PHP WebShell

Текущая директория: /usr/lib/node_modules/bitgo/node_modules/@bitgo/sdk-coin-vet/node_modules/@noble/curves

Просмотр файла: secp256k1.js

"use strict";
Object.defineProperty(exports, "__esModule", { value: true });
exports.encodeToCurve = exports.hashToCurve = exports.schnorr = exports.secp256k1 = void 0;
/**
 * NIST secp256k1. See [pdf](https://www.secg.org/sec2-v2.pdf).
 *
 * Seems to be rigid (not backdoored)
 * [as per discussion](https://bitcointalk.org/index.php?topic=289795.msg3183975#msg3183975).
 *
 * secp256k1 belongs to Koblitz curves: it has efficiently computable endomorphism.
 * Endomorphism uses 2x less RAM, speeds up precomputation by 2x and ECDH / key recovery by 20%.
 * For precomputed wNAF it trades off 1/2 init time & 1/3 ram for 20% perf hit.
 * [See explanation](https://gist.github.com/paulmillr/eb670806793e84df628a7c434a873066).
 * @module
 */
/*! noble-curves - MIT License (c) 2022 Paul Miller (paulmillr.com) */
const sha256_1 = require("@noble/hashes/sha256");
const utils_1 = require("@noble/hashes/utils");
const _shortw_utils_js_1 = require("./_shortw_utils.js");
const hash_to_curve_js_1 = require("./abstract/hash-to-curve.js");
const modular_js_1 = require("./abstract/modular.js");
const utils_js_1 = require("./abstract/utils.js");
const weierstrass_js_1 = require("./abstract/weierstrass.js");
const secp256k1P = BigInt('0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f');
const secp256k1N = BigInt('0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141');
const _1n = BigInt(1);
const _2n = BigInt(2);
const divNearest = (a, b) => (a + b / _2n) / b;
/**
 * √n = n^((p+1)/4) for fields p = 3 mod 4. We unwrap the loop and multiply bit-by-bit.
 * (P+1n/4n).toString(2) would produce bits [223x 1, 0, 22x 1, 4x 0, 11, 00]
 */
function sqrtMod(y) {
    const P = secp256k1P;
    // prettier-ignore
    const _3n = BigInt(3), _6n = BigInt(6), _11n = BigInt(11), _22n = BigInt(22);
    // prettier-ignore
    const _23n = BigInt(23), _44n = BigInt(44), _88n = BigInt(88);
    const b2 = (y * y * y) % P; // x^3, 11
    const b3 = (b2 * b2 * y) % P; // x^7
    const b6 = ((0, modular_js_1.pow2)(b3, _3n, P) * b3) % P;
    const b9 = ((0, modular_js_1.pow2)(b6, _3n, P) * b3) % P;
    const b11 = ((0, modular_js_1.pow2)(b9, _2n, P) * b2) % P;
    const b22 = ((0, modular_js_1.pow2)(b11, _11n, P) * b11) % P;
    const b44 = ((0, modular_js_1.pow2)(b22, _22n, P) * b22) % P;
    const b88 = ((0, modular_js_1.pow2)(b44, _44n, P) * b44) % P;
    const b176 = ((0, modular_js_1.pow2)(b88, _88n, P) * b88) % P;
    const b220 = ((0, modular_js_1.pow2)(b176, _44n, P) * b44) % P;
    const b223 = ((0, modular_js_1.pow2)(b220, _3n, P) * b3) % P;
    const t1 = ((0, modular_js_1.pow2)(b223, _23n, P) * b22) % P;
    const t2 = ((0, modular_js_1.pow2)(t1, _6n, P) * b2) % P;
    const root = (0, modular_js_1.pow2)(t2, _2n, P);
    if (!Fpk1.eql(Fpk1.sqr(root), y))
        throw new Error('Cannot find square root');
    return root;
}
const Fpk1 = (0, modular_js_1.Field)(secp256k1P, undefined, undefined, { sqrt: sqrtMod });
/**
 * secp256k1 short weierstrass curve and ECDSA signatures over it.
 *
 * @example
 * import { secp256k1 } from '@noble/curves/secp256k1';
 *
 * const priv = secp256k1.utils.randomPrivateKey();
 * const pub = secp256k1.getPublicKey(priv);
 * const msg = new Uint8Array(32).fill(1); // message hash (not message) in ecdsa
 * const sig = secp256k1.sign(msg, priv); // `{prehash: true}` option is available
 * const isValid = secp256k1.verify(sig, msg, pub) === true;
 */
exports.secp256k1 = (0, _shortw_utils_js_1.createCurve)({
    a: BigInt(0), // equation params: a, b
    b: BigInt(7),
    Fp: Fpk1, // Field's prime: 2n**256n - 2n**32n - 2n**9n - 2n**8n - 2n**7n - 2n**6n - 2n**4n - 1n
    n: secp256k1N, // Curve order, total count of valid points in the field
    // Base point (x, y) aka generator point
    Gx: BigInt('55066263022277343669578718895168534326250603453777594175500187360389116729240'),
    Gy: BigInt('32670510020758816978083085130507043184471273380659243275938904335757337482424'),
    h: BigInt(1), // Cofactor
    lowS: true, // Allow only low-S signatures by default in sign() and verify()
    endo: {
        // Endomorphism, see above
        beta: BigInt('0x7ae96a2b657c07106e64479eac3434e99cf0497512f58995c1396c28719501ee'),
        splitScalar: (k) => {
            const n = secp256k1N;
            const a1 = BigInt('0x3086d221a7d46bcde86c90e49284eb15');
            const b1 = -_1n * BigInt('0xe4437ed6010e88286f547fa90abfe4c3');
            const a2 = BigInt('0x114ca50f7a8e2f3f657c1108d9d44cfd8');
            const b2 = a1;
            const POW_2_128 = BigInt('0x100000000000000000000000000000000'); // (2n**128n).toString(16)
            const c1 = divNearest(b2 * k, n);
            const c2 = divNearest(-b1 * k, n);
            let k1 = (0, modular_js_1.mod)(k - c1 * a1 - c2 * a2, n);
            let k2 = (0, modular_js_1.mod)(-c1 * b1 - c2 * b2, n);
            const k1neg = k1 > POW_2_128;
            const k2neg = k2 > POW_2_128;
            if (k1neg)
                k1 = n - k1;
            if (k2neg)
                k2 = n - k2;
            if (k1 > POW_2_128 || k2 > POW_2_128) {
                throw new Error('splitScalar: Endomorphism failed, k=' + k);
            }
            return { k1neg, k1, k2neg, k2 };
        },
    },
}, sha256_1.sha256);
// Schnorr signatures are superior to ECDSA from above. Below is Schnorr-specific BIP0340 code.
// https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki
const _0n = BigInt(0);
/** An object mapping tags to their tagged hash prefix of [SHA256(tag) | SHA256(tag)] */
const TAGGED_HASH_PREFIXES = {};
function taggedHash(tag, ...messages) {
    let tagP = TAGGED_HASH_PREFIXES[tag];
    if (tagP === undefined) {
        const tagH = (0, sha256_1.sha256)(Uint8Array.from(tag, (c) => c.charCodeAt(0)));
        tagP = (0, utils_js_1.concatBytes)(tagH, tagH);
        TAGGED_HASH_PREFIXES[tag] = tagP;
    }
    return (0, sha256_1.sha256)((0, utils_js_1.concatBytes)(tagP, ...messages));
}
// ECDSA compact points are 33-byte. Schnorr is 32: we strip first byte 0x02 or 0x03
const pointToBytes = (point) => point.toRawBytes(true).slice(1);
const numTo32b = (n) => (0, utils_js_1.numberToBytesBE)(n, 32);
const modP = (x) => (0, modular_js_1.mod)(x, secp256k1P);
const modN = (x) => (0, modular_js_1.mod)(x, secp256k1N);
const Point = exports.secp256k1.ProjectivePoint;
const GmulAdd = (Q, a, b) => Point.BASE.multiplyAndAddUnsafe(Q, a, b);
// Calculate point, scalar and bytes
function schnorrGetExtPubKey(priv) {
    let d_ = exports.secp256k1.utils.normPrivateKeyToScalar(priv); // same method executed in fromPrivateKey
    let p = Point.fromPrivateKey(d_); // P = d'⋅G; 0 < d' < n check is done inside
    const scalar = p.hasEvenY() ? d_ : modN(-d_);
    return { scalar: scalar, bytes: pointToBytes(p) };
}
/**
 * lift_x from BIP340. Convert 32-byte x coordinate to elliptic curve point.
 * @returns valid point checked for being on-curve
 */
function lift_x(x) {
    (0, utils_js_1.aInRange)('x', x, _1n, secp256k1P); // Fail if x ≥ p.
    const xx = modP(x * x);
    const c = modP(xx * x + BigInt(7)); // Let c = x³ + 7 mod p.
    let y = sqrtMod(c); // Let y = c^(p+1)/4 mod p.
    if (y % _2n !== _0n)
        y = modP(-y); // Return the unique point P such that x(P) = x and
    const p = new Point(x, y, _1n); // y(P) = y if y mod 2 = 0 or y(P) = p-y otherwise.
    p.assertValidity();
    return p;
}
const num = utils_js_1.bytesToNumberBE;
/**
 * Create tagged hash, convert it to bigint, reduce modulo-n.
 */
function challenge(...args) {
    return modN(num(taggedHash('BIP0340/challenge', ...args)));
}
/**
 * Schnorr public key is just `x` coordinate of Point as per BIP340.
 */
function schnorrGetPublicKey(privateKey) {
    return schnorrGetExtPubKey(privateKey).bytes; // d'=int(sk). Fail if d'=0 or d'≥n. Ret bytes(d'⋅G)
}
/**
 * Creates Schnorr signature as per BIP340. Verifies itself before returning anything.
 * auxRand is optional and is not the sole source of k generation: bad CSPRNG won't be dangerous.
 */
function schnorrSign(message, privateKey, auxRand = (0, utils_1.randomBytes)(32)) {
    const m = (0, utils_js_1.ensureBytes)('message', message);
    const { bytes: px, scalar: d } = schnorrGetExtPubKey(privateKey); // checks for isWithinCurveOrder
    const a = (0, utils_js_1.ensureBytes)('auxRand', auxRand, 32); // Auxiliary random data a: a 32-byte array
    const t = numTo32b(d ^ num(taggedHash('BIP0340/aux', a))); // Let t be the byte-wise xor of bytes(d) and hash/aux(a)
    const rand = taggedHash('BIP0340/nonce', t, px, m); // Let rand = hash/nonce(t || bytes(P) || m)
    const k_ = modN(num(rand)); // Let k' = int(rand) mod n
    if (k_ === _0n)
        throw new Error('sign failed: k is zero'); // Fail if k' = 0.
    const { bytes: rx, scalar: k } = schnorrGetExtPubKey(k_); // Let R = k'⋅G.
    const e = challenge(rx, px, m); // Let e = int(hash/challenge(bytes(R) || bytes(P) || m)) mod n.
    const sig = new Uint8Array(64); // Let sig = bytes(R) || bytes((k + ed) mod n).
    sig.set(rx, 0);
    sig.set(numTo32b(modN(k + e * d)), 32);
    // If Verify(bytes(P), m, sig) (see below) returns failure, abort
    if (!schnorrVerify(sig, m, px))
        throw new Error('sign: Invalid signature produced');
    return sig;
}
/**
 * Verifies Schnorr signature.
 * Will swallow errors & return false except for initial type validation of arguments.
 */
function schnorrVerify(signature, message, publicKey) {
    const sig = (0, utils_js_1.ensureBytes)('signature', signature, 64);
    const m = (0, utils_js_1.ensureBytes)('message', message);
    const pub = (0, utils_js_1.ensureBytes)('publicKey', publicKey, 32);
    try {
        const P = lift_x(num(pub)); // P = lift_x(int(pk)); fail if that fails
        const r = num(sig.subarray(0, 32)); // Let r = int(sig[0:32]); fail if r ≥ p.
        if (!(0, utils_js_1.inRange)(r, _1n, secp256k1P))
            return false;
        const s = num(sig.subarray(32, 64)); // Let s = int(sig[32:64]); fail if s ≥ n.
        if (!(0, utils_js_1.inRange)(s, _1n, secp256k1N))
            return false;
        const e = challenge(numTo32b(r), pointToBytes(P), m); // int(challenge(bytes(r)||bytes(P)||m))%n
        const R = GmulAdd(P, s, modN(-e)); // R = s⋅G - e⋅P
        if (!R || !R.hasEvenY() || R.toAffine().x !== r)
            return false; // -eP == (n-e)P
        return true; // Fail if is_infinite(R) / not has_even_y(R) / x(R) ≠ r.
    }
    catch (error) {
        return false;
    }
}
/**
 * Schnorr signatures over secp256k1.
 * https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki
 * @example
 * import { schnorr } from '@noble/curves/secp256k1';
 * const priv = schnorr.utils.randomPrivateKey();
 * const pub = schnorr.getPublicKey(priv);
 * const msg = new TextEncoder().encode('hello');
 * const sig = schnorr.sign(msg, priv);
 * const isValid = schnorr.verify(sig, msg, pub);
 */
exports.schnorr = (() => ({
    getPublicKey: schnorrGetPublicKey,
    sign: schnorrSign,
    verify: schnorrVerify,
    utils: {
        randomPrivateKey: exports.secp256k1.utils.randomPrivateKey,
        lift_x,
        pointToBytes,
        numberToBytesBE: utils_js_1.numberToBytesBE,
        bytesToNumberBE: utils_js_1.bytesToNumberBE,
        taggedHash,
        mod: modular_js_1.mod,
    },
}))();
const isoMap = /* @__PURE__ */ (() => (0, hash_to_curve_js_1.isogenyMap)(Fpk1, [
    // xNum
    [
        '0x8e38e38e38e38e38e38e38e38e38e38e38e38e38e38e38e38e38e38daaaaa8c7',
        '0x7d3d4c80bc321d5b9f315cea7fd44c5d595d2fc0bf63b92dfff1044f17c6581',
        '0x534c328d23f234e6e2a413deca25caece4506144037c40314ecbd0b53d9dd262',
        '0x8e38e38e38e38e38e38e38e38e38e38e38e38e38e38e38e38e38e38daaaaa88c',
    ],
    // xDen
    [
        '0xd35771193d94918a9ca34ccbb7b640dd86cd409542f8487d9fe6b745781eb49b',
        '0xedadc6f64383dc1df7c4b2d51b54225406d36b641f5e41bbc52a56612a8c6d14',
        '0x0000000000000000000000000000000000000000000000000000000000000001', // LAST 1
    ],
    // yNum
    [
        '0x4bda12f684bda12f684bda12f684bda12f684bda12f684bda12f684b8e38e23c',
        '0xc75e0c32d5cb7c0fa9d0a54b12a0a6d5647ab046d686da6fdffc90fc201d71a3',
        '0x29a6194691f91a73715209ef6512e576722830a201be2018a765e85a9ecee931',
        '0x2f684bda12f684bda12f684bda12f684bda12f684bda12f684bda12f38e38d84',
    ],
    // yDen
    [
        '0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffff93b',
        '0x7a06534bb8bdb49fd5e9e6632722c2989467c1bfc8e8d978dfb425d2685c2573',
        '0x6484aa716545ca2cf3a70c3fa8fe337e0a3d21162f0d6299a7bf8192bfd2a76f',
        '0x0000000000000000000000000000000000000000000000000000000000000001', // LAST 1
    ],
].map((i) => i.map((j) => BigInt(j)))))();
const mapSWU = /* @__PURE__ */ (() => (0, weierstrass_js_1.mapToCurveSimpleSWU)(Fpk1, {
    A: BigInt('0x3f8731abdd661adca08a5558f0f5d272e953d363cb6f0e5d405447c01a444533'),
    B: BigInt('1771'),
    Z: Fpk1.create(BigInt('-11')),
}))();
const htf = /* @__PURE__ */ (() => (0, hash_to_curve_js_1.createHasher)(exports.secp256k1.ProjectivePoint, (scalars) => {
    const { x, y } = mapSWU(Fpk1.create(scalars[0]));
    return isoMap(x, y);
}, {
    DST: 'secp256k1_XMD:SHA-256_SSWU_RO_',
    encodeDST: 'secp256k1_XMD:SHA-256_SSWU_NU_',
    p: Fpk1.ORDER,
    m: 1,
    k: 128,
    expand: 'xmd',
    hash: sha256_1.sha256,
}))();
/** secp256k1 hash-to-curve from [RFC 9380](https://www.rfc-editor.org/rfc/rfc9380). */
exports.hashToCurve = (() => htf.hashToCurve)();
/** secp256k1 encode-to-curve from [RFC 9380](https://www.rfc-editor.org/rfc/rfc9380). */
exports.encodeToCurve = (() => htf.encodeToCurve)();
//# sourceMappingURL=secp256k1.js.map

Выполнить команду


Для локальной разработки. Не используйте в интернете!