PHP WebShell

Текущая директория: /usr/lib/node_modules/bitgo/node_modules/@noble/ciphers

Просмотр файла: _polyval.js

"use strict";
Object.defineProperty(exports, "__esModule", { value: true });
exports.polyval = exports.ghash = void 0;
exports._toGHASHKey = _toGHASHKey;
/**
 * GHash from AES-GCM and its little-endian "mirror image" Polyval from AES-SIV.
 *
 * Implemented in terms of GHash with conversion function for keys
 * GCM GHASH from
 * [NIST SP800-38d](https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf),
 * SIV from
 * [RFC 8452](https://datatracker.ietf.org/doc/html/rfc8452).
 *
 * GHASH   modulo: x^128 + x^7   + x^2   + x     + 1
 * POLYVAL modulo: x^128 + x^127 + x^126 + x^121 + 1
 *
 * @module
 */
// prettier-ignore
const utils_ts_1 = require("./utils.js");
const BLOCK_SIZE = 16;
// TODO: rewrite
// temporary padding buffer
const ZEROS16 = /* @__PURE__ */ new Uint8Array(16);
const ZEROS32 = (0, utils_ts_1.u32)(ZEROS16);
const POLY = 0xe1; // v = 2*v % POLY
// v = 2*v % POLY
// NOTE: because x + x = 0 (add/sub is same), mul2(x) != x+x
// We can multiply any number using montgomery ladder and this function (works as double, add is simple xor)
const mul2 = (s0, s1, s2, s3) => {
    const hiBit = s3 & 1;
    return {
        s3: (s2 << 31) | (s3 >>> 1),
        s2: (s1 << 31) | (s2 >>> 1),
        s1: (s0 << 31) | (s1 >>> 1),
        s0: (s0 >>> 1) ^ ((POLY << 24) & -(hiBit & 1)), // reduce % poly
    };
};
const swapLE = (n) => (((n >>> 0) & 0xff) << 24) |
    (((n >>> 8) & 0xff) << 16) |
    (((n >>> 16) & 0xff) << 8) |
    ((n >>> 24) & 0xff) |
    0;
/**
 * `mulX_POLYVAL(ByteReverse(H))` from spec
 * @param k mutated in place
 */
function _toGHASHKey(k) {
    k.reverse();
    const hiBit = k[15] & 1;
    // k >>= 1
    let carry = 0;
    for (let i = 0; i < k.length; i++) {
        const t = k[i];
        k[i] = (t >>> 1) | carry;
        carry = (t & 1) << 7;
    }
    k[0] ^= -hiBit & 0xe1; // if (hiBit) n ^= 0xe1000000000000000000000000000000;
    return k;
}
const estimateWindow = (bytes) => {
    if (bytes > 64 * 1024)
        return 8;
    if (bytes > 1024)
        return 4;
    return 2;
};
class GHASH {
    // We select bits per window adaptively based on expectedLength
    constructor(key, expectedLength) {
        this.blockLen = BLOCK_SIZE;
        this.outputLen = BLOCK_SIZE;
        this.s0 = 0;
        this.s1 = 0;
        this.s2 = 0;
        this.s3 = 0;
        this.finished = false;
        key = (0, utils_ts_1.toBytes)(key);
        (0, utils_ts_1.abytes)(key, 16);
        const kView = (0, utils_ts_1.createView)(key);
        let k0 = kView.getUint32(0, false);
        let k1 = kView.getUint32(4, false);
        let k2 = kView.getUint32(8, false);
        let k3 = kView.getUint32(12, false);
        // generate table of doubled keys (half of montgomery ladder)
        const doubles = [];
        for (let i = 0; i < 128; i++) {
            doubles.push({ s0: swapLE(k0), s1: swapLE(k1), s2: swapLE(k2), s3: swapLE(k3) });
            ({ s0: k0, s1: k1, s2: k2, s3: k3 } = mul2(k0, k1, k2, k3));
        }
        const W = estimateWindow(expectedLength || 1024);
        if (![1, 2, 4, 8].includes(W))
            throw new Error('ghash: invalid window size, expected 2, 4 or 8');
        this.W = W;
        const bits = 128; // always 128 bits;
        const windows = bits / W;
        const windowSize = (this.windowSize = 2 ** W);
        const items = [];
        // Create precompute table for window of W bits
        for (let w = 0; w < windows; w++) {
            // truth table: 00, 01, 10, 11
            for (let byte = 0; byte < windowSize; byte++) {
                // prettier-ignore
                let s0 = 0, s1 = 0, s2 = 0, s3 = 0;
                for (let j = 0; j < W; j++) {
                    const bit = (byte >>> (W - j - 1)) & 1;
                    if (!bit)
                        continue;
                    const { s0: d0, s1: d1, s2: d2, s3: d3 } = doubles[W * w + j];
                    (s0 ^= d0), (s1 ^= d1), (s2 ^= d2), (s3 ^= d3);
                }
                items.push({ s0, s1, s2, s3 });
            }
        }
        this.t = items;
    }
    _updateBlock(s0, s1, s2, s3) {
        (s0 ^= this.s0), (s1 ^= this.s1), (s2 ^= this.s2), (s3 ^= this.s3);
        const { W, t, windowSize } = this;
        // prettier-ignore
        let o0 = 0, o1 = 0, o2 = 0, o3 = 0;
        const mask = (1 << W) - 1; // 2**W will kill performance.
        let w = 0;
        for (const num of [s0, s1, s2, s3]) {
            for (let bytePos = 0; bytePos < 4; bytePos++) {
                const byte = (num >>> (8 * bytePos)) & 0xff;
                for (let bitPos = 8 / W - 1; bitPos >= 0; bitPos--) {
                    const bit = (byte >>> (W * bitPos)) & mask;
                    const { s0: e0, s1: e1, s2: e2, s3: e3 } = t[w * windowSize + bit];
                    (o0 ^= e0), (o1 ^= e1), (o2 ^= e2), (o3 ^= e3);
                    w += 1;
                }
            }
        }
        this.s0 = o0;
        this.s1 = o1;
        this.s2 = o2;
        this.s3 = o3;
    }
    update(data) {
        (0, utils_ts_1.aexists)(this);
        data = (0, utils_ts_1.toBytes)(data);
        (0, utils_ts_1.abytes)(data);
        const b32 = (0, utils_ts_1.u32)(data);
        const blocks = Math.floor(data.length / BLOCK_SIZE);
        const left = data.length % BLOCK_SIZE;
        for (let i = 0; i < blocks; i++) {
            this._updateBlock(b32[i * 4 + 0], b32[i * 4 + 1], b32[i * 4 + 2], b32[i * 4 + 3]);
        }
        if (left) {
            ZEROS16.set(data.subarray(blocks * BLOCK_SIZE));
            this._updateBlock(ZEROS32[0], ZEROS32[1], ZEROS32[2], ZEROS32[3]);
            (0, utils_ts_1.clean)(ZEROS32); // clean tmp buffer
        }
        return this;
    }
    destroy() {
        const { t } = this;
        // clean precompute table
        for (const elm of t) {
            (elm.s0 = 0), (elm.s1 = 0), (elm.s2 = 0), (elm.s3 = 0);
        }
    }
    digestInto(out) {
        (0, utils_ts_1.aexists)(this);
        (0, utils_ts_1.aoutput)(out, this);
        this.finished = true;
        const { s0, s1, s2, s3 } = this;
        const o32 = (0, utils_ts_1.u32)(out);
        o32[0] = s0;
        o32[1] = s1;
        o32[2] = s2;
        o32[3] = s3;
        return out;
    }
    digest() {
        const res = new Uint8Array(BLOCK_SIZE);
        this.digestInto(res);
        this.destroy();
        return res;
    }
}
class Polyval extends GHASH {
    constructor(key, expectedLength) {
        key = (0, utils_ts_1.toBytes)(key);
        (0, utils_ts_1.abytes)(key);
        const ghKey = _toGHASHKey((0, utils_ts_1.copyBytes)(key));
        super(ghKey, expectedLength);
        (0, utils_ts_1.clean)(ghKey);
    }
    update(data) {
        data = (0, utils_ts_1.toBytes)(data);
        (0, utils_ts_1.aexists)(this);
        const b32 = (0, utils_ts_1.u32)(data);
        const left = data.length % BLOCK_SIZE;
        const blocks = Math.floor(data.length / BLOCK_SIZE);
        for (let i = 0; i < blocks; i++) {
            this._updateBlock(swapLE(b32[i * 4 + 3]), swapLE(b32[i * 4 + 2]), swapLE(b32[i * 4 + 1]), swapLE(b32[i * 4 + 0]));
        }
        if (left) {
            ZEROS16.set(data.subarray(blocks * BLOCK_SIZE));
            this._updateBlock(swapLE(ZEROS32[3]), swapLE(ZEROS32[2]), swapLE(ZEROS32[1]), swapLE(ZEROS32[0]));
            (0, utils_ts_1.clean)(ZEROS32);
        }
        return this;
    }
    digestInto(out) {
        (0, utils_ts_1.aexists)(this);
        (0, utils_ts_1.aoutput)(out, this);
        this.finished = true;
        // tmp ugly hack
        const { s0, s1, s2, s3 } = this;
        const o32 = (0, utils_ts_1.u32)(out);
        o32[0] = s0;
        o32[1] = s1;
        o32[2] = s2;
        o32[3] = s3;
        return out.reverse();
    }
}
function wrapConstructorWithKey(hashCons) {
    const hashC = (msg, key) => hashCons(key, msg.length).update((0, utils_ts_1.toBytes)(msg)).digest();
    const tmp = hashCons(new Uint8Array(16), 0);
    hashC.outputLen = tmp.outputLen;
    hashC.blockLen = tmp.blockLen;
    hashC.create = (key, expectedLength) => hashCons(key, expectedLength);
    return hashC;
}
/** GHash MAC for AES-GCM. */
exports.ghash = wrapConstructorWithKey((key, expectedLength) => new GHASH(key, expectedLength));
/** Polyval MAC for AES-SIV. */
exports.polyval = wrapConstructorWithKey((key, expectedLength) => new Polyval(key, expectedLength));
//# sourceMappingURL=_polyval.js.map

Выполнить команду


Для локальной разработки. Не используйте в интернете!