PHP WebShell

Текущая директория: /opt/BitGoJS/node_modules/eosjs-ecc/lib

Просмотр файла: ecdsa.js

"use strict";

var assert = require('assert'); // from github.com/bitcoinjs/bitcoinjs-lib from github.com/cryptocoinjs/ecdsa


var crypto = require('./hash');

var enforceType = require('./enforce_types');

var BigInteger = require('bigi');

var ECSignature = require('./ecsignature'); // https://tools.ietf.org/html/rfc6979#section-3.2


function deterministicGenerateK(curve, hash, d, checkSig, nonce) {
  enforceType('Buffer', hash);
  enforceType(BigInteger, d);

  if (nonce) {
    hash = crypto.sha256(Buffer.concat([hash, new Buffer(nonce)]));
  } // sanity check


  assert.equal(hash.length, 32, 'Hash must be 256 bit');
  var x = d.toBuffer(32);
  var k = new Buffer(32);
  var v = new Buffer(32); // Step B

  v.fill(1); // Step C

  k.fill(0); // Step D

  k = crypto.HmacSHA256(Buffer.concat([v, new Buffer([0]), x, hash]), k); // Step E

  v = crypto.HmacSHA256(v, k); // Step F

  k = crypto.HmacSHA256(Buffer.concat([v, new Buffer([1]), x, hash]), k); // Step G

  v = crypto.HmacSHA256(v, k); // Step H1/H2a, ignored as tlen === qlen (256 bit)
  // Step H2b

  v = crypto.HmacSHA256(v, k);
  var T = BigInteger.fromBuffer(v); // Step H3, repeat until T is within the interval [1, n - 1]

  while (T.signum() <= 0 || T.compareTo(curve.n) >= 0 || !checkSig(T)) {
    k = crypto.HmacSHA256(Buffer.concat([v, new Buffer([0])]), k);
    v = crypto.HmacSHA256(v, k); // Step H1/H2a, again, ignored as tlen === qlen (256 bit)
    // Step H2b again

    v = crypto.HmacSHA256(v, k);
    T = BigInteger.fromBuffer(v);
  }

  return T;
}

function sign(curve, hash, d, nonce) {
  var e = BigInteger.fromBuffer(hash);
  var n = curve.n;
  var G = curve.G;
  var r, s;
  var k = deterministicGenerateK(curve, hash, d, function (k) {
    // find canonically valid signature
    var Q = G.multiply(k);
    if (curve.isInfinity(Q)) return false;
    r = Q.affineX.mod(n);
    if (r.signum() === 0) return false;
    s = k.modInverse(n).multiply(e.add(d.multiply(r))).mod(n);
    if (s.signum() === 0) return false;
    return true;
  }, nonce);
  var N_OVER_TWO = n.shiftRight(1); // enforce low S values, see bip62: 'low s values in signatures'

  if (s.compareTo(N_OVER_TWO) > 0) {
    s = n.subtract(s);
  }

  return ECSignature(r, s);
}

function verifyRaw(curve, e, signature, Q) {
  var n = curve.n;
  var G = curve.G;
  var r = signature.r;
  var s = signature.s; // 1.4.1 Enforce r and s are both integers in the interval [1, n − 1]

  if (r.signum() <= 0 || r.compareTo(n) >= 0) return false;
  if (s.signum() <= 0 || s.compareTo(n) >= 0) return false; // c = s^-1 mod n

  var c = s.modInverse(n); // 1.4.4 Compute u1 = es^−1 mod n
  //               u2 = rs^−1 mod n

  var u1 = e.multiply(c).mod(n);
  var u2 = r.multiply(c).mod(n); // 1.4.5 Compute R = (xR, yR) = u1G + u2Q

  var R = G.multiplyTwo(u1, Q, u2); // 1.4.5 (cont.) Enforce R is not at infinity

  if (curve.isInfinity(R)) return false; // 1.4.6 Convert the field element R.x to an integer

  var xR = R.affineX; // 1.4.7 Set v = xR mod n

  var v = xR.mod(n); // 1.4.8 If v = r, output "valid", and if v != r, output "invalid"

  return v.equals(r);
}

function verify(curve, hash, signature, Q) {
  // 1.4.2 H = Hash(M), already done by the user
  // 1.4.3 e = H
  var e = BigInteger.fromBuffer(hash);
  return verifyRaw(curve, e, signature, Q);
}
/**
  * Recover a public key from a signature.
  *
  * See SEC 1: Elliptic Curve Cryptography, section 4.1.6, "Public
  * Key Recovery Operation".
  *
  * http://www.secg.org/download/aid-780/sec1-v2.pdf
  */


function recoverPubKey(curve, e, signature, i) {
  assert.strictEqual(i & 3, i, 'Recovery param is more than two bits');
  var n = curve.n;
  var G = curve.G;
  var r = signature.r;
  var s = signature.s;
  assert(r.signum() > 0 && r.compareTo(n) < 0, 'Invalid r value');
  assert(s.signum() > 0 && s.compareTo(n) < 0, 'Invalid s value'); // A set LSB signifies that the y-coordinate is odd

  var isYOdd = i & 1; // The more significant bit specifies whether we should use the
  // first or second candidate key.

  var isSecondKey = i >> 1; // 1.1 Let x = r + jn

  var x = isSecondKey ? r.add(n) : r;
  var R = curve.pointFromX(isYOdd, x); // 1.4 Check that nR is at infinity

  var nR = R.multiply(n);
  assert(curve.isInfinity(nR), 'nR is not a valid curve point'); // Compute -e from e

  var eNeg = e.negate().mod(n); // 1.6.1 Compute Q = r^-1 (sR -  eG)
  //               Q = r^-1 (sR + -eG)

  var rInv = r.modInverse(n);
  var Q = R.multiplyTwo(s, G, eNeg).multiply(rInv);
  curve.validate(Q);
  return Q;
}
/**
  * Calculate pubkey extraction parameter.
  *
  * When extracting a pubkey from a signature, we have to
  * distinguish four different cases. Rather than putting this
  * burden on the verifier, Bitcoin includes a 2-bit value with the
  * signature.
  *
  * This function simply tries all four cases and returns the value
  * that resulted in a successful pubkey recovery.
  */


function calcPubKeyRecoveryParam(curve, e, signature, Q) {
  for (var i = 0; i < 4; i++) {
    var Qprime = recoverPubKey(curve, e, signature, i); // 1.6.2 Verify Q

    if (Qprime.equals(Q)) {
      return i;
    }
  }

  throw new Error('Unable to find valid recovery factor');
}

module.exports = {
  calcPubKeyRecoveryParam: calcPubKeyRecoveryParam,
  deterministicGenerateK: deterministicGenerateK,
  recoverPubKey: recoverPubKey,
  sign: sign,
  verify: verify,
  verifyRaw: verifyRaw
};

Выполнить команду


Для локальной разработки. Не используйте в интернете!