xffff);

                   r15 = m;

                   HEAP32[(Rk|0)>>2] = r0, HEAP32[(Rk|4)>>2] = r1, HEAP32[(Rk|8)>>2] = r2, HEAP32[(Rk|12)>>2] = r3, HEAP32[(Rk|16)>>2] = r4, HEAP32[(Rk|20)>>2] = r5, HEAP32[(Rk|24)>>2] = r6, HEAP32[(Rk|28)>>2] = r7;
               }

               Rk = (R+(i+j|0))|0;
               HEAP32[(Rk|0)>>2] = r8, HEAP32[(Rk|4)>>2] = r9, HEAP32[(Rk|8)>>2] = r10, HEAP32[(Rk|12)>>2] = r11, HEAP32[(Rk|16)>>2] = r12, HEAP32[(Rk|20)>>2] = r13, HEAP32[(Rk|24)>>2] = r14, HEAP32[(Rk|28)>>2] = r15;
           }
   /*
           for ( i = lA & -32; (i|0) < (lA|0); i = (i+4)|0 ) {
               Ai = (A+i)|0;

               ah0 = HEAP32[Ai>>2]|0,
               al0 = ah0 & 0xffff,
               ah0 = ah0 >>> 16;

               r1 = 0;

               for ( j = 0; (j|0) < (lB|0); j = (j+4)|0 ) {
                   Bj = (B+j)|0;
                   Rk = (R+(i+j|0))|0;

                   bh0 = HEAP32[Bj>>2]|0,
                   bl0 = bh0 & 0xffff,
                   bh0 = bh0 >>> 16;

                   r0 = HEAP32[Rk>>2]|0;

                   u = ((imul(al0, bl0)|0) + (r1 & 0xffff)|0) + (r0 & 0xffff)|0;
                   v = ((imul(ah0, bl0)|0) + (r1 >>> 16)|0) + (r0 >>> 16)|0;
                   w = ((imul(al0, bh0)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                   m = ((imul(ah0, bh0)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                   r0 = (w << 16) | (u & 0xffff);

                   r1 = m;

                   HEAP32[Rk>>2] = r0;
               }

               Rk = (R+(i+j|0))|0;
               HEAP32[Rk>>2] = r1;
           }
   */
       }

       /**
        * Fast squaring
        *
        * Exploits the fact:
        *
        *  X² = ( X0 + X1*B )² = X0² + 2*X0*X1*B + X1²*B²,
        *
        * where B is a power of 2, so:
        *
        *  2*X0*X1*B = (X0*X1 << 1)*B
        *
        * @param A offset of the argument being squared, 32-byte aligned
        * @param lA length of the argument, multiple of 32
        *
        * @param R offset where to place the result to, 32-byte aligned
        */
       function sqr ( A, lA, R ) {
           A  =  A|0;
           lA = lA|0;
           R  =  R|0;

           var al0 = 0, al1 = 0, al2 = 0, al3 = 0, al4 = 0, al5 = 0, al6 = 0, al7 = 0, ah0 = 0, ah1 = 0, ah2 = 0, ah3 = 0, ah4 = 0, ah5 = 0, ah6 = 0, ah7 = 0,
               bl0 = 0, bl1 = 0, bl2 = 0, bl3 = 0, bl4 = 0, bl5 = 0, bl6 = 0, bl7 = 0, bh0 = 0, bh1 = 0, bh2 = 0, bh3 = 0, bh4 = 0, bh5 = 0, bh6 = 0, bh7 = 0,
               r0 = 0, r1 = 0, r2 = 0, r3 = 0, r4 = 0, r5 = 0, r6 = 0, r7 = 0, r8 = 0, r9 = 0, r10 = 0, r11 = 0, r12 = 0, r13 = 0, r14 = 0, r15 = 0,
               u = 0, v = 0, w = 0, c = 0, h = 0, m = 0, r = 0,
               d = 0, dd = 0, p = 0, i = 0, j = 0, k = 0, Ai = 0, Aj = 0, Rk = 0;

           // prepare for iterations
           for ( ; (i|0) < (lA|0); i = (i+4)|0 ) {
               Rk = R+(i<<1)|0;
               ah0 = HEAP32[(A+i)>>2]|0, al0 = ah0 & 0xffff, ah0 = ah0 >>> 16;
               u = imul(al0,al0)|0;
               v = (imul(al0,ah0)|0) + (u >>> 17)|0;
               w = (imul(ah0,ah0)|0) + (v >>> 15)|0;
               HEAP32[(Rk)>>2] = (v << 17) | (u & 0x1ffff);
               HEAP32[(Rk|4)>>2] = w;
           }

           // unrolled 1st iteration
           for ( p = 0; (p|0) < (lA|0); p = (p+8)|0 ) {
               Ai = A+p|0, Rk = R+(p<<1)|0;

               ah0 = HEAP32[(Ai)>>2]|0, al0 = ah0 & 0xffff, ah0 = ah0 >>> 16;

               bh0 = HEAP32[(Ai|4)>>2]|0, bl0 = bh0 & 0xffff, bh0 = bh0 >>> 16;

               u = imul(al0,bl0)|0;
               v = (imul(al0,bh0)|0) + (u >>> 16)|0;
               w = (imul(ah0,bl0)|0) + (v & 0xffff)|0;
               m = ((imul(ah0,bh0)|0) + (v >>> 16)|0) + (w >>> 16)|0;

               r = HEAP32[(Rk|4)>>2]|0;
               u = (r & 0xffff) + ((u & 0xffff) << 1)|0;
               w = ((r >>> 16) + ((w & 0xffff) << 1)|0) + (u >>> 16)|0;
               HEAP32[(Rk|4)>>2] = (w << 16) | (u & 0xffff);
               c = w >>> 16;

               r = HEAP32[(Rk|8)>>2]|0;
               u = ((r & 0xffff) + ((m & 0xffff) << 1)|0) + c|0;
               w = ((r >>> 16) + ((m >>> 16) << 1)|0) + (u >>> 16)|0;
               HEAP32[(Rk|8)>>2] = (w << 16) | (u & 0xffff);
               c = w >>> 16;

               if ( c ) {
                   r = HEAP32[(Rk|12)>>2]|0;
                   u = (r & 0xffff) + c|0;
                   w = (r >>> 16) + (u >>> 16)|0;
                   HEAP32[(Rk|12)>>2] = (w << 16) | (u & 0xffff);
               }
           }

           // unrolled 2nd iteration
           for ( p = 0; (p|0) < (lA|0); p = (p+16)|0 ) {
               Ai = A+p|0, Rk = R+(p<<1)|0;

               ah0 = HEAP32[(Ai)>>2]|0, al0 = ah0 & 0xffff, ah0 = ah0 >>> 16, ah1 = HEAP32[(Ai|4)>>2]|0, al1 = ah1 & 0xffff, ah1 = ah1 >>> 16;

               bh0 = HEAP32[(Ai|8)>>2]|0, bl0 = bh0 & 0xffff, bh0 = bh0 >>> 16, bh1 = HEAP32[(Ai|12)>>2]|0, bl1 = bh1 & 0xffff, bh1 = bh1 >>> 16;

               u = imul(al0, bl0)|0;
               v = imul(ah0, bl0)|0;
               w = ((imul(al0, bh0)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
               m = ((imul(ah0, bh0)|0) + (v >>> 16)|0) + (w >>> 16)|0;
               r0 = (w << 16) | (u & 0xffff);

               u = (imul(al0, bl1)|0) + (m & 0xffff)|0;
               v = (imul(ah0, bl1)|0) + (m >>> 16)|0;
               w = ((imul(al0, bh1)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
               m = ((imul(ah0, bh1)|0) + (v >>> 16)|0) + (w >>> 16)|0;
               r1 = (w << 16) | (u & 0xffff);

               r2 = m;

               u = (imul(al1, bl0)|0) + (r1 & 0xffff)|0;
               v = (imul(ah1, bl0)|0) + (r1 >>> 16)|0;
               w = ((imul(al1, bh0)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
               m = ((imul(ah1, bh0)|0) + (v >>> 16)|0) + (w >>> 16)|0;
               r1 = (w << 16) | (u & 0xffff);

               u = ((imul(al1, bl1)|0) + (r2 & 0xffff)|0) + (m & 0xffff)|0;
               v = ((imul(ah1, bl1)|0) + (r2 >>> 16)|0) + (m >>> 16)|0;
               w = ((imul(al1, bh1)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
               m = ((imul(ah1, bh1)|0) + (v >>> 16)|0) + (w >>> 16)|0;
               r2 = (w << 16) | (u & 0xffff);

               r3 = m;

               r = HEAP32[(Rk|8)>>2]|0;
               u = (r & 0xffff) + ((r0 & 0xffff) << 1)|0;
               w = ((r >>> 16) + ((r0 >>> 16) << 1)|0) + (u >>> 16)|0;
               HEAP32[(Rk|8)>>2] = (w << 16) | (u & 0xffff);
               c = w >>> 16;

               r = HEAP32[(Rk|12)>>2]|0;
               u = ((r & 0xffff) + ((r1 & 0xffff) << 1)|0)  + c|0;
               w = ((r >>> 16) + ((r1 >>> 16) << 1)|0) + (u >>> 16)|0;
               HEAP32[(Rk|12)>>2] = (w << 16) | (u & 0xffff);
               c = w >>> 16;

               r = HEAP32[(Rk|16)>>2]|0;
               u = ((r & 0xffff) + ((r2 & 0xffff) << 1)|0) + c|0;
               w = ((r >>> 16) + ((r2 >>> 16) << 1)|0) + (u >>> 16)|0;
               HEAP32[(Rk|16)>>2] = (w << 16) | (u & 0xffff);
               c = w >>> 16;

               r = HEAP32[(Rk|20)>>2]|0;
               u = ((r & 0xffff) + ((r3 & 0xffff) << 1)|0) + c|0;
               w = ((r >>> 16) + ((r3 >>> 16) << 1)|0) + (u >>> 16)|0;
               HEAP32[(Rk|20)>>2] = (w << 16) | (u & 0xffff);
               c = w >>> 16;

               for ( k = 24; !!c & ( (k|0) < 32 ); k = (k+4)|0 ) {
                   r = HEAP32[(Rk|k)>>2]|0;
                   u = (r & 0xffff) + c|0;
                   w = (r >>> 16) + (u >>> 16)|0;
                   HEAP32[(Rk|k)>>2] = (w << 16) | (u & 0xffff);
                   c = w >>> 16;
               }
           }

           // unrolled 3rd iteration
           for ( p = 0; (p|0) < (lA|0); p = (p+32)|0 ) {
               Ai = A+p|0, Rk = R+(p<<1)|0;

               ah0 = HEAP32[(Ai)>>2]|0, al0 = ah0 & 0xffff, ah0 = ah0 >>> 16, ah1 = HEAP32[(Ai|4)>>2]|0, al1 = ah1 & 0xffff, ah1 = ah1 >>> 16, ah2 = HEAP32[(Ai|8)>>2]|0, al2 = ah2 & 0xffff, ah2 = ah2 >>> 16, ah3 = HEAP32[(Ai|12)>>2]|0, al3 = ah3 & 0xffff, ah3 = ah3 >>> 16;

               bh0 = HEAP32[(Ai|16)>>2]|0, bl0 = bh0 & 0xffff, bh0 = bh0 >>> 16, bh1 = HEAP32[(Ai|20)>>2]|0, bl1 = bh1 & 0xffff, bh1 = bh1 >>> 16, bh2 = HEAP32[(Ai|24)>>2]|0, bl2 = bh2 & 0xffff, bh2 = bh2 >>> 16, bh3 = HEAP32[(Ai|28)>>2]|0, bl3 = bh3 & 0xffff, bh3 = bh3 >>> 16;

               u = imul(al0, bl0)|0;
               v = imul(ah0, bl0)|0;
               w = ((imul(al0, bh0)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
               m = ((imul(ah0, bh0)|0) + (v >>> 16)|0) + (w >>> 16)|0;
               r0 = (w << 16) | (u & 0xffff);

               u = (imul(al0, bl1)|0) + (m & 0xffff)|0;
               v = (imul(ah0, bl1)|0) + (m >>> 16)|0;
               w = ((imul(al0, bh1)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
               m = ((imul(ah0, bh1)|0) + (v >>> 16)|0) + (w >>> 16)|0;
               r1 = (w << 16) | (u & 0xffff);

               u = (imul(al0, bl2)|0) + (m & 0xffff)|0;
               v = (imul(ah0, bl2)|0) + (m >>> 16)|0;
               w = ((imul(al0, bh2)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
               m = ((imul(ah0, bh2)|0) + (v >>> 16)|0) + (w >>> 16)|0;
               r2 = (w << 16) | (u & 0xffff);

               u = (imul(al0, bl3)|0) + (m & 0xffff)|0;
               v = (imul(ah0, bl3)|0) + (m >>> 16)|0;
               w = ((imul(al0, bh3)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
               m = ((imul(ah0, bh3)|0) + (v >>> 16)|0) + (w >>> 16)|0;
               r3 = (w << 16) | (u & 0xffff);

               r4 = m;

               u = (imul(al1, bl0)|0) + (r1 & 0xffff)|0;
               v = (imul(ah1, bl0)|0) + (r1 >>> 16)|0;
               w = ((imul(al1, bh0)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
               m = ((imul(ah1, bh0)|0) + (v >>> 16)|0) + (w >>> 16)|0;
               r1 = (w << 16) | (u & 0xffff);

               u = ((imul(al1, bl1)|0) + (r2 & 0xffff)|0) + (m & 0xffff)|0;
               v = ((imul(ah1, bl1)|0) + (r2 >>> 16)|0) + (m >>> 16)|0;
               w = ((imul(al1, bh1)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
               m = ((imul(ah1, bh1)|0) + (v >>> 16)|0) + (w >>> 16)|0;
               r2 = (w << 16) | (u & 0xffff);

               u = ((imul(al1, bl2)|0) + (r3 & 0xffff)|0) + (m & 0xffff)|0;
               v = ((imul(ah1, bl2)|0) + (r3 >>> 16)|0) + (m >>> 16)|0;
               w = ((imul(al1, bh2)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
               m = ((imul(ah1, bh2)|0) + (v >>> 16)|0) + (w >>> 16)|0;
               r3 = (w << 16) | (u & 0xffff);

               u = ((imul(al1, bl3)|0) + (r4 & 0xffff)|0) + (m & 0xffff)|0;
               v = ((imul(ah1, bl3)|0) + (r4 >>> 16)|0) + (m >>> 16)|0;
               w = ((imul(al1, bh3)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
               m = ((imul(ah1, bh3)|0) + (v >>> 16)|0) + (w >>> 16)|0;
               r4 = (w << 16) | (u & 0xffff);

               r5 = m;

               u = (imul(al2, bl0)|0) + (r2 & 0xffff)|0;
               v = (imul(ah2, bl0)|0) + (r2 >>> 16)|0;
               w = ((imul(al2, bh0)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
               m = ((imul(ah2, bh0)|0) + (v >>> 16)|0) + (w >>> 16)|0;
               r2 = (w << 16) | (u & 0xffff);

               u = ((imul(al2, bl1)|0) + (r3 & 0xffff)|0) + (m & 0xffff)|0;
               v = ((imul(ah2, bl1)|0) + (r3 >>> 16)|0) + (m >>> 16)|0;
               w = ((imul(al2, bh1)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
               m = ((imul(ah2, bh1)|0) + (v >>> 16)|0) + (w >>> 16)|0;
               r3 = (w << 16) | (u & 0xffff);

               u = ((imul(al2, bl2)|0) + (r4 & 0xffff)|0) + (m & 0xffff)|0;
               v = ((imul(ah2, bl2)|0) + (r4 >>> 16)|0) + (m >>> 16)|0;
               w = ((imul(al2, bh2)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
               m = ((imul(ah2, bh2)|0) + (v >>> 16)|0) + (w >>> 16)|0;
               r4 = (w << 16) | (u & 0xffff);

               u = ((imul(al2, bl3)|0) + (r5 & 0xffff)|0) + (m & 0xffff)|0;
               v = ((imul(ah2, bl3)|0) + (r5 >>> 16)|0) + (m >>> 16)|0;
               w = ((imul(al2, bh3)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
               m = ((imul(ah2, bh3)|0) + (v >>> 16)|0) + (w >>> 16)|0;
               r5 = (w << 16) | (u & 0xffff);

               r6 = m;

               u = (imul(al3, bl0)|0) + (r3 & 0xffff)|0;
               v = (imul(ah3, bl0)|0) + (r3 >>> 16)|0;
               w = ((imul(al3, bh0)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
               m = ((imul(ah3, bh0)|0) + (v >>> 16)|0) + (w >>> 16)|0;
               r3 = (w << 16) | (u & 0xffff);

               u = ((imul(al3, bl1)|0) + (r4 & 0xffff)|0) + (m & 0xffff)|0;
               v = ((imul(ah3, bl1)|0) + (r4 >>> 16)|0) + (m >>> 16)|0;
               w = ((imul(al3, bh1)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
               m = ((imul(ah3, bh1)|0) + (v >>> 16)|0) + (w >>> 16)|0;
               r4 = (w << 16) | (u & 0xffff);

               u = ((imul(al3, bl2)|0) + (r5 & 0xffff)|0) + (m & 0xffff)|0;
               v = ((imul(ah3, bl2)|0) + (r5 >>> 16)|0) + (m >>> 16)|0;
               w = ((imul(al3, bh2)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
               m = ((imul(ah3, bh2)|0) + (v >>> 16)|0) + (w >>> 16)|0;
               r5 = (w << 16) | (u & 0xffff);

               u = ((imul(al3, bl3)|0) + (r6 & 0xffff)|0) + (m & 0xffff)|0;
               v = ((imul(ah3, bl3)|0) + (r6 >>> 16)|0) + (m >>> 16)|0;
               w = ((imul(al3, bh3)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
               m = ((imul(ah3, bh3)|0) + (v >>> 16)|0) + (w >>> 16)|0;
               r6 = (w << 16) | (u & 0xffff);

               r7 = m;

               r = HEAP32[(Rk|16)>>2]|0;
               u = (r & 0xffff) + ((r0 & 0xffff) << 1)|0;
               w = ((r >>> 16) + ((r0 >>> 16) << 1)|0) + (u >>> 16)|0;
               HEAP32[(Rk|16)>>2] = (w << 16) | (u & 0xffff);
               c = w >>> 16;

               r = HEAP32[(Rk|20)>>2]|0;
               u = ((r & 0xffff) + ((r1 & 0xffff) << 1)|0)  + c|0;
               w = ((r >>> 16) + ((r1 >>> 16) << 1)|0) + (u >>> 16)|0;
               HEAP32[(Rk|20)>>2] = (w << 16) | (u & 0xffff);
               c = w >>> 16;

               r = HEAP32[(Rk|24)>>2]|0;
               u = ((r & 0xffff) + ((r2 & 0xffff) << 1)|0) + c|0;
               w = ((r >>> 16) + ((r2 >>> 16) << 1)|0) + (u >>> 16)|0;
               HEAP32[(Rk|24)>>2] = (w << 16) | (u & 0xffff);
               c = w >>> 16;

               r = HEAP32[(Rk|28)>>2]|0;
               u = ((r & 0xffff) + ((r3 & 0xffff) << 1)|0) + c|0;
               w = ((r >>> 16) + ((r3 >>> 16) << 1)|0) + (u >>> 16)|0;
               HEAP32[(Rk|28)>>2] = (w << 16) | (u & 0xffff);
               c = w >>> 16;

               r = HEAP32[(Rk+32)>>2]|0;
               u = ((r & 0xffff) + ((r4 & 0xffff) << 1)|0) + c|0;
               w = ((r >>> 16) + ((r4 >>> 16) << 1)|0) + (u >>> 16)|0;
               HEAP32[(Rk+32)>>2] = (w << 16) | (u & 0xffff);
               c = w >>> 16;

               r = HEAP32[(Rk+36)>>2]|0;
               u = ((r & 0xffff) + ((r5 & 0xffff) << 1)|0) + c|0;
               w = ((r >>> 16) + ((r5 >>> 16) << 1)|0) + (u >>> 16)|0;
               HEAP32[(Rk+36)>>2] = (w << 16) | (u & 0xffff);
               c = w >>> 16;

               r = HEAP32[(Rk+40)>>2]|0;
               u = ((r & 0xffff) + ((r6 & 0xffff) << 1)|0) + c|0;
               w = ((r >>> 16) + ((r6 >>> 16) << 1)|0) + (u >>> 16)|0;
               HEAP32[(Rk+40)>>2] = (w << 16) | (u & 0xffff);
               c = w >>> 16;

               r = HEAP32[(Rk+44)>>2]|0;
               u = ((r & 0xffff) + ((r7 & 0xffff) << 1)|0) + c|0;
               w = ((r >>> 16) + ((r7 >>> 16) << 1)|0) + (u >>> 16)|0;
               HEAP32[(Rk+44)>>2] = (w << 16) | (u & 0xffff);
               c = w >>> 16;

               for ( k = 48; !!c & ( (k|0) < 64 ); k = (k+4)|0 ) {
                   r = HEAP32[(Rk+k)>>2]|0;
                   u = (r & 0xffff) + c|0;
                   w = (r >>> 16) + (u >>> 16)|0;
                   HEAP32[(Rk+k)>>2] = (w << 16) | (u & 0xffff);
                   c = w >>> 16;
               }
           }

           // perform iterations
           for ( d = 32; (d|0) < (lA|0); d = d << 1 ) { // depth loop
               dd = d << 1;

               for ( p = 0; (p|0) < (lA|0); p = (p+dd)|0 ) { // part loop
                   Rk = R+(p<<1)|0;

                   h = 0;
                   for ( i = 0; (i|0) < (d|0); i = (i+32)|0 ) { // multiply-and-add loop
                       Ai = (A+p|0)+i|0;

                       ah0 = HEAP32[(Ai)>>2]|0, al0 = ah0 & 0xffff, ah0 = ah0 >>> 16, ah1 = HEAP32[(Ai|4)>>2]|0, al1 = ah1 & 0xffff, ah1 = ah1 >>> 16, ah2 = HEAP32[(Ai|8)>>2]|0, al2 = ah2 & 0xffff, ah2 = ah2 >>> 16, ah3 = HEAP32[(Ai|12)>>2]|0, al3 = ah3 & 0xffff, ah3 = ah3 >>> 16, ah4 = HEAP32[(Ai|16)>>2]|0, al4 = ah4 & 0xffff, ah4 = ah4 >>> 16, ah5 = HEAP32[(Ai|20)>>2]|0, al5 = ah5 & 0xffff, ah5 = ah5 >>> 16, ah6 = HEAP32[(Ai|24)>>2]|0, al6 = ah6 & 0xffff, ah6 = ah6 >>> 16, ah7 = HEAP32[(Ai|28)>>2]|0, al7 = ah7 & 0xffff, ah7 = ah7 >>> 16;

                       r8 = r9 = r10 = r11 = r12 = r13 = r14 = r15 = c = 0;

                       for ( j = 0; (j|0) < (d|0); j = (j+32)|0 ) {
                           Aj = ((A+p|0)+d|0)+j|0;

                           bh0 = HEAP32[(Aj)>>2]|0, bl0 = bh0 & 0xffff, bh0 = bh0 >>> 16, bh1 = HEAP32[(Aj|4)>>2]|0, bl1 = bh1 & 0xffff, bh1 = bh1 >>> 16, bh2 = HEAP32[(Aj|8)>>2]|0, bl2 = bh2 & 0xffff, bh2 = bh2 >>> 16, bh3 = HEAP32[(Aj|12)>>2]|0, bl3 = bh3 & 0xffff, bh3 = bh3 >>> 16, bh4 = HEAP32[(Aj|16)>>2]|0, bl4 = bh4 & 0xffff, bh4 = bh4 >>> 16, bh5 = HEAP32[(Aj|20)>>2]|0, bl5 = bh5 & 0xffff, bh5 = bh5 >>> 16, bh6 = HEAP32[(Aj|24)>>2]|0, bl6 = bh6 & 0xffff, bh6 = bh6 >>> 16, bh7 = HEAP32[(Aj|28)>>2]|0, bl7 = bh7 & 0xffff, bh7 = bh7 >>> 16;

                           r0 = r1 = r2 = r3 = r4 = r5 = r6 = r7 = 0;

                           u = ((imul(al0, bl0)|0) + (r0 & 0xffff)|0) + (r8 & 0xffff)|0;
                           v = ((imul(ah0, bl0)|0) + (r0 >>> 16)|0) + (r8 >>> 16)|0;
                           w = ((imul(al0, bh0)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                           m = ((imul(ah0, bh0)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                           r0 = (w << 16) | (u & 0xffff);

                           u = ((imul(al0, bl1)|0) + (r1 & 0xffff)|0) + (m & 0xffff)|0;
                           v = ((imul(ah0, bl1)|0) + (r1 >>> 16)|0) + (m >>> 16)|0;
                           w = ((imul(al0, bh1)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                           m = ((imul(ah0, bh1)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                           r1 = (w << 16) | (u & 0xffff);

                           u = ((imul(al0, bl2)|0) + (r2 & 0xffff)|0) + (m & 0xffff)|0;
                           v = ((imul(ah0, bl2)|0) + (r2 >>> 16)|0) + (m >>> 16)|0;
                           w = ((imul(al0, bh2)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                           m = ((imul(ah0, bh2)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                           r2 = (w << 16) | (u & 0xffff);

                           u = ((imul(al0, bl3)|0) + (r3 & 0xffff)|0) + (m & 0xffff)|0;
                           v = ((imul(ah0, bl3)|0) + (r3 >>> 16)|0) + (m >>> 16)|0;
                           w = ((imul(al0, bh3)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                           m = ((imul(ah0, bh3)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                           r3 = (w << 16) | (u & 0xffff);

                           u = ((imul(al0, bl4)|0) + (r4 & 0xffff)|0) + (m & 0xffff)|0;
                           v = ((imul(ah0, bl4)|0) + (r4 >>> 16)|0) + (m >>> 16)|0;
                           w = ((imul(al0, bh4)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                           m = ((imul(ah0, bh4)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                           r4 = (w << 16) | (u & 0xffff);

                           u = ((imul(al0, bl5)|0) + (r5 & 0xffff)|0) + (m & 0xffff)|0;
                           v = ((imul(ah0, bl5)|0) + (r5 >>> 16)|0) + (m >>> 16)|0;
                           w = ((imul(al0, bh5)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                           m = ((imul(ah0, bh5)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                           r5 = (w << 16) | (u & 0xffff);

                           u = ((imul(al0, bl6)|0) + (r6 & 0xffff)|0) + (m & 0xffff)|0;
                           v = ((imul(ah0, bl6)|0) + (r6 >>> 16)|0) + (m >>> 16)|0;
                           w = ((imul(al0, bh6)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                           m = ((imul(ah0, bh6)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                           r6 = (w << 16) | (u & 0xffff);

                           u = ((imul(al0, bl7)|0) + (r7 & 0xffff)|0) + (m & 0xffff)|0;
                           v = ((imul(ah0, bl7)|0) + (r7 >>> 16)|0) + (m >>> 16)|0;
                           w = ((imul(al0, bh7)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                           m = ((imul(ah0, bh7)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                           r7 = (w << 16) | (u & 0xffff);

                           r8 = m;

                           u = ((imul(al1, bl0)|0) + (r1 & 0xffff)|0) + (r9 & 0xffff)|0;
                           v = ((imul(ah1, bl0)|0) + (r1 >>> 16)|0) + (r9 >>> 16)|0;
                           w = ((imul(al1, bh0)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                           m = ((imul(ah1, bh0)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                           r1 = (w << 16) | (u & 0xffff);

                           u = ((imul(al1, bl1)|0) + (r2 & 0xffff)|0) + (m & 0xffff)|0;
                           v = ((imul(ah1, bl1)|0) + (r2 >>> 16)|0) + (m >>> 16)|0;
                           w = ((imul(al1, bh1)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                           m = ((imul(ah1, bh1)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                           r2 = (w << 16) | (u & 0xffff);

                           u = ((imul(al1, bl2)|0) + (r3 & 0xffff)|0) + (m & 0xffff)|0;
                           v = ((imul(ah1, bl2)|0) + (r3 >>> 16)|0) + (m >>> 16)|0;
                           w = ((imul(al1, bh2)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                           m = ((imul(ah1, bh2)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                           r3 = (w << 16) | (u & 0xffff);

                           u = ((imul(al1, bl3)|0) + (r4 & 0xffff)|0) + (m & 0xffff)|0;
                           v = ((imul(ah1, bl3)|0) + (r4 >>> 16)|0) + (m >>> 16)|0;
                           w = ((imul(al1, bh3)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                           m = ((imul(ah1, bh3)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                           r4 = (w << 16) | (u & 0xffff);

                           u = ((imul(al1, bl4)|0) + (r5 & 0xffff)|0) + (m & 0xffff)|0;
                           v = ((imul(ah1, bl4)|0) + (r5 >>> 16)|0) + (m >>> 16)|0;
                           w = ((imul(al1, bh4)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                           m = ((imul(ah1, bh4)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                           r5 = (w << 16) | (u & 0xffff);

                           u = ((imul(al1, bl5)|0) + (r6 & 0xffff)|0) + (m & 0xffff)|0;
                           v = ((imul(ah1, bl5)|0) + (r6 >>> 16)|0) + (m >>> 16)|0;
                           w = ((imul(al1, bh5)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                           m = ((imul(ah1, bh5)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                           r6 = (w << 16) | (u & 0xffff);

                           u = ((imul(al1, bl6)|0) + (r7 & 0xffff)|0) + (m & 0xffff)|0;
                           v = ((imul(ah1, bl6)|0) + (r7 >>> 16)|0) + (m >>> 16)|0;
                           w = ((imul(al1, bh6)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                           m = ((imul(ah1, bh6)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                           r7 = (w << 16) | (u & 0xffff);

                           u = ((imul(al1, bl7)|0) + (r8 & 0xffff)|0) + (m & 0xffff)|0;
                           v = ((imul(ah1, bl7)|0) + (r8 >>> 16)|0) + (m >>> 16)|0;
                           w = ((imul(al1, bh7)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                           m = ((imul(ah1, bh7)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                           r8 = (w << 16) | (u & 0xffff);

                           r9 = m;

                           u = ((imul(al2, bl0)|0) + (r2 & 0xffff)|0) + (r10 & 0xffff)|0;
                           v = ((imul(ah2, bl0)|0) + (r2 >>> 16)|0) + (r10 >>> 16)|0;
                           w = ((imul(al2, bh0)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                           m = ((imul(ah2, bh0)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                           r2 = (w << 16) | (u & 0xffff);

                           u = ((imul(al2, bl1)|0) + (r3 & 0xffff)|0) + (m & 0xffff)|0;
                           v = ((imul(ah2, bl1)|0) + (r3 >>> 16)|0) + (m >>> 16)|0;
                           w = ((imul(al2, bh1)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                           m = ((imul(ah2, bh1)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                           r3 = (w << 16) | (u & 0xffff);

                           u = ((imul(al2, bl2)|0) + (r4 & 0xffff)|0) + (m & 0xffff)|0;
                           v = ((imul(ah2, bl2)|0) + (r4 >>> 16)|0) + (m >>> 16)|0;
                           w = ((imul(al2, bh2)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                           m = ((imul(ah2, bh2)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                           r4 = (w << 16) | (u & 0xffff);

                           u = ((imul(al2, bl3)|0) + (r5 & 0xffff)|0) + (m & 0xffff)|0;
                           v = ((imul(ah2, bl3)|0) + (r5 >>> 16)|0) + (m >>> 16)|0;
                           w = ((imul(al2, bh3)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                           m = ((imul(ah2, bh3)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                           r5 = (w << 16) | (u & 0xffff);

                           u = ((imul(al2, bl4)|0) + (r6 & 0xffff)|0) + (m & 0xffff)|0;
                           v = ((imul(ah2, bl4)|0) + (r6 >>> 16)|0) + (m >>> 16)|0;
                           w = ((imul(al2, bh4)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                           m = ((imul(ah2, bh4)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                           r6 = (w << 16) | (u & 0xffff);

                           u = ((imul(al2, bl5)|0) + (r7 & 0xffff)|0) + (m & 0xffff)|0;
                           v = ((imul(ah2, bl5)|0) + (r7 >>> 16)|0) + (m >>> 16)|0;
                           w = ((imul(al2, bh5)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                           m = ((imul(ah2, bh5)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                           r7 = (w << 16) | (u & 0xffff);

                           u = ((imul(al2, bl6)|0) + (r8 & 0xffff)|0) + (m & 0xffff)|0;
                           v = ((imul(ah2, bl6)|0) + (r8 >>> 16)|0) + (m >>> 16)|0;
                           w = ((imul(al2, bh6)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                           m = ((imul(ah2, bh6)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                           r8 = (w << 16) | (u & 0xffff);

                           u = ((imul(al2, bl7)|0) + (r9 & 0xffff)|0) + (m & 0xffff)|0;
                           v = ((imul(ah2, bl7)|0) + (r9 >>> 16)|0) + (m >>> 16)|0;
                           w = ((imul(al2, bh7)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                           m = ((imul(ah2, bh7)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                           r9 = (w << 16) | (u & 0xffff);

                           r10 = m;

                           u = ((imul(al3, bl0)|0) + (r3 & 0xffff)|0) + (r11 & 0xffff)|0;
                           v = ((imul(ah3, bl0)|0) + (r3 >>> 16)|0) + (r11 >>> 16)|0;
                           w = ((imul(al3, bh0)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                           m = ((imul(ah3, bh0)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                           r3 = (w << 16) | (u & 0xffff);

                           u = ((imul(al3, bl1)|0) + (r4 & 0xffff)|0) + (m & 0xffff)|0;
                           v = ((imul(ah3, bl1)|0) + (r4 >>> 16)|0) + (m >>> 16)|0;
                           w = ((imul(al3, bh1)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                           m = ((imul(ah3, bh1)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                           r4 = (w << 16) | (u & 0xffff);

                           u = ((imul(al3, bl2)|0) + (r5 & 0xffff)|0) + (m & 0xffff)|0;
                           v = ((imul(ah3, bl2)|0) + (r5 >>> 16)|0) + (m >>> 16)|0;
                           w = ((imul(al3, bh2)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                           m = ((imul(ah3, bh2)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                           r5 = (w << 16) | (u & 0xffff);

                           u = ((imul(al3, bl3)|0) + (r6 & 0xffff)|0) + (m & 0xffff)|0;
                           v = ((imul(ah3, bl3)|0) + (r6 >>> 16)|0) + (m >>> 16)|0;
                           w = ((imul(al3, bh3)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                           m = ((imul(ah3, bh3)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                           r6 = (w << 16) | (u & 0xffff);

                           u = ((imul(al3, bl4)|0) + (r7 & 0xffff)|0) + (m & 0xffff)|0;
                           v = ((imul(ah3, bl4)|0) + (r7 >>> 16)|0) + (m >>> 16)|0;
                           w = ((imul(al3, bh4)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                           m = ((imul(ah3, bh4)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                           r7 = (w << 16) | (u & 0xffff);

                           u = ((imul(al3, bl5)|0) + (r8 & 0xffff)|0) + (m & 0xffff)|0;
                           v = ((imul(ah3, bl5)|0) + (r8 >>> 16)|0) + (m >>> 16)|0;
                           w = ((imul(al3, bh5)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                           m = ((imul(ah3, bh5)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                           r8 = (w << 16) | (u & 0xffff);

                           u = ((imul(al3, bl6)|0) + (r9 & 0xffff)|0) + (m & 0xffff)|0;
                           v = ((imul(ah3, bl6)|0) + (r9 >>> 16)|0) + (m >>> 16)|0;
                           w = ((imul(al3, bh6)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                           m = ((imul(ah3, bh6)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                           r9 = (w << 16) | (u & 0xffff);

                           u = ((imul(al3, bl7)|0) + (r10 & 0xffff)|0) + (m & 0xffff)|0;
                           v = ((imul(ah3, bl7)|0) + (r10 >>> 16)|0) + (m >>> 16)|0;
                           w = ((imul(al3, bh7)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                           m = ((imul(ah3, bh7)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                           r10 = (w << 16) | (u & 0xffff);

                           r11 = m;

                           u = ((imul(al4, bl0)|0) + (r4 & 0xffff)|0) + (r12 & 0xffff)|0;
                           v = ((imul(ah4, bl0)|0) + (r4 >>> 16)|0) + (r12 >>> 16)|0;
                           w = ((imul(al4, bh0)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                           m = ((imul(ah4, bh0)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                           r4 = (w << 16) | (u & 0xffff);

                           u = ((imul(al4, bl1)|0) + (r5 & 0xffff)|0) + (m & 0xffff)|0;
                           v = ((imul(ah4, bl1)|0) + (r5 >>> 16)|0) + (m >>> 16)|0;
                           w = ((imul(al4, bh1)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                           m = ((imul(ah4, bh1)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                           r5 = (w << 16) | (u & 0xffff);

                           u = ((imul(al4, bl2)|0) + (r6 & 0xffff)|0) + (m & 0xffff)|0;
                           v = ((imul(ah4, bl2)|0) + (r6 >>> 16)|0) + (m >>> 16)|0;
                           w = ((imul(al4, bh2)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                           m = ((imul(ah4, bh2)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                           r6 = (w << 16) | (u & 0xffff);

                           u = ((imul(al4, bl3)|0) + (r7 & 0xffff)|0) + (m & 0xffff)|0;
                           v = ((imul(ah4, bl3)|0) + (r7 >>> 16)|0) + (m >>> 16)|0;
                           w = ((imul(al4, bh3)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                           m = ((imul(ah4, bh3)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                           r7 = (w << 16) | (u & 0xffff);

                           u = ((imul(al4, bl4)|0) + (r8 & 0xffff)|0) + (m & 0xffff)|0;
                           v = ((imul(ah4, bl4)|0) + (r8 >>> 16)|0) + (m >>> 16)|0;
                           w = ((imul(al4, bh4)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                           m = ((imul(ah4, bh4)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                           r8 = (w << 16) | (u & 0xffff);

                           u = ((imul(al4, bl5)|0) + (r9 & 0xffff)|0) + (m & 0xffff)|0;
                           v = ((imul(ah4, bl5)|0) + (r9 >>> 16)|0) + (m >>> 16)|0;
                           w = ((imul(al4, bh5)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                           m = ((imul(ah4, bh5)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                           r9 = (w << 16) | (u & 0xffff);

                           u = ((imul(al4, bl6)|0) + (r10 & 0xffff)|0) + (m & 0xffff)|0;
                           v = ((imul(ah4, bl6)|0) + (r10 >>> 16)|0) + (m >>> 16)|0;
                           w = ((imul(al4, bh6)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                           m = ((imul(ah4, bh6)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                           r10 = (w << 16) | (u & 0xffff);

                           u = ((imul(al4, bl7)|0) + (r11 & 0xffff)|0) + (m & 0xffff)|0;
                           v = ((imul(ah4, bl7)|0) + (r11 >>> 16)|0) + (m >>> 16)|0;
                           w = ((imul(al4, bh7)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                           m = ((imul(ah4, bh7)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                           r11 = (w << 16) | (u & 0xffff);

                           r12 = m;

                           u = ((imul(al5, bl0)|0) + (r5 & 0xffff)|0) + (r13 & 0xffff)|0;
                           v = ((imul(ah5, bl0)|0) + (r5 >>> 16)|0) + (r13 >>> 16)|0;
                           w = ((imul(al5, bh0)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                           m = ((imul(ah5, bh0)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                           r5 = (w << 16) | (u & 0xffff);

                           u = ((imul(al5, bl1)|0) + (r6 & 0xffff)|0) + (m & 0xffff)|0;
                           v = ((imul(ah5, bl1)|0) + (r6 >>> 16)|0) + (m >>> 16)|0;
                           w = ((imul(al5, bh1)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                           m = ((imul(ah5, bh1)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                           r6 = (w << 16) | (u & 0xffff);

                           u = ((imul(al5, bl2)|0) + (r7 & 0xffff)|0) + (m & 0xffff)|0;
                           v = ((imul(ah5, bl2)|0) + (r7 >>> 16)|0) + (m >>> 16)|0;
                           w = ((imul(al5, bh2)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                           m = ((imul(ah5, bh2)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                           r7 = (w << 16) | (u & 0xffff);

                           u = ((imul(al5, bl3)|0) + (r8 & 0xffff)|0) + (m & 0xffff)|0;
                           v = ((imul(ah5, bl3)|0) + (r8 >>> 16)|0) + (m >>> 16)|0;
                           w = ((imul(al5, bh3)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                           m = ((imul(ah5, bh3)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                           r8 = (w << 16) | (u & 0xffff);

                           u = ((imul(al5, bl4)|0) + (r9 & 0xffff)|0) + (m & 0xffff)|0;
                           v = ((imul(ah5, bl4)|0) + (r9 >>> 16)|0) + (m >>> 16)|0;
                           w = ((imul(al5, bh4)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                           m = ((imul(ah5, bh4)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                           r9 = (w << 16) | (u & 0xffff);

                           u = ((imul(al5, bl5)|0) + (r10 & 0xffff)|0) + (m & 0xffff)|0;
                           v = ((imul(ah5, bl5)|0) + (r10 >>> 16)|0) + (m >>> 16)|0;
                           w = ((imul(al5, bh5)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                           m = ((imul(ah5, bh5)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                           r10 = (w << 16) | (u & 0xffff);

                           u = ((imul(al5, bl6)|0) + (r11 & 0xffff)|0) + (m & 0xffff)|0;
                           v = ((imul(ah5, bl6)|0) + (r11 >>> 16)|0) + (m >>> 16)|0;
                           w = ((imul(al5, bh6)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                           m = ((imul(ah5, bh6)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                           r11 = (w << 16) | (u & 0xffff);

                           u = ((imul(al5, bl7)|0) + (r12 & 0xffff)|0) + (m & 0xffff)|0;
                           v = ((imul(ah5, bl7)|0) + (r12 >>> 16)|0) + (m >>> 16)|0;
                           w = ((imul(al5, bh7)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                           m = ((imul(ah5, bh7)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                           r12 = (w << 16) | (u & 0xffff);

                           r13 = m;

                           u = ((imul(al6, bl0)|0) + (r6 & 0xffff)|0) + (r14 & 0xffff)|0;
                           v = ((imul(ah6, bl0)|0) + (r6 >>> 16)|0) + (r14 >>> 16)|0;
                           w = ((imul(al6, bh0)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                           m = ((imul(ah6, bh0)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                           r6 = (w << 16) | (u & 0xffff);

                           u = ((imul(al6, bl1)|0) + (r7 & 0xffff)|0) + (m & 0xffff)|0;
                           v = ((imul(ah6, bl1)|0) + (r7 >>> 16)|0) + (m >>> 16)|0;
                           w = ((imul(al6, bh1)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                           m = ((imul(ah6, bh1)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                           r7 = (w << 16) | (u & 0xffff);

                           u = ((imul(al6, bl2)|0) + (r8 & 0xffff)|0) + (m & 0xffff)|0;
                           v = ((imul(ah6, bl2)|0) + (r8 >>> 16)|0) + (m >>> 16)|0;
                           w = ((imul(al6, bh2)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                           m = ((imul(ah6, bh2)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                           r8 = (w << 16) | (u & 0xffff);

                           u = ((imul(al6, bl3)|0) + (r9 & 0xffff)|0) + (m & 0xffff)|0;
                           v = ((imul(ah6, bl3)|0) + (r9 >>> 16)|0) + (m >>> 16)|0;
                           w = ((imul(al6, bh3)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                           m = ((imul(ah6, bh3)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                           r9 = (w << 16) | (u & 0xffff);

                           u = ((imul(al6, bl4)|0) + (r10 & 0xffff)|0) + (m & 0xffff)|0;
                           v = ((imul(ah6, bl4)|0) + (r10 >>> 16)|0) + (m >>> 16)|0;
                           w = ((imul(al6, bh4)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                           m = ((imul(ah6, bh4)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                           r10 = (w << 16) | (u & 0xffff);

                           u = ((imul(al6, bl5)|0) + (r11 & 0xffff)|0) + (m & 0xffff)|0;
                           v = ((imul(ah6, bl5)|0) + (r11 >>> 16)|0) + (m >>> 16)|0;
                           w = ((imul(al6, bh5)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                           m = ((imul(ah6, bh5)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                           r11 = (w << 16) | (u & 0xffff);

                           u = ((imul(al6, bl6)|0) + (r12 & 0xffff)|0) + (m & 0xffff)|0;
                           v = ((imul(ah6, bl6)|0) + (r12 >>> 16)|0) + (m >>> 16)|0;
                           w = ((imul(al6, bh6)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                           m = ((imul(ah6, bh6)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                           r12 = (w << 16) | (u & 0xffff);

                           u = ((imul(al6, bl7)|0) + (r13 & 0xffff)|0) + (m & 0xffff)|0;
                           v = ((imul(ah6, bl7)|0) + (r13 >>> 16)|0) + (m >>> 16)|0;
                           w = ((imul(al6, bh7)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                           m = ((imul(ah6, bh7)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                           r13 = (w << 16) | (u & 0xffff);

                           r14 = m;

                           u = ((imul(al7, bl0)|0) + (r7 & 0xffff)|0) + (r15 & 0xffff)|0;
                           v = ((imul(ah7, bl0)|0) + (r7 >>> 16)|0) + (r15 >>> 16)|0;
                           w = ((imul(al7, bh0)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                           m = ((imul(ah7, bh0)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                           r7 = (w << 16) | (u & 0xffff);

                           u = ((imul(al7, bl1)|0) + (r8 & 0xffff)|0) + (m & 0xffff)|0;
                           v = ((imul(ah7, bl1)|0) + (r8 >>> 16)|0) + (m >>> 16)|0;
                           w = ((imul(al7, bh1)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                           m = ((imul(ah7, bh1)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                           r8 = (w << 16) | (u & 0xffff);

                           u = ((imul(al7, bl2)|0) + (r9 & 0xffff)|0) + (m & 0xffff)|0;
                           v = ((imul(ah7, bl2)|0) + (r9 >>> 16)|0) + (m >>> 16)|0;
                           w = ((imul(al7, bh2)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                           m = ((imul(ah7, bh2)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                           r9 = (w << 16) | (u & 0xffff);

                           u = ((imul(al7, bl3)|0) + (r10 & 0xffff)|0) + (m & 0xffff)|0;
                           v = ((imul(ah7, bl3)|0) + (r10 >>> 16)|0) + (m >>> 16)|0;
                           w = ((imul(al7, bh3)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                           m = ((imul(ah7, bh3)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                           r10 = (w << 16) | (u & 0xffff);

                           u = ((imul(al7, bl4)|0) + (r11 & 0xffff)|0) + (m & 0xffff)|0;
                           v = ((imul(ah7, bl4)|0) + (r11 >>> 16)|0) + (m >>> 16)|0;
                           w = ((imul(al7, bh4)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                           m = ((imul(ah7, bh4)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                           r11 = (w << 16) | (u & 0xffff);

                           u = ((imul(al7, bl5)|0) + (r12 & 0xffff)|0) + (m & 0xffff)|0;
                           v = ((imul(ah7, bl5)|0) + (r12 >>> 16)|0) + (m >>> 16)|0;
                           w = ((imul(al7, bh5)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                           m = ((imul(ah7, bh5)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                           r12 = (w << 16) | (u & 0xffff);

                           u = ((imul(al7, bl6)|0) + (r13 & 0xffff)|0) + (m & 0xffff)|0;
                           v = ((imul(ah7, bl6)|0) + (r13 >>> 16)|0) + (m >>> 16)|0;
                           w = ((imul(al7, bh6)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                           m = ((imul(ah7, bh6)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                           r13 = (w << 16) | (u & 0xffff);

                           u = ((imul(al7, bl7)|0) + (r14 & 0xffff)|0) + (m & 0xffff)|0;
                           v = ((imul(ah7, bl7)|0) + (r14 >>> 16)|0) + (m >>> 16)|0;
                           w = ((imul(al7, bh7)|0) + (v & 0xffff)|0) + (u >>> 16)|0;
                           m = ((imul(ah7, bh7)|0) + (v >>> 16)|0) + (w >>> 16)|0;
                           r14 = (w << 16) | (u & 0xffff);

                           r15 = m;

                           k = d+(i+j|0)|0;
                           r = HEAP32[(Rk+k)>>2]|0;
                           u = ((r & 0xffff) + ((r0 & 0xffff) << 1)|0) + c|0;
                           w = ((r >>> 16) + ((r0 >>> 16) << 1)|0) + (u >>> 16)|0;
                           HEAP32[(Rk+k)>>2] = (w << 16) | (u & 0xffff);
                           c = w >>> 16;

                           k = k+4|0;
                           r = HEAP32[(Rk+k)>>2]|0;
                           u = ((r & 0xffff) + ((r1 & 0xffff) << 1)|0) + c|0;
                           w = ((r >>> 16) + ((r1 >>> 16) << 1)|0) + (u >>> 16)|0;
                           HEAP32[(Rk+k)>>2] = (w << 16) | (u & 0xffff);
                           c = w >>> 16;

                           k = k+4|0;
                           r = HEAP32[(Rk+k)>>2]|0;
                           u = ((r & 0xffff) + ((r2 & 0xffff) << 1)|0) + c|0;
                           w = ((r >>> 16) + ((r2 >>> 16) << 1)|0) + (u >>> 16)|0;
                           HEAP32[(Rk+k)>>2] = (w << 16) | (u & 0xffff);
                           c = w >>> 16;

                           k = k+4|0;
                           r = HEAP32[(Rk+k)>>2]|0;
                           u = ((r & 0xffff) + ((r3 & 0xffff) << 1)|0) + c|0;
                           w = ((r >>> 16) + ((r3 >>> 16) << 1)|0) + (u >>> 16)|0;
                           HEAP32[(Rk+k)>>2] = (w << 16) | (u & 0xffff);
                           c = w >>> 16;

                           k = k+4|0;
                           r = HEAP32[(Rk+k)>>2]|0;
                           u = ((r & 0xffff) + ((r4 & 0xffff) << 1)|0) + c|0;
                           w = ((r >>> 16) + ((r4 >>> 16) << 1)|0) + (u >>> 16)|0;
                           HEAP32[(Rk+k)>>2] = (w << 16) | (u & 0xffff);
                           c = w >>> 16;

                           k = k+4|0;
                           r = HEAP32[(Rk+k)>>2]|0;
                           u = ((r & 0xffff) + ((r5 & 0xffff) << 1)|0) + c|0;
                           w = ((r >>> 16) + ((r5 >>> 16) << 1)|0) + (u >>> 16)|0;
                           HEAP32[(Rk+k)>>2] = (w << 16) | (u & 0xffff);
                           c = w >>> 16;

                           k = k+4|0;
                           r = HEAP32[(Rk+k)>>2]|0;
                           u = ((r & 0xffff) + ((r6 & 0xffff) << 1)|0) + c|0;
                           w = ((r >>> 16) + ((r6 >>> 16) << 1)|0) + (u >>> 16)|0;
                           HEAP32[(Rk+k)>>2] = (w << 16) | (u & 0xffff);
                           c = w >>> 16;

                           k = k+4|0;
                           r = HEAP32[(Rk+k)>>2]|0;
                           u = ((r & 0xffff) + ((r7 & 0xffff) << 1)|0) + c|0;
                           w = ((r >>> 16) + ((r7 >>> 16) << 1)|0) + (u >>> 16)|0;
                           HEAP32[(Rk+k)>>2] = (w << 16) | (u & 0xffff);
                           c = w >>> 16;
                       }

                       k = d+(i+j|0)|0;
                       r = HEAP32[(Rk+k)>>2]|0;
                       u = (((r & 0xffff) + ((r8 & 0xffff) << 1)|0) + c|0) + h|0;
                       w = ((r >>> 16) + ((r8 >>> 16) << 1)|0) + (u >>> 16)|0;
                       HEAP32[(Rk+k)>>2] = (w << 16) | (u & 0xffff);
                       c = w >>> 16;

                       k = k+4|0;
                       r = HEAP32[(Rk+k)>>2]|0;
                       u = ((r & 0xffff) + ((r9 & 0xffff) << 1)|0) + c|0;
                       w = ((r >>> 16) + ((r9 >>> 16) << 1)|0) + (u >>> 16)|0;
                       HEAP32[(Rk+k)>>2] = (w << 16) | (u & 0xffff);
                       c = w >>> 16;

                       k = k+4|0;
                       r = HEAP32[(Rk+k)>>2]|0;
                       u = ((r & 0xffff) + ((r10 & 0xffff) << 1)|0) + c|0;
                       w = ((r >>> 16) + ((r10 >>> 16) << 1)|0) + (u >>> 16)|0;
                       HEAP32[(Rk+k)>>2] = (w << 16) | (u & 0xffff);
                       c = w >>> 16;

                       k = k+4|0;
                       r = HEAP32[(Rk+k)>>2]|0;
                       u = ((r & 0xffff) + ((r11 & 0xffff) << 1)|0) + c|0;
                       w = ((r >>> 16) + ((r11 >>> 16) << 1)|0) + (u >>> 16)|0;
                       HEAP32[(Rk+k)>>2] = (w << 16) | (u & 0xffff);
                       c = w >>> 16;

                       k = k+4|0;
                       r = HEAP32[(Rk+k)>>2]|0;
                       u = ((r & 0xffff) + ((r12 & 0xffff) << 1)|0) + c|0;
                       w = ((r >>> 16) + ((r12 >>> 16) << 1)|0) + (u >>> 16)|0;
                       HEAP32[(Rk+k)>>2] = (w << 16) | (u & 0xffff);
                       c = w >>> 16;

                       k = k+4|0;
                       r = HEAP32[(Rk+k)>>2]|0;
                       u = ((r & 0xffff) + ((r13 & 0xffff) << 1)|0) + c|0;
                       w = ((r >>> 16) + ((r13 >>> 16) << 1)|0) + (u >>> 16)|0;
                       HEAP32[(Rk+k)>>2] = (w << 16) | (u & 0xffff);
                       c = w >>> 16;

                       k = k+4|0;
                       r = HEAP32[(Rk+k)>>2]|0;
                       u = ((r & 0xffff) + ((r14 & 0xffff) << 1)|0) + c|0;
                       w = ((r >>> 16) + ((r14 >>> 16) << 1)|0) + (u >>> 16)|0;
                       HEAP32[(Rk+k)>>2] = (w << 16) | (u & 0xffff);
                       c = w >>> 16;

                       k = k+4|0;
                       r = HEAP32[(Rk+k)>>2]|0;
                       u = ((r & 0xffff) + ((r15 & 0xffff) << 1)|0) + c|0;
                       w = ((r >>> 16) + ((r15 >>> 16) << 1)|0) + (u >>> 16)|0;
                       HEAP32[(Rk+k)>>2] = (w << 16) | (u & 0xffff);
                       h = w >>> 16;
                   }

                   for ( k = k+4|0; !!h & ( (k|0) < (dd<<1) ); k = (k+4)|0 ) { // carry propagation loop
                       r = HEAP32[(Rk+k)>>2]|0;
                       u = (r & 0xffff) + h|0;
                       w = (r >>> 16) + (u >>> 16)|0;
                       HEAP32[(Rk+k)>>2] = (w << 16) | (u & 0xffff);
                       h = w >>> 16;
                   }
               }
           }
       }

       /**
        * Conventional division
        *
        * @param A offset of the numerator, 32-byte aligned
        * @param lA length of the numerator, multiple of 32
        *
        * @param B offset of the divisor, 32-byte aligned
        * @param lB length of the divisor, multiple of 32
        *
        * @param R offset where to place the remainder to, 32-byte aligned
        *
        * @param Q offser where to place the quotient to, 32-byte aligned
        */

       function div ( N, lN, D, lD, Q ) {
           N  =  N|0;
           lN = lN|0;
           D  =  D|0;
           lD = lD|0;
           Q  =  Q|0;

           var n = 0, d = 0, e = 0,
               u1 = 0, u0 = 0,
               v0 = 0, vh = 0, vl = 0,
               qh = 0, ql = 0, rh = 0, rl = 0,
               t1 = 0, t2 = 0, m = 0, c = 0,
               i = 0, j = 0, k = 0;

           // number of significant limbs in `N` (multiplied by 4)
           for ( i = (lN-1) & -4; (i|0) >= 0; i = (i-4)|0 ) {
               n = HEAP32[(N+i)>>2]|0;
               if ( n ) {
                   lN = i;
                   break;
               }
           }

           // number of significant limbs in `D` (multiplied by 4)
           for ( i = (lD-1) & -4; (i|0) >= 0; i = (i-4)|0 ) {
               d = HEAP32[(D+i)>>2]|0;
               if ( d ) {
                   lD = i;
                   break;
               }
           }

           // `D` is zero? WTF?!

           // calculate `e` — the power of 2 of the normalization factor
           while ( (d & 0x80000000) == 0 ) {
               d = d << 1;
               e = e + 1|0;
           }

           // normalize `N` in place
           u0 = HEAP32[(N+lN)>>2]|0;
           if ( e ) {
               u1 = u0>>>(32-e|0);
               for ( i = (lN-4)|0; (i|0) >= 0; i = (i-4)|0 ) {
                   n = HEAP32[(N+i)>>2]|0;
                   HEAP32[(N+i+4)>>2] = (u0 << e) | ( e ? n >>> (32-e|0) : 0 );
                   u0 = n;
               }
               HEAP32[N>>2] = u0 << e;
           }

           // normalize `D` in place
           if ( e ) {
               v0 = HEAP32[(D+lD)>>2]|0;
               for ( i = (lD-4)|0; (i|0) >= 0; i = (i-4)|0 ) {
                   d = HEAP32[(D+i)>>2]|0;
                   HEAP32[(D+i+4)>>2] = (v0 << e) | ( d >>> (32-e|0) );
                   v0 = d;
               }
               HEAP32[D>>2] = v0 << e;
           }

           // divisor parts won't change
           v0 = HEAP32[(D+lD)>>2]|0;
           vh = v0 >>> 16, vl = v0 & 0xffff;

           // perform division
           for ( i = lN; (i|0) >= (lD|0); i = (i-4)|0 ) {
               j = (i-lD)|0;

               // estimate high part of the quotient
               u0 = HEAP32[(N+i)>>2]|0;
               qh = ( (u1>>>0) / (vh>>>0) )|0, rh = ( (u1>>>0) % (vh>>>0) )|0, t1 = imul(qh, vl)|0;
               while ( ( (qh|0) == 0x10000 ) | ( (t1>>>0) > (((rh << 16)|(u0 >>> 16))>>>0) ) ) {
                   qh = (qh-1)|0, rh = (rh+vh)|0, t1 = (t1-vl)|0;
                   if ( (rh|0) >= 0x10000 ) break;
               }

               // bulk multiply-and-subtract
               // m - multiplication carry, c - subtraction carry
               m = 0, c = 0;
               for ( k = 0; (k|0) <= (lD|0); k = (k+4)|0 ) {
                   d = HEAP32[(D+k)>>2]|0;
                   t1 = (imul(qh, d & 0xffff)|0) + (m >>> 16)|0;
                   t2 = (imul(qh, d >>> 16)|0) + (t1 >>> 16)|0;
                   d = (m & 0xffff) | (t1 << 16);
                   m = t2;
                   n = HEAP32[(N+j+k)>>2]|0;
                   t1 = ((n & 0xffff) - (d & 0xffff)|0) + c|0;
                   t2 = ((n >>> 16) - (d >>> 16)|0) + (t1 >> 16)|0;
                   HEAP32[(N+j+k)>>2] = (t2 << 16) | (t1 & 0xffff);
                   c = t2 >> 16;
               }
               t1 = ((u1 & 0xffff) - (m & 0xffff)|0) + c|0;
               t2 = ((u1 >>> 16) - (m >>> 16)|0) + (t1 >> 16)|0;
               u1 = (t2 << 16) | (t1 & 0xffff);
               c = t2 >> 16;

               // add `D` back if got carry-out
               if ( c ) {
                   qh = (qh-1)|0;
                   c = 0;
                   for ( k = 0; (k|0) <= (lD|0); k = (k+4)|0 ) {
                       d = HEAP32[(D+k)>>2]|0;
                       n = HEAP32[(N+j+k)>>2]|0;
                       t1 = (n & 0xffff) + c|0;
                       t2 = (n >>> 16) + d + (t1 >>> 16)|0;
                       HEAP32[(N+j+k)>>2] = (t2 << 16) | (t1 & 0xffff);
                       c = t2 >>> 16;
                   }
                   u1 = (u1+c)|0;
               }

               // estimate low part of the quotient
               u0 = HEAP32[(N+i)>>2]|0;
               n = (u1 << 16) | (u0 >>> 16);
               ql = ( (n>>>0) / (vh>>>0) )|0, rl = ( (n>>>0) % (vh>>>0) )|0, t1 = imul(ql, vl)|0;
               while ( ( (ql|0) == 0x10000 ) | ( (t1>>>0) > (((rl << 16)|(u0 & 0xffff))>>>0) ) ) {
                   ql = (ql-1)|0, rl = (rl+vh)|0, t1 = (t1-vl)|0;
                   if ( (rl|0) >= 0x10000 ) break;
               }

               // bulk multiply-and-subtract
               // m - multiplication carry, c - subtraction carry
               m = 0, c = 0;
               for ( k = 0; (k|0) <= (lD|0); k = (k+4)|0 ) {
                   d = HEAP32[(D+k)>>2]|0;
                   t1 = (imul(ql, d & 0xffff)|0) + (m & 0xffff)|0;
                   t2 = ((imul(ql, d >>> 16)|0) + (t1 >>> 16)|0) + (m >>> 16)|0;
                   d = (t1 & 0xffff) | (t2 << 16);
                   m = t2 >>> 16;
                   n = HEAP32[(N+j+k)>>2]|0;
                   t1 = ((n & 0xffff) - (d & 0xffff)|0) + c|0;
                   t2 = ((n >>> 16) - (d >>> 16)|0) + (t1 >> 16)|0;
                   c = t2 >> 16;
                   HEAP32[(N+j+k)>>2] = (t2 << 16) | (t1 & 0xffff);
               }
               t1 = ((u1 & 0xffff) - (m & 0xffff)|0) + c|0;
               t2 = ((u1 >>> 16) - (m >>> 16)|0) + (t1 >> 16)|0;
               c = t2 >> 16;

               // add `D` back if got carry-out
               if ( c ) {
                   ql = (ql-1)|0;
                   c = 0;
                   for ( k = 0; (k|0) <= (lD|0); k = (k+4)|0 ) {
                       d = HEAP32[(D+k)>>2]|0;
                       n = HEAP32[(N+j+k)>>2]|0;
                       t1 = ((n & 0xffff) + (d & 0xffff)|0) + c|0;
                       t2 = ((n >>> 16) + (d >>> 16)|0) + (t1 >>> 16)|0;
                       c = t2 >>> 16;
                       HEAP32[(N+j+k)>>2] = (t1 & 0xffff) | (t2 << 16);
                   }
               }

               // got quotient limb
               HEAP32[(Q+j)>>2] = (qh << 16) | ql;

               u1 = HEAP32[(N+i)>>2]|0;
           }

           if ( e ) {
               // TODO denormalize `D` in place

               // denormalize `N` in place
               u0 = HEAP32[N>>2]|0;
               for ( i = 4; (i|0) <= (lD|0); i = (i+4)|0 ) {
                   n = HEAP32[(N+i)>>2]|0;
                   HEAP32[(N+i-4)>>2] = ( n << (32-e|0) ) | (u0 >>> e);
                   u0 = n;
               }
               HEAP32[(N+lD)>>2] = u0 >>> e;
           }
       }

       /**
        * Montgomery modular reduction
        *
        * Definition:
        *
        *  MREDC(A) = A × X (mod N),
        *  M × X = N × Y + 1,
        *
        * where M = 2^(32*m) such that N < M and A < N×M
        *
        * Numbers `X` and `Y` can be calculated using Extended Euclidean Algorithm.
        */
       function mredc ( A, lA, N, lN, y, R ) {
           A  =  A|0;
           lA = lA|0;
           N  =  N|0;
           lN = lN|0;
           y  =  y|0;
           R  =  R|0;

           var T = 0,
               c = 0, uh = 0, ul = 0, vl = 0, vh = 0, w0 = 0, w1 = 0, w2 = 0, r0 = 0, r1 = 0,
               i = 0, j = 0, k = 0;

           T = salloc(lN<<1)|0;
           z(lN<<1, 0, T);

           cp( lA, A, T );

           // HAC 14.32
           for ( i = 0; (i|0) < (lN|0); i = (i+4)|0 ) {
               uh = HEAP32[(T+i)>>2]|0, ul = uh & 0xffff, uh = uh >>> 16;
               vh = y >>> 16, vl = y & 0xffff;
               w0 = imul(ul,vl)|0, w1 = ( (imul(ul,vh)|0) + (imul(uh,vl)|0) | 0 ) + (w0 >>> 16) | 0;
               ul = w0 & 0xffff, uh = w1 & 0xffff;
               r1 = 0;
               for ( j = 0; (j|0) < (lN|0); j = (j+4)|0 ) {
                   k = (i+j)|0;
                   vh = HEAP32[(N+j)>>2]|0, vl = vh & 0xffff, vh = vh >>> 16;
                   r0 = HEAP32[(T+k)>>2]|0;
                   w0 = ((imul(ul, vl)|0) + (r1 & 0xffff)|0) + (r0 & 0xffff)|0;
                   w1 = ((imul(ul, vh)|0) + (r1 >>> 16)|0) + (r0 >>> 16)|0;
                   w2 = ((imul(uh, vl)|0) + (w1 & 0xffff)|0) + (w0 >>> 16)|0;
                   r1 = ((imul(uh, vh)|0) + (w2 >>> 16)|0) + (w1 >>> 16)|0;
                   r0 = (w2 << 16) | (w0 & 0xffff);
                   HEAP32[(T+k)>>2] = r0;
               }
               k = (i+j)|0;
               r0 = HEAP32[(T+k)>>2]|0;
               w0 = ((r0 & 0xffff) + (r1 & 0xffff)|0) + c|0;
               w1 = ((r0 >>> 16) + (r1 >>> 16)|0) + (w0 >>> 16)|0;
               HEAP32[(T+k)>>2] = (w1 << 16) | (w0 & 0xffff);
               c = w1 >>> 16;
           }

           cp( lN, (T+lN)|0, R );

           sfree(lN<<1);

           if ( c | ( (cmp( N, lN, R, lN )|0) <= 0 ) ) {
               sub( R, lN, N, lN, R, lN )|0;
           }
       }

       return {
           sreset: sreset,
           salloc: salloc,
           sfree:  sfree,
           z: z,
           tst: tst,
           neg: neg,
           cmp: cmp,
           add: add,
           sub: sub,
           mul: mul,
           sqr: sqr,
           div: div,
           mredc: mredc
       };
   }

   /**
    * @param {number} a
    * @param {number} b
    * @return {{gcd: number, x: number, y: number}}
    * @constructor
    */
   function Number_extGCD(a, b) {
     var sa = a < 0 ? -1 : 1,
       sb = b < 0 ? -1 : 1,
       xi = 1,
       xj = 0,
       yi = 0,
       yj = 1,
       r,
       q,
       t,
       a_cmp_b;

     a *= sa;
     b *= sb;

     a_cmp_b = a < b;
     if (a_cmp_b) {
       t = a;
       a = b, b = t;
       t = sa;
       sa = sb;
       sb = t;
     }

     q = Math.floor(a / b), r = a - q * b;
     while (r) {
       t = xi - q * xj, xi = xj, xj = t;
       t = yi - q * yj, yi = yj, yj = t;
       a = b, b = r;

       q = Math.floor(a / b), r = a - q * b;
     }

     xj *= sa;
     yj *= sb;

     if (a_cmp_b) {
       t = xj;
       xj = yj, yj = t;
     }

     return {
       gcd: b,
       x: xj,
       y: yj,
     };
   }

   /**
    * @param a
    * @param b
    * @return {{gcd: BigNumber, x: BigNumber, y: BigNumber}}
    * @constructor
    */
   function BigNumber_extGCD(a, b) {
     if (!is_big_number(a)) a = new BigNumber(a);

     if (!is_big_number(b)) b = new BigNumber(b);

     var sa = a.sign,
       sb = b.sign;

     if (sa < 0) a = a.negate();

     if (sb < 0) b = b.negate();

     var a_cmp_b = a.compare(b);
     if (a_cmp_b < 0) {
       var t = a;
       a = b, b = t;
       t = sa;
       sa = sb;
       sb = t;
     }

     var xi = BigNumber_ONE,
       xj = BigNumber_ZERO,
       lx = b.bitLength,
       yi = BigNumber_ZERO,
       yj = BigNumber_ONE,
       ly = a.bitLength,
       z,
       r,
       q;

     z = a.divide(b);
     while ((r = z.remainder) !== BigNumber_ZERO) {
       q = z.quotient;

       z = xi.subtract(q.multiply(xj).clamp(lx)).clamp(lx), xi = xj, xj = z;
       z = yi.subtract(q.multiply(yj).clamp(ly)).clamp(ly), yi = yj, yj = z;

       a = b, b = r;

       z = a.divide(b);
     }

     if (sa < 0) xj = xj.negate();

     if (sb < 0) yj = yj.negate();

     if (a_cmp_b < 0) {
       var t = xj;
       xj = yj, yj = t;
     }

     return {
       gcd: b,
       x: xj,
       y: yj,
     };
   }

   function is_big_number(a) {
     return a instanceof BigNumber;
   }

   ///////////////////////////////////////////////////////////////////////////////

   var _bigint_stdlib = { Uint32Array: Uint32Array, Math: Math };
   var _bigint_heap = new Uint32Array(0x100000);
   var _bigint_asm;

   function _half_imul(a, b) {
     return (a * b) | 0;
   }

   if (_bigint_stdlib.Math.imul === undefined) {
     _bigint_stdlib.Math.imul = _half_imul;
     _bigint_asm = bigint_asm(_bigint_stdlib, null, _bigint_heap.buffer);
     delete _bigint_stdlib.Math.imul;
   } else {
     _bigint_asm = bigint_asm(_bigint_stdlib, null, _bigint_heap.buffer);
   }

   ///////////////////////////////////////////////////////////////////////////////

   const _BigNumber_ZERO_limbs = new Uint32Array(0);

   class BigNumber {
     /**
      * @param {string} str
      * @return {BigNumber}
      */
     static fromString(str) {
       const bytes = string_to_bytes(str);
       return new BigNumber(bytes);
     }

     /**
      * @param {number} num
      * @return {BigNumber}
      */
     static fromNumber(num) {
       let limbs = _BigNumber_ZERO_limbs;
       let bitlen = 0;
       let sign = 0;

       var absnum = Math.abs(num);
       if (absnum > 0xffffffff) {
         limbs = new Uint32Array(2);
         limbs[0] = absnum | 0;
         limbs[1] = (absnum / 0x100000000) | 0;
         bitlen = 52;
       } else if (absnum > 0) {
         limbs = new Uint32Array(1);
         limbs[0] = absnum;
         bitlen = 32;
       } else {
         limbs = _BigNumber_ZERO_limbs;
         bitlen = 0;
       }
       sign = num < 0 ? -1 : 1;

       return BigNumber.fromConfig({ limbs, bitLength: bitlen, sign });
     }

     /**
      * @param {ArrayBuffer} buffer
      * @return {BigNumber}
      */
     static fromArrayBuffer(buffer) {
       return new BigNumber(new Uint8Array(buffer));
     }

     /**
      * @param {{ limbs: Uint32Array, bitLength: number, sign: number }} obj
      * @return {BigNumber}
      */
     static fromConfig(obj) {
       const bn = new BigNumber();
       bn.limbs = new Uint32Array(obj.limbs);
       bn.bitLength = obj.bitLength;
       bn.sign = obj.sign;
       return bn;
     }

     /**
      * @param {Uint8Array} [num]
      * @return {BigNumber}
      */
     constructor(num) {
       let limbs = _BigNumber_ZERO_limbs;
       let bitlen = 0;
       let sign = 0;

       if (num === undefined) {
         // do nothing
       } else if (is_bytes(num)) {
         for (var i = 0; !num[i]; i++);

         bitlen = (num.length - i) * 8;
         if (!bitlen) return BigNumber_ZERO;

         limbs = new Uint32Array((bitlen + 31) >> 5);
         for (var j = num.length - 4; j >= i; j -= 4) {
           limbs[(num.length - 4 - j) >> 2] = (num[j] << 24) | (num[j + 1] << 16) | (num[j + 2] << 8) | num[j + 3];
         }
         if (i - j === 3) {
           limbs[limbs.length - 1] = num[i];
         } else if (i - j === 2) {
           limbs[limbs.length - 1] = (num[i] << 8) | num[i + 1];
         } else if (i - j === 1) {
           limbs[limbs.length - 1] = (num[i] << 16) | (num[i + 1] << 8) | num[i + 2];
         }

         sign = 1;
       } else {
         throw new TypeError('number is of unexpected type');
       }

       this.limbs = limbs;
       this.bitLength = bitlen;
       this.sign = sign;
     }

     /**
      * @param {number} radix
      * @return {string}
      */
     toString(radix) {
       radix = radix || 16;

       const limbs = this.limbs;
       const bitlen = this.bitLength;
       let str = '';

       if (radix === 16) {
         // FIXME clamp last limb to (bitlen % 32)
         for (var i = ((bitlen + 31) >> 5) - 1; i >= 0; i--) {
           var h = limbs[i].toString(16);
           str += '00000000'.substr(h.length);
           str += h;
         }

         str = str.replace(/^0+/, '');

         if (!str.length) str = '0';
       } else {
         throw new IllegalArgumentError('bad radix');
       }

       if (this.sign < 0) str = '-' + str;

       return str;
     }

     /**
      * @return {Uint8Array}
      */
     toBytes() {
       const bitlen = this.bitLength;
       const limbs = this.limbs;

       if (bitlen === 0) return new Uint8Array(0);

       const bytelen = (bitlen + 7) >> 3;
       const bytes = new Uint8Array(bytelen);
       for (let i = 0; i < bytelen; i++) {
         let j = bytelen - i - 1;
         bytes[i] = limbs[j >> 2] >> ((j & 3) << 3);
       }

       return bytes;
     }

     /**
      * Downgrade to Number
      *
      * @return {number}
      */
     valueOf() {
       const limbs = this.limbs;
       const bits = this.bitLength;
       const sign = this.sign;

       if (!sign) return 0;

       if (bits <= 32) return sign * (limbs[0] >>> 0);

       if (bits <= 52) return sign * (0x100000000 * (limbs[1] >>> 0) + (limbs[0] >>> 0));

       // normalization
       let i,
         l,
         e = 0;
       for (i = limbs.length - 1; i >= 0; i--) {
         if ((l = limbs[i]) === 0) continue;
         while (((l << e) & 0x80000000) === 0) e++;
         break;
       }

       if (i === 0) return sign * (limbs[0] >>> 0);

       return (
         sign *
         (0x100000 * (((limbs[i] << e) | (e ? limbs[i - 1] >>> (32 - e) : 0)) >>> 0) +
           (((limbs[i - 1] << e) | (e && i > 1 ? limbs[i - 2] >>> (32 - e) : 0)) >>> 12)) *
         Math.pow(2, 32 * i - e - 52)
       );
     }

     /**
      * @param {number} b
      * @return {BigNumber}
      */
     clamp(b) {
       const limbs = this.limbs;
       const bitlen = this.bitLength;

       // FIXME check b is number and in a valid range

       if (b >= bitlen) return this;

       const clamped = new BigNumber();
       let n = (b + 31) >> 5;
       let k = b % 32;

       clamped.limbs = new Uint32Array(limbs.subarray(0, n));
       clamped.bitLength = b;
       clamped.sign = this.sign;

       if (k) clamped.limbs[n - 1] &= -1 >>> (32 - k);

       return clamped;
     }

     /**
      * @param {number} f
      * @param {number} [b]
      * @return {BigNumber}
      */
     slice(f, b) {
       if (!is_number(f)) throw new TypeError('TODO');

       if (b !== undefined && !is_number(b)) throw new TypeError('TODO');

       const limbs = this.limbs;
       const bitlen = this.bitLength;

       if (f < 0) throw new RangeError('TODO');

       if (f >= bitlen) return BigNumber_ZERO;

       if (b === undefined || b > bitlen - f) b = bitlen - f;

       const sliced = new BigNumber();
       let n = f >> 5;
       let m = (f + b + 31) >> 5;
       let l = (b + 31) >> 5;
       let t = f % 32;
       let k = b % 32;

       const slimbs = new Uint32Array(l);
       if (t) {
         for (var i = 0; i < m - n - 1; i++) {
           slimbs[i] = (limbs[n + i] >>> t) | (limbs[n + i + 1] << (32 - t));
         }
         slimbs[i] = limbs[n + i] >>> t;
       } else {
         slimbs.set(limbs.subarray(n, m));
       }

       if (k) {
         slimbs[l - 1] &= -1 >>> (32 - k);
       }

       sliced.limbs = slimbs;
       sliced.bitLength = b;
       sliced.sign = this.sign;

       return sliced;
     }

     /**
      * @return {BigNumber}
      */
     negate() {
       const negative = new BigNumber();

       negative.limbs = this.limbs;
       negative.bitLength = this.bitLength;
       negative.sign = -1 * this.sign;

       return negative;
     }

     /**
      * @param {BigNumber} that
      * @return {number}
      */
     compare(that) {
       var alimbs = this.limbs,
         alimbcnt = alimbs.length,
         blimbs = that.limbs,
         blimbcnt = blimbs.length,
         z = 0;

       if (this.sign < that.sign) return -1;

       if (this.sign > that.sign) return 1;

       _bigint_heap.set(alimbs, 0);
       _bigint_heap.set(blimbs, alimbcnt);
       z = _bigint_asm.cmp(0, alimbcnt << 2, alimbcnt << 2, blimbcnt << 2);

       return z * this.sign;
     }

     /**
      * @param {BigNumber} that
      * @return {BigNumber}
      */
     add(that) {
       if (!this.sign) return that;

       if (!that.sign) return this;

       var abitlen = this.bitLength,
         alimbs = this.limbs,
         alimbcnt = alimbs.length,
         asign = this.sign,
         bbitlen = that.bitLength,
         blimbs = that.limbs,
         blimbcnt = blimbs.length,
         bsign = that.sign,
         rbitlen,
         rlimbcnt,
         rsign,
         rof,
         result = new BigNumber();

       rbitlen = (abitlen > bbitlen ? abitlen : bbitlen) + (asign * bsign > 0 ? 1 : 0);
       rlimbcnt = (rbitlen + 31) >> 5;

       _bigint_asm.sreset();

       var pA = _bigint_asm.salloc(alimbcnt << 2),
         pB = _bigint_asm.salloc(blimbcnt << 2),
         pR = _bigint_asm.salloc(rlimbcnt << 2);

       _bigint_asm.z(pR - pA + (rlimbcnt << 2), 0, pA);

       _bigint_heap.set(alimbs, pA >> 2);
       _bigint_heap.set(blimbs, pB >> 2);

       if (asign * bsign > 0) {
         _bigint_asm.add(pA, alimbcnt << 2, pB, blimbcnt << 2, pR, rlimbcnt << 2);
         rsign = asign;
       } else if (asign > bsign) {
         rof = _bigint_asm.sub(pA, alimbcnt << 2, pB, blimbcnt << 2, pR, rlimbcnt << 2);
         rsign = rof ? bsign : asign;
       } else {
         rof = _bigint_asm.sub(pB, blimbcnt << 2, pA, alimbcnt << 2, pR, rlimbcnt << 2);
         rsign = rof ? asign : bsign;
       }

       if (rof) _bigint_asm.neg(pR, rlimbcnt << 2, pR, rlimbcnt << 2);

       if (_bigint_asm.tst(pR, rlimbcnt << 2) === 0) return BigNumber_ZERO;

       result.limbs = new Uint32Array(_bigint_heap.subarray(pR >> 2, (pR >> 2) + rlimbcnt));
       result.bitLength = rbitlen;
       result.sign = rsign;

       return result;
     }

     /**
      * @param {BigNumber} that
      * @return {BigNumber}
      */
     subtract(that) {
       return this.add(that.negate());
     }

     /**
      * @return {BigNumber}
      */
     square() {
       if (!this.sign) return BigNumber_ZERO;

       var abitlen = this.bitLength,
         alimbs = this.limbs,
         alimbcnt = alimbs.length,
         rbitlen,
         rlimbcnt,
         result = new BigNumber();

       rbitlen = abitlen << 1;
       rlimbcnt = (rbitlen + 31) >> 5;

       _bigint_asm.sreset();

       var pA = _bigint_asm.salloc(alimbcnt << 2),
         pR = _bigint_asm.salloc(rlimbcnt << 2);

       _bigint_asm.z(pR - pA + (rlimbcnt << 2), 0, pA);

       _bigint_heap.set(alimbs, pA >> 2);

       _bigint_asm.sqr(pA, alimbcnt << 2, pR);

       result.limbs = new Uint32Array(_bigint_heap.subarray(pR >> 2, (pR >> 2) + rlimbcnt));
       result.bitLength = rbitlen;
       result.sign = 1;

       return result;
     }

     /**
      * @param {BigNumber} that
      * @return {{quotient: BigNumber, remainder: BigNumber}}
      */
     divide(that) {
       var abitlen = this.bitLength,
         alimbs = this.limbs,
         alimbcnt = alimbs.length,
         bbitlen = that.bitLength,
         blimbs = that.limbs,
         blimbcnt = blimbs.length,
         qlimbcnt,
         rlimbcnt,
         quotient = BigNumber_ZERO,
         remainder = BigNumber_ZERO;

       _bigint_asm.sreset();

       var pA = _bigint_asm.salloc(alimbcnt << 2),
         pB = _bigint_asm.salloc(blimbcnt << 2),
         pQ = _bigint_asm.salloc(alimbcnt << 2);

       _bigint_asm.z(pQ - pA + (alimbcnt << 2), 0, pA);

       _bigint_heap.set(alimbs, pA >> 2);
       _bigint_heap.set(blimbs, pB >> 2);

       _bigint_asm.div(pA, alimbcnt << 2, pB, blimbcnt << 2, pQ);

       qlimbcnt = _bigint_asm.tst(pQ, alimbcnt << 2) >> 2;
       if (qlimbcnt) {
         quotient = new BigNumber();
         quotient.limbs = new Uint32Array(_bigint_heap.subarray(pQ >> 2, (pQ >> 2) + qlimbcnt));
         quotient.bitLength = abitlen < qlimbcnt << 5 ? abitlen : qlimbcnt << 5;
         quotient.sign = this.sign * that.sign;
       }

       rlimbcnt = _bigint_asm.tst(pA, blimbcnt << 2) >> 2;
       if (rlimbcnt) {
         remainder = new BigNumber();
         remainder.limbs = new Uint32Array(_bigint_heap.subarray(pA >> 2, (pA >> 2) + rlimbcnt));
         remainder.bitLength = bbitlen < rlimbcnt << 5 ? bbitlen : rlimbcnt << 5;
         remainder.sign = this.sign;
       }

       return {
         quotient: quotient,
         remainder: remainder,
       };
     }

     /**
      * @param {BigNumber} that
      * @return {BigNumber}
      */
     multiply(that) {
       if (!this.sign || !that.sign) return BigNumber_ZERO;

       var abitlen = this.bitLength,
         alimbs = this.limbs,
         alimbcnt = alimbs.length,
         bbitlen = that.bitLength,
         blimbs = that.limbs,
         blimbcnt = blimbs.length,
         rbitlen,
         rlimbcnt,
         result = new BigNumber();

       rbitlen = abitlen + bbitlen;
       rlimbcnt = (rbitlen + 31) >> 5;

       _bigint_asm.sreset();

       var pA = _bigint_asm.salloc(alimbcnt << 2),
         pB = _bigint_asm.salloc(blimbcnt << 2),
         pR = _bigint_asm.salloc(rlimbcnt << 2);

       _bigint_asm.z(pR - pA + (rlimbcnt << 2), 0, pA);

       _bigint_heap.set(alimbs, pA >> 2);
       _bigint_heap.set(blimbs, pB >> 2);

       _bigint_asm.mul(pA, alimbcnt << 2, pB, blimbcnt << 2, pR, rlimbcnt << 2);

       result.limbs = new Uint32Array(_bigint_heap.subarray(pR >> 2, (pR >> 2) + rlimbcnt));
       result.sign = this.sign * that.sign;
       result.bitLength = rbitlen;

       return result;
     }

     /**
      * @param {number} rounds
      * @return {boolean}
      * @private
      */
     isMillerRabinProbablePrime(rounds) {
       var t = BigNumber.fromConfig(this),
         s = 0;
       t.limbs[0] -= 1;
       while (t.limbs[s >> 5] === 0) s += 32;
       while (((t.limbs[s >> 5] >> (s & 31)) & 1) === 0) s++;
       t = t.slice(s);

       var m = new Modulus(this),
         m1 = this.subtract(BigNumber_ONE),
         a = BigNumber.fromConfig(this),
         l = this.limbs.length - 1;
       while (a.limbs[l] === 0) l--;

       while (--rounds >= 0) {
         Random_getValues(a.limbs);
         if (a.limbs[0] < 2) a.limbs[0] += 2;
         while (a.compare(m1) >= 0) a.limbs[l] >>>= 1;

         var x = m.power(a, t);
         if (x.compare(BigNumber_ONE) === 0) continue;
         if (x.compare(m1) === 0) continue;

         var c = s;
         while (--c > 0) {
           x = x.square().divide(m).remainder;
           if (x.compare(BigNumber_ONE) === 0) return false;
           if (x.compare(m1) === 0) break;
         }

         if (c === 0) return false;
       }

       return true;
     }

     /**
      * @param {number} [paranoia]
      * @return {boolean}
      */
     isProbablePrime(paranoia) {
       paranoia = paranoia || 80;

       var limbs = this.limbs;
       var i = 0;

       // Oddity test
       // (50% false positive probability)
       if ((limbs[0] & 1) === 0) return false;
       if (paranoia <= 1) return true;

       // Magic divisors (3, 5, 17) test
       // (~25% false positive probability)
       var s3 = 0,
         s5 = 0,
         s17 = 0;
       for (i = 0; i < limbs.length; i++) {
         var l3 = limbs[i];
         while (l3) {
           s3 += l3 & 3;
           l3 >>>= 2;
         }

         var l5 = limbs[i];
         while (l5) {
           s5 += l5 & 3;
           l5 >>>= 2;
           s5 -= l5 & 3;
           l5 >>>= 2;
         }

         var l17 = limbs[i];
         while (l17) {
           s17 += l17 & 15;
           l17 >>>= 4;
           s17 -= l17 & 15;
           l17 >>>= 4;
         }
       }
       if (!(s3 % 3) || !(s5 % 5) || !(s17 % 17)) return false;
       if (paranoia <= 2) return true;

       // Miller-Rabin test
       // (≤ 4^(-k) false positive probability)
       return this.isMillerRabinProbablePrime(paranoia >>> 1);
     }
   }

   const BigNumber_ZERO = BigNumber.fromNumber(0);
   const BigNumber_ONE = BigNumber.fromNumber(1);

   /**
    * Returns strong pseudoprime of a specified bit length
    *
    * @param {number} bitlen
    * @param {function(BigNumber): boolean} filter
    * @return {BigNumber}
    */


   class Modulus extends BigNumber {
     /**
      * Modulus
      *
      * @param {BigNumber} number
      */
     constructor(number) {
       super();
       this.limbs = number.limbs;
       this.bitLength = number.bitLength;
       this.sign = number.sign;

       if (this.valueOf() < 1) throw new RangeError();

       if (this.bitLength <= 32) return;

       let comodulus;

       if (this.limbs[0] & 1) {
         const bitlen = ((this.bitLength + 31) & -32) + 1;
         const limbs = new Uint32Array((bitlen + 31) >> 5);
         limbs[limbs.length - 1] = 1;
         comodulus = new BigNumber();
         comodulus.sign = 1;
         comodulus.bitLength = bitlen;
         comodulus.limbs = limbs;

         const k = Number_extGCD(0x100000000, this.limbs[0]).y;
         this.coefficient = k < 0 ? -k : 0x100000000 - k;
       } else {
         /**
          * TODO even modulus reduction
          * Modulus represented as `N = 2^U * V`, where `V` is odd and thus `GCD(2^U, V) = 1`.
          * Calculation `A = TR' mod V` is made as for odd modulo using Montgomery method.
          * Calculation `B = TR' mod 2^U` is easy as modulus is a power of 2.
          * Using Chinese Remainder Theorem and Garner's Algorithm restore `TR' mod N` from `A` and `B`.
          */
         return;
       }

       this.comodulus = comodulus;
       this.comodulusRemainder = comodulus.divide(this).remainder;
       this.comodulusRemainderSquare = comodulus.square().divide(this).remainder;
     }

     /**
      * Modular reduction
      *
      * @param {BigNumber} a
      * @return {BigNumber}
      * @constructor
      */
     reduce(a) {
       if (a.bitLength <= 32 && this.bitLength <= 32) return BigNumber.fromNumber(a.valueOf() % this.valueOf());

       if (a.compare(this) < 0) return a;

       return a.divide(this).remainder;
     }

     /**
      * Modular inverse
      *
      * @param {BigNumber} a
      * @return {BigNumber}
      * @constructor
      */
     inverse(a) {
       a = this.reduce(a);

       const r = BigNumber_extGCD(this, a);
       if (r.gcd.valueOf() !== 1) return null;

       if (r.y.sign < 0) return r.y.add(this).clamp(this.bitLength);

       return r.y;
     }

     /**
      * Modular exponentiation
      *
      * @param {BigNumber} g
      * @param {BigNumber} e
      * @return {BigNumber}
      * @constructor
      */
     power(g, e) {
       // count exponent set bits
       let c = 0;
       for (let i = 0; i < e.limbs.length; i++) {
         let t = e.limbs[i];
         while (t) {
           if (t & 1) c++;
           t >>>= 1;
         }
       }

       // window size parameter
       let k = 8;
       if (e.bitLength <= 4536) k = 7;
       if (e.bitLength <= 1736) k = 6;
       if (e.bitLength <= 630) k = 5;
       if (e.bitLength <= 210) k = 4;
       if (e.bitLength <= 60) k = 3;
       if (e.bitLength <= 12) k = 2;
       if (c <= 1 << (k - 1)) k = 1;

       // montgomerize base
       g = _Montgomery_reduce(this.reduce(g).multiply(this.comodulusRemainderSquare), this);

       // precompute odd powers
       const g2 = _Montgomery_reduce(g.square(), this),
         gn = new Array(1 << (k - 1));
       gn[0] = g;
       gn[1] = _Montgomery_reduce(g.multiply(g2), this);
       for (let i = 2; i < 1 << (k - 1); i++) {
         gn[i] = _Montgomery_reduce(gn[i - 1].multiply(g2), this);
       }

       // perform exponentiation
       const u = this.comodulusRemainder;
       let r = u;
       for (let i = e.limbs.length - 1; i >= 0; i--) {
         let t = e.limbs[i];
         for (let j = 32; j > 0; ) {
           if (t & 0x80000000) {
             let n = t >>> (32 - k),
               l = k;
             while ((n & 1) === 0) {
               n >>>= 1;
               l--;
             }
             var m = gn[n >>> 1];
             while (n) {
               n >>>= 1;
               if (r !== u) r = _Montgomery_reduce(r.square(), this);
             }
             r = r !== u ? _Montgomery_reduce(r.multiply(m), this) : m;
             t <<= l, j -= l;
           } else {
             if (r !== u) r = _Montgomery_reduce(r.square(), this);
             t <<= 1, j--;
           }
         }
       }

       // de-montgomerize result
       return _Montgomery_reduce(r, this);
     }
   }

   /**
    * @param {BigNumber} a
    * @param {Modulus} n
    * @return {BigNumber}
    * @private
    */
   function _Montgomery_reduce(a, n) {
     const alimbs = a.limbs;
     const alimbcnt = alimbs.length;
     const nlimbs = n.limbs;
     const nlimbcnt = nlimbs.length;
     const y = n.coefficient;

     _bigint_asm.sreset();

     const pA = _bigint_asm.salloc(alimbcnt << 2),
       pN = _bigint_asm.salloc(nlimbcnt << 2),
       pR = _bigint_asm.salloc(nlimbcnt << 2);

     _bigint_asm.z(pR - pA + (nlimbcnt << 2), 0, pA);

     _bigint_heap.set(alimbs, pA >> 2);
     _bigint_heap.set(nlimbs, pN >> 2);

     _bigint_asm.mredc(pA, alimbcnt << 2, pN, nlimbcnt << 2, y, pR);

     const result = new BigNumber();
     result.limbs = new Uint32Array(_bigint_heap.subarray(pR >> 2, (pR >> 2) + nlimbcnt));
     result.bitLength = n.bitLength;
     result.sign = 1;

     return result;
   }

   BigNumber.ZERO = BigNumber_ZERO;
   BigNumber.ONE = BigNumber_ONE;

   BigNumber.extGCD = BigNumber_extGCD;

   function RSA_reset(options) {
     options = options || {};

     this.result = null;

     var key = options.key;
     if (key !== undefined) {
       if (key instanceof Array) {
         var l = key.length;
         if (l !== 2 && l !== 3 && l !== 8) throw new SyntaxError('unexpected key type');

         var k = [];
         k[0] = new Modulus(new BigNumber(key[0]));
         k[1] = new BigNumber(key[1]);
         if (l > 2) {
           k[2] = new BigNumber(key[2]);
         }
         if (l > 3) {
           k[3] = new Modulus(new BigNumber(key[3]));
           k[4] = new Modulus(new BigNumber(key[4]));
           k[5] = new BigNumber(key[5]);
           k[6] = new BigNumber(key[6]);
           k[7] = new BigNumber(key[7]);
         }

         this.key = k;
       } else {
         throw new TypeError('unexpected key type');
       }
     }

     return this;
   }

   function RSA_encrypt(data) {
     if (!this.key) throw new IllegalStateError('no key is associated with the instance');

     if (is_string(data)) data = string_to_bytes(data);

     if (is_buffer(data)) data = new Uint8Array(data);

     var msg;
     if (is_bytes(data)) {
       msg = new BigNumber(data);
     } else if (is_big_number(data)) {
       msg = data;
     } else {
       throw new TypeError('unexpected data type');
     }

     if (this.key[0].compare(msg) <= 0) throw new RangeError('data too large');

     var m = this.key[0],
       e = this.key[1];

     var result = m.power(msg, e).toBytes();

     var bytelen = (m.bitLength + 7) >> 3;
     if (result.length < bytelen) {
       var r = new Uint8Array(bytelen);
       r.set(result, bytelen - result.length);
       result = r;
     }

     this.result = result;

     return this;
   }

   function RSA_decrypt(data) {
     if (!this.key) throw new IllegalStateError('no key is associated with the instance');

     if (this.key.length < 3) throw new IllegalStateError("key isn't suitable for decription");

     if (is_string(data)) data = string_to_bytes(data);

     if (is_buffer(data)) data = new Uint8Array(data);

     var msg;
     if (is_bytes(data)) {
       msg = new BigNumber(data);
     } else if (is_big_number(data)) {
       msg = data;
     } else {
       throw new TypeError('unexpected data type');
     }

     if (this.key[0].compare(msg) <= 0) throw new RangeError('data too large');

     var result;
     if (this.key.length > 3) {
       var m = this.key[0],
         p = this.key[3],
         q = this.key[4],
         dp = this.key[5],
         dq = this.key[6],
         u = this.key[7];

       var x = p.power(msg, dp),
         y = q.power(msg, dq);

       var t = x.subtract(y);
       while (t.sign < 0) t = t.add(p);

       var h = p.reduce(u.multiply(t));

       result = h
         .multiply(q)
         .add(y)
         .clamp(m.bitLength)
         .toBytes();
     } else {
       var m = this.key[0],
         d = this.key[2];

       result = m.power(msg, d).toBytes();
     }

     var bytelen = (m.bitLength + 7) >> 3;
     if (result.length < bytelen) {
       var r = new Uint8Array(bytelen);
       r.set(result, bytelen - result.length);
       result = r;
     }

     this.result = result;

     return this;
   }

   class RSA_OAEP {
     constructor(options) {
       options = options || {};

       if (!options.hash) throw new SyntaxError("option 'hash' is required");

       if (!options.hash.HASH_SIZE)
         throw new SyntaxError("option 'hash' supplied doesn't seem to be a valid hash function");

       this.hash = options.hash;

       this.label = null;

       this.reset(options);
     }

     reset(options) {
       options = options || {};

       var label = options.label;
       if (label !== undefined) {
         if (is_buffer(label) || is_bytes(label)) {
           label = new Uint8Array(label);
         } else if (is_string(label)) {
           label = string_to_bytes(label);
         } else {
           throw new TypeError('unexpected label type');
         }

         this.label = label.length > 0 ? label : null;
       } else {
         this.label = null;
       }

       RSA_reset.call(this, options);
     }

     /**
      * @param {Uint8Array} data
      * @return {RSA_OAEP}
      */
     encrypt(data) {
       if (!this.key) throw new IllegalStateError('no key is associated with the instance');

       var key_size = Math.ceil(this.key[0].bitLength / 8),
         hash_size = this.hash.HASH_SIZE,
         data_length = data.byteLength || data.length || 0,
         ps_length = key_size - data_length - 2 * hash_size - 2;

       if (data_length > key_size - 2 * this.hash.HASH_SIZE - 2) throw new IllegalArgumentError('data too large');

       var message = new Uint8Array(key_size),
         seed = message.subarray(1, hash_size + 1),
         data_block = message.subarray(hash_size + 1);

       if (is_bytes(data)) {
         data_block.set(data, hash_size + ps_length + 1);
       } else if (is_buffer(data)) {
         data_block.set(new Uint8Array(data), hash_size + ps_length + 1);
       } else if (is_string(data)) {
         data_block.set(string_to_bytes(data), hash_size + ps_length + 1);
       } else {
         throw new TypeError('unexpected data type');
       }

       data_block.set(
         this.hash
           .reset()
           .process(this.label || '')
           .finish().result,
         0,
       );
       data_block[hash_size + ps_length] = 1;

       Random_getValues(seed);

       var data_block_mask = RSA_MGF1_generate.call(this, seed, data_block.length);
       for (var i = 0; i < data_block.length; i++) data_block[i] ^= data_block_mask[i];

       var seed_mask = RSA_MGF1_generate.call(this, data_block, seed.length);
       for (var i = 0; i < seed.length; i++) seed[i] ^= seed_mask[i];

       RSA_encrypt.call(this, message);

       return this;
     }

     /**
      * @param {Uint8Array} data
      * @return {RSA_OAEP}
      */
     decrypt(data) {
       if (!this.key) throw new IllegalStateError('no key is associated with the instance');

       var key_size = Math.ceil(this.key[0].bitLength / 8),
         hash_size = this.hash.HASH_SIZE,
         data_length = data.byteLength || data.length || 0;

       if (data_length !== key_size) throw new IllegalArgumentError('bad data');

       RSA_decrypt.call(this, data);

       var z = this.result[0],
         seed = this.result.subarray(1, hash_size + 1),
         data_block = this.result.subarray(hash_size + 1);

       if (z !== 0) throw new SecurityError('decryption failed');

       var seed_mask = RSA_MGF1_generate.call(this, data_block, seed.length);
       for (var i = 0; i < seed.length; i++) seed[i] ^= seed_mask[i];

       var data_block_mask = RSA_MGF1_generate.call(this, seed, data_block.length);
       for (var i = 0; i < data_block.length; i++) data_block[i] ^= data_block_mask[i];

       var lhash = this.hash
         .reset()
         .process(this.label || '')
         .finish().result;
       for (var i = 0; i < hash_size; i++) {
         if (lhash[i] !== data_block[i]) throw new SecurityError('decryption failed');
       }

       var ps_end = hash_size;
       for (; ps_end < data_block.length; ps_end++) {
         var psz = data_block[ps_end];
         if (psz === 1) break;
         if (psz !== 0) throw new SecurityError('decryption failed');
       }
       if (ps_end === data_block.length) throw new SecurityError('decryption failed');

       this.result = data_block.subarray(ps_end + 1);

       return this;
     }
   }

   /**
    * @param {Uint8Array} seed
    * @param {number} length
    * @return {Uint8Array}
    * @constructor
    */
   function RSA_MGF1_generate(seed, length) {
     seed = seed || '';
     length = length || 0;

     var hash_size = this.hash.HASH_SIZE;
     //    if ( length > (hash_size * 0x100000000) )
     //        throw new IllegalArgumentError("mask length too large");

     var mask = new Uint8Array(length),
       counter = new Uint8Array(4),
       chunks = Math.ceil(length / hash_size);
     for (var i = 0; i < chunks; i++) {
       counter[0] = i >>> 24, counter[1] = (i >>> 16) & 255, counter[2] = (i >>> 8) & 255, counter[3] = i & 255;

       var submask = mask.subarray(i * hash_size);

       var chunk = this.hash
         .reset()
         .process(seed)
         .process(counter)
         .finish().result;
       if (chunk.length > submask.length) chunk = chunk.subarray(0, submask.length);

       submask.set(chunk);
     }

     return mask;
   }

   class RSA_PSS {
     constructor(options) {
       options = options || {};

       if (!options.hash) throw new SyntaxError("option 'hash' is required");

       if (!options.hash.HASH_SIZE)
         throw new SyntaxError("option 'hash' supplied doesn't seem to be a valid hash function");

       this.hash = options.hash;

       this.saltLength = 4;

       this.reset(options);
     }

     reset(options) {
       options = options || {};

       RSA_reset.call(this, options);

       var slen = options.saltLength;
       if (slen !== undefined) {
         if (!is_number(slen) || slen < 0) throw new TypeError('saltLength should be a non-negative number');

         if (this.key !== null && Math.ceil((this.key[0].bitLength - 1) / 8) < this.hash.HASH_SIZE + slen + 2)
           throw new SyntaxError('saltLength is too large');

         this.saltLength = slen;
       } else {
         this.saltLength = 4;
       }
     }

     /**
      * @param {Uint8Array} data
      * @return {RSA_PSS}
      */
     sign(data) {
       if (!this.key) throw new IllegalStateError('no key is associated with the instance');

       var key_bits = this.key[0].bitLength,
         hash_size = this.hash.HASH_SIZE,
         message_length = Math.ceil((key_bits - 1) / 8),
         salt_length = this.saltLength,
         ps_length = message_length - salt_length - hash_size - 2;

       var message = new Uint8Array(message_length),
         h_block = message.subarray(message_length - hash_size - 1, message_length - 1),
         d_block = message.subarray(0, message_length - hash_size - 1),
         d_salt = d_block.subarray(ps_length + 1);

       var m_block = new Uint8Array(8 + hash_size + salt_length),
         m_hash = m_block.subarray(8, 8 + hash_size),
         m_salt = m_block.subarray(8 + hash_size);

       m_hash.set(
         this.hash
           .reset()
           .process(data)
           .finish().result,
       );

       if (salt_length > 0) Random_getValues(m_salt);

       d_block[ps_length] = 1;
       d_salt.set(m_salt);

       h_block.set(
         this.hash
           .reset()
           .process(m_block)
           .finish().result,
       );

       var d_block_mask = RSA_MGF1_generate.call(this, h_block, d_block.length);
       for (var i = 0; i < d_block.length; i++) d_block[i] ^= d_block_mask[i];

       message[message_length - 1] = 0xbc;

       var zbits = 8 * message_length - key_bits + 1;
       if (zbits % 8) message[0] &= 0xff >>> zbits;

       RSA_decrypt.call(this, message);

       return this;
     }

     /**
      * @param {Uint8Array} signature
      * @param {Uint8Array} data
      * @return {RSA_PSS}
      */
     verify(signature, data) {
       if (!this.key) throw new IllegalStateError('no key is associated with the instance');

       var key_bits = this.key[0].bitLength,
         hash_size = this.hash.HASH_SIZE,
         message_length = Math.ceil((key_bits - 1) / 8),
         salt_length = this.saltLength,
         ps_length = message_length - salt_length - hash_size - 2;

       RSA_encrypt.call(this, signature);

       var message = this.result;
       if (message[message_length - 1] !== 0xbc) throw new SecurityError('bad signature');

       var h_block = message.subarray(message_length - hash_size - 1, message_length - 1),
         d_block = message.subarray(0, message_length - hash_size - 1),
         d_salt = d_block.subarray(ps_length + 1);

       var zbits = 8 * message_length - key_bits + 1;
       if (zbits % 8 && message[0] >>> (8 - zbits)) throw new SecurityError('bad signature');

       var d_block_mask = RSA_MGF1_generate.call(this, h_block, d_block.length);
       for (var i = 0; i < d_block.length; i++) d_block[i] ^= d_block_mask[i];

       if (zbits % 8) message[0] &= 0xff >>> zbits;

       for (var i = 0; i < ps_length; i++) {
         if (d_block[i] !== 0) throw new SecurityError('bad signature');
       }
       if (d_block[ps_length] !== 1) throw new SecurityError('bad signature');

       var m_block = new Uint8Array(8 + hash_size + salt_length),
         m_hash = m_block.subarray(8, 8 + hash_size),
         m_salt = m_block.subarray(8 + hash_size);

       m_hash.set(
         this.hash
           .reset()
           .process(data)
           .finish().result,
       );
       m_salt.set(d_salt);

       var h_block_verify = this.hash
         .reset()
         .process(m_block)
         .finish().result;
       for (var i = 0; i < hash_size; i++) {
         if (h_block[i] !== h_block_verify[i]) throw new SecurityError('bad signature');
       }

       return this;
     }
   }

   class RSA_PKCS1_v1_5 {
     constructor(options) {
       options = options || {};

       if (!options.hash) throw new SyntaxError("option 'hash' is required");

       if (!options.hash.HASH_SIZE)
         throw new SyntaxError("option 'hash' supplied doesn't seem to be a valid hash function");

       this.hash = options.hash;

       this.reset(options);
     }

     reset(options) {
       options = options || {};

       RSA_reset.call(this, options);
     }

     /**
      * @param {Uint8Array} data
      * @return {RSA_PKCS1_v1_5}
      */
     sign(data) {
       if (!this.key) {
         throw new IllegalStateError('no key is associated with the instance');
       }
       var prefix = getHashPrefix(this.hash);
       var hash_size = this.hash.HASH_SIZE;

       var t_len = prefix.length + hash_size;
       var k = (this.key[0].bitLength + 7) >> 3;
       if (k < t_len + 11) {
         throw new Error('Message too long');
       }

       var m_hash = new Uint8Array(hash_size);
       m_hash.set(
         this.hash
           .reset()
           .process(data)
           .finish().result,
       );

       // EM = 0x00 || 0x01 || PS || 0x00 || T
       var em = new Uint8Array(k);
       var i = 0;
       em[i++] = 0; // 0x00
       em[i++] = 1; // 0x01
       // PS
       for (i; i < k - t_len - 1; i++) {
         em[i] = 0xff;
       }
       em[i++] = 0;
       em.set(prefix, i); // 0x00
       // T
       em.set(m_hash, em.length - hash_size);

       RSA_decrypt.call(this, em);

       return this;
     }

     /**
      * @param {Uint8Array} signature
      * @param {Uint8Array} data
      * @return {RSA_PKCS1_v1_5}
      */
     verify(signature, data) {
       if (!this.key) {
         throw new IllegalStateError('no key is associated with the instance');
       }
       var prefix = getHashPrefix(this.hash);
       var hash_size = this.hash.HASH_SIZE;

       var t_len = prefix.length + hash_size;
       var k = (this.key[0].bitLength + 7) >> 3;
       if (k < t_len + 11) {
         throw new SecurityError('Bad signature');
       }

       RSA_encrypt.call(this, signature);

       var m_hash = new Uint8Array(hash_size);
       m_hash.set(
         this.hash
           .reset()
           .process(data)
           .finish().result,
       );

       var res = 1;
       // EM = 0x00 || 0x01 || PS || 0x00 || T
       var decryptedSignature = this.result;
       var i = 0;
       res &= decryptedSignature[i++] === 0; // 0x00
       res &= decryptedSignature[i++] === 1; // 0x01
       // PS
       for (i; i < k - t_len - 1; i++) {
         res &= decryptedSignature[i] === 0xff;
       }
       res &= decryptedSignature[i++] === 0; // 0x00
       // T
       var j = 0;
       var n = i + prefix.length;
       // prefix
       for (i; i < n; i++) {
         res &= decryptedSignature[i] === prefix[j++];
       }
       j = 0;
       n = i + m_hash.length;
       // hash
       for (i; i < n; i++) {
         res &= decryptedSignature[i] === m_hash[j++];
       }

       if (!res) {
         throw new SecurityError('Bad signature');
       }

       return this;
     }
   }

   const HASH_PREFIXES = {
     sha1: new Uint8Array([0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2b, 0x0e, 0x03, 0x02, 0x1a, 0x05, 0x00, 0x04, 0x14]),
     sha256: new Uint8Array([
       0x30,
       0x31,
       0x30,
       0x0d,
       0x06,
       0x09,
       0x60,
       0x86,
       0x48,
       0x01,
       0x65,
       0x03,
       0x04,
       0x02,
       0x01,
       0x05,
       0x00,
       0x04,
       0x20,
     ]),
     sha384: new Uint8Array([
       0x30,
       0x41,
       0x30,
       0x0d,
       0x06,
       0x09,
       0x60,
       0x86,
       0x48,
       0x01,
       0x65,
       0x03,
       0x04,
       0x02,
       0x02,
       0x05,
       0x00,
       0x04,
       0x30,
     ]),
     sha512: new Uint8Array([
       0x30,
       0x51,
       0x30,
       0x0d,
       0x06,
       0x09,
       0x60,
       0x86,
       0x48,
       0x01,
       0x65,
       0x03,
       0x04,
       0x02,
       0x03,
       0x05,
       0x00,
       0x04,
       0x40,
     ]),
   };

   /**
    * @param hash
    * @return {Uint8Array}
    */
   function getHashPrefix(hash) {
     var hashName = hash.constructor.NAME;
     var prefix = HASH_PREFIXES[hashName];
     if (!prefix) {
       throw new Error("Cannot get hash prefix for hash algorithm '" + hashName + "'");
     }
     return prefix;
   }

   var _global_console$1 = typeof console !== 'undefined' ? console : undefined;

   var _secure_origin =
     typeof location === 'undefined' || !location.protocol.search(/https:|file:|chrome:|chrome-extension:|moz-extension:/);

   if (!_secure_origin && _global_console$1 !== undefined) {
     _global_console$1.warn(
       'asmCrypto seems to be load from an insecure origin; this may cause to MitM-attack vulnerability. Consider using secure transport protocol.',
     );
   }

   exports.string_to_bytes = string_to_bytes;
   exports.hex_to_bytes = hex_to_bytes;
   exports.base64_to_bytes = base64_to_bytes;
   exports.bytes_to_string = bytes_to_string;
   exports.bytes_to_hex = bytes_to_hex;
   exports.bytes_to_base64 = bytes_to_base64;
   exports.IllegalStateError = IllegalStateError;
   exports.IllegalArgumentError = IllegalArgumentError;
   exports.SecurityError = SecurityError;
   exports.AES_CBC = AES_CBC;
   exports.AES_CBC_Encrypt = AES_CBC_Encrypt;
   exports.AES_CBC_Decrypt = AES_CBC_Decrypt;
   exports.AES_GCM = AES_GCM;
   exports.AES_GCM_Encrypt = AES_GCM_Encrypt;
   exports.AES_GCM_Decrypt = AES_GCM_Decrypt;
   exports.SHA1 = SHA1;
   exports.SHA256 = SHA256;
   exports.HMAC_SHA1 = HMAC_SHA1;
   exports.HMAC_SHA256 = HMAC_SHA256;
   exports.PBKDF2 = PBKDF2;
   exports.PBKDF2_HMAC_SHA1 = PBKDF2_HMAC_SHA1;
   exports.PBKDF2_HMAC_SHA256 = PBKDF2_HMAC_SHA256;
   exports.Random_seed = Random_seed;
   exports.Random_getValues = Random_getValues;
   exports.Random_getNumber = Random_getNumber;
   exports.BigNumber = BigNumber;
   exports.Modulus = Modulus;
   exports.RSA_OAEP = RSA_OAEP;
   exports.RSA_PSS = RSA_PSS;
   exports.RSA_PKCS1_v1_5 = RSA_PKCS1_v1_5;
   exports.random = Random_getNumber;
   exports.getRandomValues = Random_getValues;

   Object.defineProperty(exports, '__esModule', { value: true });

})));

//# sourceMappingURL=asmcrypto.js.map

Выполнить команду


Для локальной разработки. Не используйте в интернете!