PHP WebShell

Текущая директория: /usr/lib/node_modules/bitgo/node_modules/@noble/curves/abstract

Просмотр файла: edwards.js

"use strict";
Object.defineProperty(exports, "__esModule", { value: true });
exports.PrimeEdwardsPoint = void 0;
exports.edwards = edwards;
exports.eddsa = eddsa;
exports.twistedEdwards = twistedEdwards;
/**
 * Twisted Edwards curve. The formula is: ax² + y² = 1 + dx²y².
 * For design rationale of types / exports, see weierstrass module documentation.
 * Untwisted Edwards curves exist, but they aren't used in real-world protocols.
 * @module
 */
/*! noble-curves - MIT License (c) 2022 Paul Miller (paulmillr.com) */
const utils_ts_1 = require("../utils.js");
const curve_ts_1 = require("./curve.js");
const modular_ts_1 = require("./modular.js");
// Be friendly to bad ECMAScript parsers by not using bigint literals
// prettier-ignore
const _0n = BigInt(0), _1n = BigInt(1), _2n = BigInt(2), _8n = BigInt(8);
function isEdValidXY(Fp, CURVE, x, y) {
    const x2 = Fp.sqr(x);
    const y2 = Fp.sqr(y);
    const left = Fp.add(Fp.mul(CURVE.a, x2), y2);
    const right = Fp.add(Fp.ONE, Fp.mul(CURVE.d, Fp.mul(x2, y2)));
    return Fp.eql(left, right);
}
function edwards(params, extraOpts = {}) {
    const validated = (0, curve_ts_1._createCurveFields)('edwards', params, extraOpts, extraOpts.FpFnLE);
    const { Fp, Fn } = validated;
    let CURVE = validated.CURVE;
    const { h: cofactor } = CURVE;
    (0, utils_ts_1._validateObject)(extraOpts, {}, { uvRatio: 'function' });
    // Important:
    // There are some places where Fp.BYTES is used instead of nByteLength.
    // So far, everything has been tested with curves of Fp.BYTES == nByteLength.
    // TODO: test and find curves which behave otherwise.
    const MASK = _2n << (BigInt(Fn.BYTES * 8) - _1n);
    const modP = (n) => Fp.create(n); // Function overrides
    // sqrt(u/v)
    const uvRatio = extraOpts.uvRatio ||
        ((u, v) => {
            try {
                return { isValid: true, value: Fp.sqrt(Fp.div(u, v)) };
            }
            catch (e) {
                return { isValid: false, value: _0n };
            }
        });
    // Validate whether the passed curve params are valid.
    // equation ax² + y² = 1 + dx²y² should work for generator point.
    if (!isEdValidXY(Fp, CURVE, CURVE.Gx, CURVE.Gy))
        throw new Error('bad curve params: generator point');
    /**
     * Asserts coordinate is valid: 0 <= n < MASK.
     * Coordinates >= Fp.ORDER are allowed for zip215.
     */
    function acoord(title, n, banZero = false) {
        const min = banZero ? _1n : _0n;
        (0, utils_ts_1.aInRange)('coordinate ' + title, n, min, MASK);
        return n;
    }
    function aextpoint(other) {
        if (!(other instanceof Point))
            throw new Error('ExtendedPoint expected');
    }
    // Converts Extended point to default (x, y) coordinates.
    // Can accept precomputed Z^-1 - for example, from invertBatch.
    const toAffineMemo = (0, utils_ts_1.memoized)((p, iz) => {
        const { X, Y, Z } = p;
        const is0 = p.is0();
        if (iz == null)
            iz = is0 ? _8n : Fp.inv(Z); // 8 was chosen arbitrarily
        const x = modP(X * iz);
        const y = modP(Y * iz);
        const zz = Fp.mul(Z, iz);
        if (is0)
            return { x: _0n, y: _1n };
        if (zz !== _1n)
            throw new Error('invZ was invalid');
        return { x, y };
    });
    const assertValidMemo = (0, utils_ts_1.memoized)((p) => {
        const { a, d } = CURVE;
        if (p.is0())
            throw new Error('bad point: ZERO'); // TODO: optimize, with vars below?
        // Equation in affine coordinates: ax² + y² = 1 + dx²y²
        // Equation in projective coordinates (X/Z, Y/Z, Z):  (aX² + Y²)Z² = Z⁴ + dX²Y²
        const { X, Y, Z, T } = p;
        const X2 = modP(X * X); // X²
        const Y2 = modP(Y * Y); // Y²
        const Z2 = modP(Z * Z); // Z²
        const Z4 = modP(Z2 * Z2); // Z⁴
        const aX2 = modP(X2 * a); // aX²
        const left = modP(Z2 * modP(aX2 + Y2)); // (aX² + Y²)Z²
        const right = modP(Z4 + modP(d * modP(X2 * Y2))); // Z⁴ + dX²Y²
        if (left !== right)
            throw new Error('bad point: equation left != right (1)');
        // In Extended coordinates we also have T, which is x*y=T/Z: check X*Y == Z*T
        const XY = modP(X * Y);
        const ZT = modP(Z * T);
        if (XY !== ZT)
            throw new Error('bad point: equation left != right (2)');
        return true;
    });
    // Extended Point works in extended coordinates: (X, Y, Z, T) ∋ (x=X/Z, y=Y/Z, T=xy).
    // https://en.wikipedia.org/wiki/Twisted_Edwards_curve#Extended_coordinates
    class Point {
        constructor(X, Y, Z, T) {
            this.X = acoord('x', X);
            this.Y = acoord('y', Y);
            this.Z = acoord('z', Z, true);
            this.T = acoord('t', T);
            Object.freeze(this);
        }
        static CURVE() {
            return CURVE;
        }
        static fromAffine(p) {
            if (p instanceof Point)
                throw new Error('extended point not allowed');
            const { x, y } = p || {};
            acoord('x', x);
            acoord('y', y);
            return new Point(x, y, _1n, modP(x * y));
        }
        // Uses algo from RFC8032 5.1.3.
        static fromBytes(bytes, zip215 = false) {
            const len = Fp.BYTES;
            const { a, d } = CURVE;
            bytes = (0, utils_ts_1.copyBytes)((0, utils_ts_1._abytes2)(bytes, len, 'point'));
            (0, utils_ts_1._abool2)(zip215, 'zip215');
            const normed = (0, utils_ts_1.copyBytes)(bytes); // copy again, we'll manipulate it
            const lastByte = bytes[len - 1]; // select last byte
            normed[len - 1] = lastByte & ~0x80; // clear last bit
            const y = (0, utils_ts_1.bytesToNumberLE)(normed);
            // zip215=true is good for consensus-critical apps. =false follows RFC8032 / NIST186-5.
            // RFC8032 prohibits >= p, but ZIP215 doesn't
            // zip215=true:  0 <= y < MASK (2^256 for ed25519)
            // zip215=false: 0 <= y < P (2^255-19 for ed25519)
            const max = zip215 ? MASK : Fp.ORDER;
            (0, utils_ts_1.aInRange)('point.y', y, _0n, max);
            // Ed25519: x² = (y²-1)/(dy²+1) mod p. Ed448: x² = (y²-1)/(dy²-1) mod p. Generic case:
            // ax²+y²=1+dx²y² => y²-1=dx²y²-ax² => y²-1=x²(dy²-a) => x²=(y²-1)/(dy²-a)
            const y2 = modP(y * y); // denominator is always non-0 mod p.
            const u = modP(y2 - _1n); // u = y² - 1
            const v = modP(d * y2 - a); // v = d y² + 1.
            let { isValid, value: x } = uvRatio(u, v); // √(u/v)
            if (!isValid)
                throw new Error('bad point: invalid y coordinate');
            const isXOdd = (x & _1n) === _1n; // There are 2 square roots. Use x_0 bit to select proper
            const isLastByteOdd = (lastByte & 0x80) !== 0; // x_0, last bit
            if (!zip215 && x === _0n && isLastByteOdd)
                // if x=0 and x_0 = 1, fail
                throw new Error('bad point: x=0 and x_0=1');
            if (isLastByteOdd !== isXOdd)
                x = modP(-x); // if x_0 != x mod 2, set x = p-x
            return Point.fromAffine({ x, y });
        }
        static fromHex(bytes, zip215 = false) {
            return Point.fromBytes((0, utils_ts_1.ensureBytes)('point', bytes), zip215);
        }
        get x() {
            return this.toAffine().x;
        }
        get y() {
            return this.toAffine().y;
        }
        precompute(windowSize = 8, isLazy = true) {
            wnaf.createCache(this, windowSize);
            if (!isLazy)
                this.multiply(_2n); // random number
            return this;
        }
        // Useful in fromAffine() - not for fromBytes(), which always created valid points.
        assertValidity() {
            assertValidMemo(this);
        }
        // Compare one point to another.
        equals(other) {
            aextpoint(other);
            const { X: X1, Y: Y1, Z: Z1 } = this;
            const { X: X2, Y: Y2, Z: Z2 } = other;
            const X1Z2 = modP(X1 * Z2);
            const X2Z1 = modP(X2 * Z1);
            const Y1Z2 = modP(Y1 * Z2);
            const Y2Z1 = modP(Y2 * Z1);
            return X1Z2 === X2Z1 && Y1Z2 === Y2Z1;
        }
        is0() {
            return this.equals(Point.ZERO);
        }
        negate() {
            // Flips point sign to a negative one (-x, y in affine coords)
            return new Point(modP(-this.X), this.Y, this.Z, modP(-this.T));
        }
        // Fast algo for doubling Extended Point.
        // https://hyperelliptic.org/EFD/g1p/auto-twisted-extended.html#doubling-dbl-2008-hwcd
        // Cost: 4M + 4S + 1*a + 6add + 1*2.
        double() {
            const { a } = CURVE;
            const { X: X1, Y: Y1, Z: Z1 } = this;
            const A = modP(X1 * X1); // A = X12
            const B = modP(Y1 * Y1); // B = Y12
            const C = modP(_2n * modP(Z1 * Z1)); // C = 2*Z12
            const D = modP(a * A); // D = a*A
            const x1y1 = X1 + Y1;
            const E = modP(modP(x1y1 * x1y1) - A - B); // E = (X1+Y1)2-A-B
            const G = D + B; // G = D+B
            const F = G - C; // F = G-C
            const H = D - B; // H = D-B
            const X3 = modP(E * F); // X3 = E*F
            const Y3 = modP(G * H); // Y3 = G*H
            const T3 = modP(E * H); // T3 = E*H
            const Z3 = modP(F * G); // Z3 = F*G
            return new Point(X3, Y3, Z3, T3);
        }
        // Fast algo for adding 2 Extended Points.
        // https://hyperelliptic.org/EFD/g1p/auto-twisted-extended.html#addition-add-2008-hwcd
        // Cost: 9M + 1*a + 1*d + 7add.
        add(other) {
            aextpoint(other);
            const { a, d } = CURVE;
            const { X: X1, Y: Y1, Z: Z1, T: T1 } = this;
            const { X: X2, Y: Y2, Z: Z2, T: T2 } = other;
            const A = modP(X1 * X2); // A = X1*X2
            const B = modP(Y1 * Y2); // B = Y1*Y2
            const C = modP(T1 * d * T2); // C = T1*d*T2
            const D = modP(Z1 * Z2); // D = Z1*Z2
            const E = modP((X1 + Y1) * (X2 + Y2) - A - B); // E = (X1+Y1)*(X2+Y2)-A-B
            const F = D - C; // F = D-C
            const G = D + C; // G = D+C
            const H = modP(B - a * A); // H = B-a*A
            const X3 = modP(E * F); // X3 = E*F
            const Y3 = modP(G * H); // Y3 = G*H
            const T3 = modP(E * H); // T3 = E*H
            const Z3 = modP(F * G); // Z3 = F*G
            return new Point(X3, Y3, Z3, T3);
        }
        subtract(other) {
            return this.add(other.negate());
        }
        // Constant-time multiplication.
        multiply(scalar) {
            // 1 <= scalar < L
            if (!Fn.isValidNot0(scalar))
                throw new Error('invalid scalar: expected 1 <= sc < curve.n');
            const { p, f } = wnaf.cached(this, scalar, (p) => (0, curve_ts_1.normalizeZ)(Point, p));
            return (0, curve_ts_1.normalizeZ)(Point, [p, f])[0];
        }
        // Non-constant-time multiplication. Uses double-and-add algorithm.
        // It's faster, but should only be used when you don't care about
        // an exposed private key e.g. sig verification.
        // Does NOT allow scalars higher than CURVE.n.
        // Accepts optional accumulator to merge with multiply (important for sparse scalars)
        multiplyUnsafe(scalar, acc = Point.ZERO) {
            // 0 <= scalar < L
            if (!Fn.isValid(scalar))
                throw new Error('invalid scalar: expected 0 <= sc < curve.n');
            if (scalar === _0n)
                return Point.ZERO;
            if (this.is0() || scalar === _1n)
                return this;
            return wnaf.unsafe(this, scalar, (p) => (0, curve_ts_1.normalizeZ)(Point, p), acc);
        }
        // Checks if point is of small order.
        // If you add something to small order point, you will have "dirty"
        // point with torsion component.
        // Multiplies point by cofactor and checks if the result is 0.
        isSmallOrder() {
            return this.multiplyUnsafe(cofactor).is0();
        }
        // Multiplies point by curve order and checks if the result is 0.
        // Returns `false` is the point is dirty.
        isTorsionFree() {
            return wnaf.unsafe(this, CURVE.n).is0();
        }
        // Converts Extended point to default (x, y) coordinates.
        // Can accept precomputed Z^-1 - for example, from invertBatch.
        toAffine(invertedZ) {
            return toAffineMemo(this, invertedZ);
        }
        clearCofactor() {
            if (cofactor === _1n)
                return this;
            return this.multiplyUnsafe(cofactor);
        }
        toBytes() {
            const { x, y } = this.toAffine();
            // Fp.toBytes() allows non-canonical encoding of y (>= p).
            const bytes = Fp.toBytes(y);
            // Each y has 2 valid points: (x, y), (x,-y).
            // When compressing, it's enough to store y and use the last byte to encode sign of x
            bytes[bytes.length - 1] |= x & _1n ? 0x80 : 0;
            return bytes;
        }
        toHex() {
            return (0, utils_ts_1.bytesToHex)(this.toBytes());
        }
        toString() {
            return `<Point ${this.is0() ? 'ZERO' : this.toHex()}>`;
        }
        // TODO: remove
        get ex() {
            return this.X;
        }
        get ey() {
            return this.Y;
        }
        get ez() {
            return this.Z;
        }
        get et() {
            return this.T;
        }
        static normalizeZ(points) {
            return (0, curve_ts_1.normalizeZ)(Point, points);
        }
        static msm(points, scalars) {
            return (0, curve_ts_1.pippenger)(Point, Fn, points, scalars);
        }
        _setWindowSize(windowSize) {
            this.precompute(windowSize);
        }
        toRawBytes() {
            return this.toBytes();
        }
    }
    // base / generator point
    Point.BASE = new Point(CURVE.Gx, CURVE.Gy, _1n, modP(CURVE.Gx * CURVE.Gy));
    // zero / infinity / identity point
    Point.ZERO = new Point(_0n, _1n, _1n, _0n); // 0, 1, 1, 0
    // math field
    Point.Fp = Fp;
    // scalar field
    Point.Fn = Fn;
    const wnaf = new curve_ts_1.wNAF(Point, Fn.BITS);
    Point.BASE.precompute(8); // Enable precomputes. Slows down first publicKey computation by 20ms.
    return Point;
}
/**
 * Base class for prime-order points like Ristretto255 and Decaf448.
 * These points eliminate cofactor issues by representing equivalence classes
 * of Edwards curve points.
 */
class PrimeEdwardsPoint {
    constructor(ep) {
        this.ep = ep;
    }
    // Static methods that must be implemented by subclasses
    static fromBytes(_bytes) {
        (0, utils_ts_1.notImplemented)();
    }
    static fromHex(_hex) {
        (0, utils_ts_1.notImplemented)();
    }
    get x() {
        return this.toAffine().x;
    }
    get y() {
        return this.toAffine().y;
    }
    // Common implementations
    clearCofactor() {
        // no-op for prime-order groups
        return this;
    }
    assertValidity() {
        this.ep.assertValidity();
    }
    toAffine(invertedZ) {
        return this.ep.toAffine(invertedZ);
    }
    toHex() {
        return (0, utils_ts_1.bytesToHex)(this.toBytes());
    }
    toString() {
        return this.toHex();
    }
    isTorsionFree() {
        return true;
    }
    isSmallOrder() {
        return false;
    }
    add(other) {
        this.assertSame(other);
        return this.init(this.ep.add(other.ep));
    }
    subtract(other) {
        this.assertSame(other);
        return this.init(this.ep.subtract(other.ep));
    }
    multiply(scalar) {
        return this.init(this.ep.multiply(scalar));
    }
    multiplyUnsafe(scalar) {
        return this.init(this.ep.multiplyUnsafe(scalar));
    }
    double() {
        return this.init(this.ep.double());
    }
    negate() {
        return this.init(this.ep.negate());
    }
    precompute(windowSize, isLazy) {
        return this.init(this.ep.precompute(windowSize, isLazy));
    }
    /** @deprecated use `toBytes` */
    toRawBytes() {
        return this.toBytes();
    }
}
exports.PrimeEdwardsPoint = PrimeEdwardsPoint;
/**
 * Initializes EdDSA signatures over given Edwards curve.
 */
function eddsa(Point, cHash, eddsaOpts = {}) {
    if (typeof cHash !== 'function')
        throw new Error('"hash" function param is required');
    (0, utils_ts_1._validateObject)(eddsaOpts, {}, {
        adjustScalarBytes: 'function',
        randomBytes: 'function',
        domain: 'function',
        prehash: 'function',
        mapToCurve: 'function',
    });
    const { prehash } = eddsaOpts;
    const { BASE, Fp, Fn } = Point;
    const randomBytes = eddsaOpts.randomBytes || utils_ts_1.randomBytes;
    const adjustScalarBytes = eddsaOpts.adjustScalarBytes || ((bytes) => bytes);
    const domain = eddsaOpts.domain ||
        ((data, ctx, phflag) => {
            (0, utils_ts_1._abool2)(phflag, 'phflag');
            if (ctx.length || phflag)
                throw new Error('Contexts/pre-hash are not supported');
            return data;
        }); // NOOP
    // Little-endian SHA512 with modulo n
    function modN_LE(hash) {
        return Fn.create((0, utils_ts_1.bytesToNumberLE)(hash)); // Not Fn.fromBytes: it has length limit
    }
    // Get the hashed private scalar per RFC8032 5.1.5
    function getPrivateScalar(key) {
        const len = lengths.secretKey;
        key = (0, utils_ts_1.ensureBytes)('private key', key, len);
        // Hash private key with curve's hash function to produce uniformingly random input
        // Check byte lengths: ensure(64, h(ensure(32, key)))
        const hashed = (0, utils_ts_1.ensureBytes)('hashed private key', cHash(key), 2 * len);
        const head = adjustScalarBytes(hashed.slice(0, len)); // clear first half bits, produce FE
        const prefix = hashed.slice(len, 2 * len); // second half is called key prefix (5.1.6)
        const scalar = modN_LE(head); // The actual private scalar
        return { head, prefix, scalar };
    }
    /** Convenience method that creates public key from scalar. RFC8032 5.1.5 */
    function getExtendedPublicKey(secretKey) {
        const { head, prefix, scalar } = getPrivateScalar(secretKey);
        const point = BASE.multiply(scalar); // Point on Edwards curve aka public key
        const pointBytes = point.toBytes();
        return { head, prefix, scalar, point, pointBytes };
    }
    /** Calculates EdDSA pub key. RFC8032 5.1.5. */
    function getPublicKey(secretKey) {
        return getExtendedPublicKey(secretKey).pointBytes;
    }
    // int('LE', SHA512(dom2(F, C) || msgs)) mod N
    function hashDomainToScalar(context = Uint8Array.of(), ...msgs) {
        const msg = (0, utils_ts_1.concatBytes)(...msgs);
        return modN_LE(cHash(domain(msg, (0, utils_ts_1.ensureBytes)('context', context), !!prehash)));
    }
    /** Signs message with privateKey. RFC8032 5.1.6 */
    function sign(msg, secretKey, options = {}) {
        msg = (0, utils_ts_1.ensureBytes)('message', msg);
        if (prehash)
            msg = prehash(msg); // for ed25519ph etc.
        const { prefix, scalar, pointBytes } = getExtendedPublicKey(secretKey);
        const r = hashDomainToScalar(options.context, prefix, msg); // r = dom2(F, C) || prefix || PH(M)
        const R = BASE.multiply(r).toBytes(); // R = rG
        const k = hashDomainToScalar(options.context, R, pointBytes, msg); // R || A || PH(M)
        const s = Fn.create(r + k * scalar); // S = (r + k * s) mod L
        if (!Fn.isValid(s))
            throw new Error('sign failed: invalid s'); // 0 <= s < L
        const rs = (0, utils_ts_1.concatBytes)(R, Fn.toBytes(s));
        return (0, utils_ts_1._abytes2)(rs, lengths.signature, 'result');
    }
    // verification rule is either zip215 or rfc8032 / nist186-5. Consult fromHex:
    const verifyOpts = { zip215: true };
    /**
     * Verifies EdDSA signature against message and public key. RFC8032 5.1.7.
     * An extended group equation is checked.
     */
    function verify(sig, msg, publicKey, options = verifyOpts) {
        const { context, zip215 } = options;
        const len = lengths.signature;
        sig = (0, utils_ts_1.ensureBytes)('signature', sig, len);
        msg = (0, utils_ts_1.ensureBytes)('message', msg);
        publicKey = (0, utils_ts_1.ensureBytes)('publicKey', publicKey, lengths.publicKey);
        if (zip215 !== undefined)
            (0, utils_ts_1._abool2)(zip215, 'zip215');
        if (prehash)
            msg = prehash(msg); // for ed25519ph, etc
        const mid = len / 2;
        const r = sig.subarray(0, mid);
        const s = (0, utils_ts_1.bytesToNumberLE)(sig.subarray(mid, len));
        let A, R, SB;
        try {
            // zip215=true is good for consensus-critical apps. =false follows RFC8032 / NIST186-5.
            // zip215=true:  0 <= y < MASK (2^256 for ed25519)
            // zip215=false: 0 <= y < P (2^255-19 for ed25519)
            A = Point.fromBytes(publicKey, zip215);
            R = Point.fromBytes(r, zip215);
            SB = BASE.multiplyUnsafe(s); // 0 <= s < l is done inside
        }
        catch (error) {
            return false;
        }
        if (!zip215 && A.isSmallOrder())
            return false; // zip215 allows public keys of small order
        const k = hashDomainToScalar(context, R.toBytes(), A.toBytes(), msg);
        const RkA = R.add(A.multiplyUnsafe(k));
        // Extended group equation
        // [8][S]B = [8]R + [8][k]A'
        return RkA.subtract(SB).clearCofactor().is0();
    }
    const _size = Fp.BYTES; // 32 for ed25519, 57 for ed448
    const lengths = {
        secretKey: _size,
        publicKey: _size,
        signature: 2 * _size,
        seed: _size,
    };
    function randomSecretKey(seed = randomBytes(lengths.seed)) {
        return (0, utils_ts_1._abytes2)(seed, lengths.seed, 'seed');
    }
    function keygen(seed) {
        const secretKey = utils.randomSecretKey(seed);
        return { secretKey, publicKey: getPublicKey(secretKey) };
    }
    function isValidSecretKey(key) {
        return (0, utils_ts_1.isBytes)(key) && key.length === Fn.BYTES;
    }
    function isValidPublicKey(key, zip215) {
        try {
            return !!Point.fromBytes(key, zip215);
        }
        catch (error) {
            return false;
        }
    }
    const utils = {
        getExtendedPublicKey,
        randomSecretKey,
        isValidSecretKey,
        isValidPublicKey,
        /**
         * Converts ed public key to x public key. Uses formula:
         * - ed25519:
         *   - `(u, v) = ((1+y)/(1-y), sqrt(-486664)*u/x)`
         *   - `(x, y) = (sqrt(-486664)*u/v, (u-1)/(u+1))`
         * - ed448:
         *   - `(u, v) = ((y-1)/(y+1), sqrt(156324)*u/x)`
         *   - `(x, y) = (sqrt(156324)*u/v, (1+u)/(1-u))`
         */
        toMontgomery(publicKey) {
            const { y } = Point.fromBytes(publicKey);
            const size = lengths.publicKey;
            const is25519 = size === 32;
            if (!is25519 && size !== 57)
                throw new Error('only defined for 25519 and 448');
            const u = is25519 ? Fp.div(_1n + y, _1n - y) : Fp.div(y - _1n, y + _1n);
            return Fp.toBytes(u);
        },
        toMontgomerySecret(secretKey) {
            const size = lengths.secretKey;
            (0, utils_ts_1._abytes2)(secretKey, size);
            const hashed = cHash(secretKey.subarray(0, size));
            return adjustScalarBytes(hashed).subarray(0, size);
        },
        /** @deprecated */
        randomPrivateKey: randomSecretKey,
        /** @deprecated */
        precompute(windowSize = 8, point = Point.BASE) {
            return point.precompute(windowSize, false);
        },
    };
    return Object.freeze({
        keygen,
        getPublicKey,
        sign,
        verify,
        utils,
        Point,
        lengths,
    });
}
function _eddsa_legacy_opts_to_new(c) {
    const CURVE = {
        a: c.a,
        d: c.d,
        p: c.Fp.ORDER,
        n: c.n,
        h: c.h,
        Gx: c.Gx,
        Gy: c.Gy,
    };
    const Fp = c.Fp;
    const Fn = (0, modular_ts_1.Field)(CURVE.n, c.nBitLength, true);
    const curveOpts = { Fp, Fn, uvRatio: c.uvRatio };
    const eddsaOpts = {
        randomBytes: c.randomBytes,
        adjustScalarBytes: c.adjustScalarBytes,
        domain: c.domain,
        prehash: c.prehash,
        mapToCurve: c.mapToCurve,
    };
    return { CURVE, curveOpts, hash: c.hash, eddsaOpts };
}
function _eddsa_new_output_to_legacy(c, eddsa) {
    const Point = eddsa.Point;
    const legacy = Object.assign({}, eddsa, {
        ExtendedPoint: Point,
        CURVE: c,
        nBitLength: Point.Fn.BITS,
        nByteLength: Point.Fn.BYTES,
    });
    return legacy;
}
// TODO: remove. Use eddsa
function twistedEdwards(c) {
    const { CURVE, curveOpts, hash, eddsaOpts } = _eddsa_legacy_opts_to_new(c);
    const Point = edwards(CURVE, curveOpts);
    const EDDSA = eddsa(Point, hash, eddsaOpts);
    return _eddsa_new_output_to_legacy(c, EDDSA);
}
//# sourceMappingURL=edwards.js.map

Выполнить команду


Для локальной разработки. Не используйте в интернете!