PHP WebShell

Текущая директория: /usr/lib/node_modules/bitgo/node_modules/@bitgo/sdk-lib-mpc/node_modules/@noble/curves/abstract

Просмотр файла: curve.js

"use strict";
Object.defineProperty(exports, "__esModule", { value: true });
exports.wNAF = wNAF;
exports.pippenger = pippenger;
exports.precomputeMSMUnsafe = precomputeMSMUnsafe;
exports.validateBasic = validateBasic;
/**
 * Methods for elliptic curve multiplication by scalars.
 * Contains wNAF, pippenger
 * @module
 */
/*! noble-curves - MIT License (c) 2022 Paul Miller (paulmillr.com) */
const modular_js_1 = require("./modular.js");
const utils_js_1 = require("./utils.js");
const _0n = BigInt(0);
const _1n = BigInt(1);
function constTimeNegate(condition, item) {
    const neg = item.negate();
    return condition ? neg : item;
}
function validateW(W, bits) {
    if (!Number.isSafeInteger(W) || W <= 0 || W > bits)
        throw new Error('invalid window size, expected [1..' + bits + '], got W=' + W);
}
function calcWOpts(W, bits) {
    validateW(W, bits);
    const windows = Math.ceil(bits / W) + 1; // +1, because
    const windowSize = 2 ** (W - 1); // -1 because we skip zero
    return { windows, windowSize };
}
function validateMSMPoints(points, c) {
    if (!Array.isArray(points))
        throw new Error('array expected');
    points.forEach((p, i) => {
        if (!(p instanceof c))
            throw new Error('invalid point at index ' + i);
    });
}
function validateMSMScalars(scalars, field) {
    if (!Array.isArray(scalars))
        throw new Error('array of scalars expected');
    scalars.forEach((s, i) => {
        if (!field.isValid(s))
            throw new Error('invalid scalar at index ' + i);
    });
}
// Since points in different groups cannot be equal (different object constructor),
// we can have single place to store precomputes
const pointPrecomputes = new WeakMap();
const pointWindowSizes = new WeakMap(); // This allows use make points immutable (nothing changes inside)
function getW(P) {
    return pointWindowSizes.get(P) || 1;
}
/**
 * Elliptic curve multiplication of Point by scalar. Fragile.
 * Scalars should always be less than curve order: this should be checked inside of a curve itself.
 * Creates precomputation tables for fast multiplication:
 * - private scalar is split by fixed size windows of W bits
 * - every window point is collected from window's table & added to accumulator
 * - since windows are different, same point inside tables won't be accessed more than once per calc
 * - each multiplication is 'Math.ceil(CURVE_ORDER / 𝑊) + 1' point additions (fixed for any scalar)
 * - +1 window is neccessary for wNAF
 * - wNAF reduces table size: 2x less memory + 2x faster generation, but 10% slower multiplication
 *
 * @todo Research returning 2d JS array of windows, instead of a single window.
 * This would allow windows to be in different memory locations
 */
function wNAF(c, bits) {
    return {
        constTimeNegate,
        hasPrecomputes(elm) {
            return getW(elm) !== 1;
        },
        // non-const time multiplication ladder
        unsafeLadder(elm, n, p = c.ZERO) {
            let d = elm;
            while (n > _0n) {
                if (n & _1n)
                    p = p.add(d);
                d = d.double();
                n >>= _1n;
            }
            return p;
        },
        /**
         * Creates a wNAF precomputation window. Used for caching.
         * Default window size is set by `utils.precompute()` and is equal to 8.
         * Number of precomputed points depends on the curve size:
         * 2^(𝑊−1) * (Math.ceil(𝑛 / 𝑊) + 1), where:
         * - 𝑊 is the window size
         * - 𝑛 is the bitlength of the curve order.
         * For a 256-bit curve and window size 8, the number of precomputed points is 128 * 33 = 4224.
         * @param elm Point instance
         * @param W window size
         * @returns precomputed point tables flattened to a single array
         */
        precomputeWindow(elm, W) {
            const { windows, windowSize } = calcWOpts(W, bits);
            const points = [];
            let p = elm;
            let base = p;
            for (let window = 0; window < windows; window++) {
                base = p;
                points.push(base);
                // =1, because we skip zero
                for (let i = 1; i < windowSize; i++) {
                    base = base.add(p);
                    points.push(base);
                }
                p = base.double();
            }
            return points;
        },
        /**
         * Implements ec multiplication using precomputed tables and w-ary non-adjacent form.
         * @param W window size
         * @param precomputes precomputed tables
         * @param n scalar (we don't check here, but should be less than curve order)
         * @returns real and fake (for const-time) points
         */
        wNAF(W, precomputes, n) {
            // TODO: maybe check that scalar is less than group order? wNAF behavious is undefined otherwise
            // But need to carefully remove other checks before wNAF. ORDER == bits here
            const { windows, windowSize } = calcWOpts(W, bits);
            let p = c.ZERO;
            let f = c.BASE;
            const mask = BigInt(2 ** W - 1); // Create mask with W ones: 0b1111 for W=4 etc.
            const maxNumber = 2 ** W;
            const shiftBy = BigInt(W);
            for (let window = 0; window < windows; window++) {
                const offset = window * windowSize;
                // Extract W bits.
                let wbits = Number(n & mask);
                // Shift number by W bits.
                n >>= shiftBy;
                // If the bits are bigger than max size, we'll split those.
                // +224 => 256 - 32
                if (wbits > windowSize) {
                    wbits -= maxNumber;
                    n += _1n;
                }
                // This code was first written with assumption that 'f' and 'p' will never be infinity point:
                // since each addition is multiplied by 2 ** W, it cannot cancel each other. However,
                // there is negate now: it is possible that negated element from low value
                // would be the same as high element, which will create carry into next window.
                // It's not obvious how this can fail, but still worth investigating later.
                // Check if we're onto Zero point.
                // Add random point inside current window to f.
                const offset1 = offset;
                const offset2 = offset + Math.abs(wbits) - 1; // -1 because we skip zero
                const cond1 = window % 2 !== 0;
                const cond2 = wbits < 0;
                if (wbits === 0) {
                    // The most important part for const-time getPublicKey
                    f = f.add(constTimeNegate(cond1, precomputes[offset1]));
                }
                else {
                    p = p.add(constTimeNegate(cond2, precomputes[offset2]));
                }
            }
            // JIT-compiler should not eliminate f here, since it will later be used in normalizeZ()
            // Even if the variable is still unused, there are some checks which will
            // throw an exception, so compiler needs to prove they won't happen, which is hard.
            // At this point there is a way to F be infinity-point even if p is not,
            // which makes it less const-time: around 1 bigint multiply.
            return { p, f };
        },
        /**
         * Implements ec unsafe (non const-time) multiplication using precomputed tables and w-ary non-adjacent form.
         * @param W window size
         * @param precomputes precomputed tables
         * @param n scalar (we don't check here, but should be less than curve order)
         * @param acc accumulator point to add result of multiplication
         * @returns point
         */
        wNAFUnsafe(W, precomputes, n, acc = c.ZERO) {
            const { windows, windowSize } = calcWOpts(W, bits);
            const mask = BigInt(2 ** W - 1); // Create mask with W ones: 0b1111 for W=4 etc.
            const maxNumber = 2 ** W;
            const shiftBy = BigInt(W);
            for (let window = 0; window < windows; window++) {
                const offset = window * windowSize;
                if (n === _0n)
                    break; // No need to go over empty scalar
                // Extract W bits.
                let wbits = Number(n & mask);
                // Shift number by W bits.
                n >>= shiftBy;
                // If the bits are bigger than max size, we'll split those.
                // +224 => 256 - 32
                if (wbits > windowSize) {
                    wbits -= maxNumber;
                    n += _1n;
                }
                if (wbits === 0)
                    continue;
                let curr = precomputes[offset + Math.abs(wbits) - 1]; // -1 because we skip zero
                if (wbits < 0)
                    curr = curr.negate();
                // NOTE: by re-using acc, we can save a lot of additions in case of MSM
                acc = acc.add(curr);
            }
            return acc;
        },
        getPrecomputes(W, P, transform) {
            // Calculate precomputes on a first run, reuse them after
            let comp = pointPrecomputes.get(P);
            if (!comp) {
                comp = this.precomputeWindow(P, W);
                if (W !== 1)
                    pointPrecomputes.set(P, transform(comp));
            }
            return comp;
        },
        wNAFCached(P, n, transform) {
            const W = getW(P);
            return this.wNAF(W, this.getPrecomputes(W, P, transform), n);
        },
        wNAFCachedUnsafe(P, n, transform, prev) {
            const W = getW(P);
            if (W === 1)
                return this.unsafeLadder(P, n, prev); // For W=1 ladder is ~x2 faster
            return this.wNAFUnsafe(W, this.getPrecomputes(W, P, transform), n, prev);
        },
        // We calculate precomputes for elliptic curve point multiplication
        // using windowed method. This specifies window size and
        // stores precomputed values. Usually only base point would be precomputed.
        setWindowSize(P, W) {
            validateW(W, bits);
            pointWindowSizes.set(P, W);
            pointPrecomputes.delete(P);
        },
    };
}
/**
 * Pippenger algorithm for multi-scalar multiplication (MSM, Pa + Qb + Rc + ...).
 * 30x faster vs naive addition on L=4096, 10x faster with precomputes.
 * For N=254bit, L=1, it does: 1024 ADD + 254 DBL. For L=5: 1536 ADD + 254 DBL.
 * Algorithmically constant-time (for same L), even when 1 point + scalar, or when scalar = 0.
 * @param c Curve Point constructor
 * @param fieldN field over CURVE.N - important that it's not over CURVE.P
 * @param points array of L curve points
 * @param scalars array of L scalars (aka private keys / bigints)
 */
function pippenger(c, fieldN, points, scalars) {
    // If we split scalars by some window (let's say 8 bits), every chunk will only
    // take 256 buckets even if there are 4096 scalars, also re-uses double.
    // TODO:
    // - https://eprint.iacr.org/2024/750.pdf
    // - https://tches.iacr.org/index.php/TCHES/article/view/10287
    // 0 is accepted in scalars
    validateMSMPoints(points, c);
    validateMSMScalars(scalars, fieldN);
    if (points.length !== scalars.length)
        throw new Error('arrays of points and scalars must have equal length');
    const zero = c.ZERO;
    const wbits = (0, utils_js_1.bitLen)(BigInt(points.length));
    const windowSize = wbits > 12 ? wbits - 3 : wbits > 4 ? wbits - 2 : wbits ? 2 : 1; // in bits
    const MASK = (1 << windowSize) - 1;
    const buckets = new Array(MASK + 1).fill(zero); // +1 for zero array
    const lastBits = Math.floor((fieldN.BITS - 1) / windowSize) * windowSize;
    let sum = zero;
    for (let i = lastBits; i >= 0; i -= windowSize) {
        buckets.fill(zero);
        for (let j = 0; j < scalars.length; j++) {
            const scalar = scalars[j];
            const wbits = Number((scalar >> BigInt(i)) & BigInt(MASK));
            buckets[wbits] = buckets[wbits].add(points[j]);
        }
        let resI = zero; // not using this will do small speed-up, but will lose ct
        // Skip first bucket, because it is zero
        for (let j = buckets.length - 1, sumI = zero; j > 0; j--) {
            sumI = sumI.add(buckets[j]);
            resI = resI.add(sumI);
        }
        sum = sum.add(resI);
        if (i !== 0)
            for (let j = 0; j < windowSize; j++)
                sum = sum.double();
    }
    return sum;
}
/**
 * Precomputed multi-scalar multiplication (MSM, Pa + Qb + Rc + ...).
 * @param c Curve Point constructor
 * @param fieldN field over CURVE.N - important that it's not over CURVE.P
 * @param points array of L curve points
 * @returns function which multiplies points with scaars
 */
function precomputeMSMUnsafe(c, fieldN, points, windowSize) {
    /**
     * Performance Analysis of Window-based Precomputation
     *
     * Base Case (256-bit scalar, 8-bit window):
     * - Standard precomputation requires:
     *   - 31 additions per scalar × 256 scalars = 7,936 ops
     *   - Plus 255 summary additions = 8,191 total ops
     *   Note: Summary additions can be optimized via accumulator
     *
     * Chunked Precomputation Analysis:
     * - Using 32 chunks requires:
     *   - 255 additions per chunk
     *   - 256 doublings
     *   - Total: (255 × 32) + 256 = 8,416 ops
     *
     * Memory Usage Comparison:
     * Window Size | Standard Points | Chunked Points
     * ------------|-----------------|---------------
     *     4-bit   |     520         |      15
     *     8-bit   |    4,224        |     255
     *    10-bit   |   13,824        |   1,023
     *    16-bit   |  557,056        |  65,535
     *
     * Key Advantages:
     * 1. Enables larger window sizes due to reduced memory overhead
     * 2. More efficient for smaller scalar counts:
     *    - 16 chunks: (16 × 255) + 256 = 4,336 ops
     *    - ~2x faster than standard 8,191 ops
     *
     * Limitations:
     * - Not suitable for plain precomputes (requires 256 constant doublings)
     * - Performance degrades with larger scalar counts:
     *   - Optimal for ~256 scalars
     *   - Less efficient for 4096+ scalars (Pippenger preferred)
     */
    validateW(windowSize, fieldN.BITS);
    validateMSMPoints(points, c);
    const zero = c.ZERO;
    const tableSize = 2 ** windowSize - 1; // table size (without zero)
    const chunks = Math.ceil(fieldN.BITS / windowSize); // chunks of item
    const MASK = BigInt((1 << windowSize) - 1);
    const tables = points.map((p) => {
        const res = [];
        for (let i = 0, acc = p; i < tableSize; i++) {
            res.push(acc);
            acc = acc.add(p);
        }
        return res;
    });
    return (scalars) => {
        validateMSMScalars(scalars, fieldN);
        if (scalars.length > points.length)
            throw new Error('array of scalars must be smaller than array of points');
        let res = zero;
        for (let i = 0; i < chunks; i++) {
            // No need to double if accumulator is still zero.
            if (res !== zero)
                for (let j = 0; j < windowSize; j++)
                    res = res.double();
            const shiftBy = BigInt(chunks * windowSize - (i + 1) * windowSize);
            for (let j = 0; j < scalars.length; j++) {
                const n = scalars[j];
                const curr = Number((n >> shiftBy) & MASK);
                if (!curr)
                    continue; // skip zero scalars chunks
                res = res.add(tables[j][curr - 1]);
            }
        }
        return res;
    };
}
function validateBasic(curve) {
    (0, modular_js_1.validateField)(curve.Fp);
    (0, utils_js_1.validateObject)(curve, {
        n: 'bigint',
        h: 'bigint',
        Gx: 'field',
        Gy: 'field',
    }, {
        nBitLength: 'isSafeInteger',
        nByteLength: 'isSafeInteger',
    });
    // Set defaults
    return Object.freeze({
        ...(0, modular_js_1.nLength)(curve.n, curve.nBitLength),
        ...curve,
        ...{ p: curve.Fp.ORDER },
    });
}
//# sourceMappingURL=curve.js.map

Выполнить команду


Для локальной разработки. Не используйте в интернете!