PHP WebShell

Текущая директория: /usr/lib/node_modules/bitgo/node_modules/@noble/curves/abstract

Просмотр файла: weierstrass.js

"use strict";
Object.defineProperty(exports, "__esModule", { value: true });
exports.DER = exports.DERErr = void 0;
exports._splitEndoScalar = _splitEndoScalar;
exports._normFnElement = _normFnElement;
exports.weierstrassN = weierstrassN;
exports.SWUFpSqrtRatio = SWUFpSqrtRatio;
exports.mapToCurveSimpleSWU = mapToCurveSimpleSWU;
exports.ecdh = ecdh;
exports.ecdsa = ecdsa;
exports.weierstrassPoints = weierstrassPoints;
exports._legacyHelperEquat = _legacyHelperEquat;
exports.weierstrass = weierstrass;
/**
 * Short Weierstrass curve methods. The formula is: y² = x³ + ax + b.
 *
 * ### Design rationale for types
 *
 * * Interaction between classes from different curves should fail:
 *   `k256.Point.BASE.add(p256.Point.BASE)`
 * * For this purpose we want to use `instanceof` operator, which is fast and works during runtime
 * * Different calls of `curve()` would return different classes -
 *   `curve(params) !== curve(params)`: if somebody decided to monkey-patch their curve,
 *   it won't affect others
 *
 * TypeScript can't infer types for classes created inside a function. Classes is one instance
 * of nominative types in TypeScript and interfaces only check for shape, so it's hard to create
 * unique type for every function call.
 *
 * We can use generic types via some param, like curve opts, but that would:
 *     1. Enable interaction between `curve(params)` and `curve(params)` (curves of same params)
 *     which is hard to debug.
 *     2. Params can be generic and we can't enforce them to be constant value:
 *     if somebody creates curve from non-constant params,
 *     it would be allowed to interact with other curves with non-constant params
 *
 * @todo https://www.typescriptlang.org/docs/handbook/release-notes/typescript-2-7.html#unique-symbol
 * @module
 */
/*! noble-curves - MIT License (c) 2022 Paul Miller (paulmillr.com) */
const hmac_js_1 = require("@noble/hashes/hmac.js");
const utils_1 = require("@noble/hashes/utils");
const utils_ts_1 = require("../utils.js");
const curve_ts_1 = require("./curve.js");
const modular_ts_1 = require("./modular.js");
// We construct basis in such way that den is always positive and equals n, but num sign depends on basis (not on secret value)
const divNearest = (num, den) => (num + (num >= 0 ? den : -den) / _2n) / den;
/**
 * Splits scalar for GLV endomorphism.
 */
function _splitEndoScalar(k, basis, n) {
    // Split scalar into two such that part is ~half bits: `abs(part) < sqrt(N)`
    // Since part can be negative, we need to do this on point.
    // TODO: verifyScalar function which consumes lambda
    const [[a1, b1], [a2, b2]] = basis;
    const c1 = divNearest(b2 * k, n);
    const c2 = divNearest(-b1 * k, n);
    // |k1|/|k2| is < sqrt(N), but can be negative.
    // If we do `k1 mod N`, we'll get big scalar (`> sqrt(N)`): so, we do cheaper negation instead.
    let k1 = k - c1 * a1 - c2 * a2;
    let k2 = -c1 * b1 - c2 * b2;
    const k1neg = k1 < _0n;
    const k2neg = k2 < _0n;
    if (k1neg)
        k1 = -k1;
    if (k2neg)
        k2 = -k2;
    // Double check that resulting scalar less than half bits of N: otherwise wNAF will fail.
    // This should only happen on wrong basises. Also, math inside is too complex and I don't trust it.
    const MAX_NUM = (0, utils_ts_1.bitMask)(Math.ceil((0, utils_ts_1.bitLen)(n) / 2)) + _1n; // Half bits of N
    if (k1 < _0n || k1 >= MAX_NUM || k2 < _0n || k2 >= MAX_NUM) {
        throw new Error('splitScalar (endomorphism): failed, k=' + k);
    }
    return { k1neg, k1, k2neg, k2 };
}
function validateSigFormat(format) {
    if (!['compact', 'recovered', 'der'].includes(format))
        throw new Error('Signature format must be "compact", "recovered", or "der"');
    return format;
}
function validateSigOpts(opts, def) {
    const optsn = {};
    for (let optName of Object.keys(def)) {
        // @ts-ignore
        optsn[optName] = opts[optName] === undefined ? def[optName] : opts[optName];
    }
    (0, utils_ts_1._abool2)(optsn.lowS, 'lowS');
    (0, utils_ts_1._abool2)(optsn.prehash, 'prehash');
    if (optsn.format !== undefined)
        validateSigFormat(optsn.format);
    return optsn;
}
class DERErr extends Error {
    constructor(m = '') {
        super(m);
    }
}
exports.DERErr = DERErr;
/**
 * ASN.1 DER encoding utilities. ASN is very complex & fragile. Format:
 *
 *     [0x30 (SEQUENCE), bytelength, 0x02 (INTEGER), intLength, R, 0x02 (INTEGER), intLength, S]
 *
 * Docs: https://letsencrypt.org/docs/a-warm-welcome-to-asn1-and-der/, https://luca.ntop.org/Teaching/Appunti/asn1.html
 */
exports.DER = {
    // asn.1 DER encoding utils
    Err: DERErr,
    // Basic building block is TLV (Tag-Length-Value)
    _tlv: {
        encode: (tag, data) => {
            const { Err: E } = exports.DER;
            if (tag < 0 || tag > 256)
                throw new E('tlv.encode: wrong tag');
            if (data.length & 1)
                throw new E('tlv.encode: unpadded data');
            const dataLen = data.length / 2;
            const len = (0, utils_ts_1.numberToHexUnpadded)(dataLen);
            if ((len.length / 2) & 128)
                throw new E('tlv.encode: long form length too big');
            // length of length with long form flag
            const lenLen = dataLen > 127 ? (0, utils_ts_1.numberToHexUnpadded)((len.length / 2) | 128) : '';
            const t = (0, utils_ts_1.numberToHexUnpadded)(tag);
            return t + lenLen + len + data;
        },
        // v - value, l - left bytes (unparsed)
        decode(tag, data) {
            const { Err: E } = exports.DER;
            let pos = 0;
            if (tag < 0 || tag > 256)
                throw new E('tlv.encode: wrong tag');
            if (data.length < 2 || data[pos++] !== tag)
                throw new E('tlv.decode: wrong tlv');
            const first = data[pos++];
            const isLong = !!(first & 128); // First bit of first length byte is flag for short/long form
            let length = 0;
            if (!isLong)
                length = first;
            else {
                // Long form: [longFlag(1bit), lengthLength(7bit), length (BE)]
                const lenLen = first & 127;
                if (!lenLen)
                    throw new E('tlv.decode(long): indefinite length not supported');
                if (lenLen > 4)
                    throw new E('tlv.decode(long): byte length is too big'); // this will overflow u32 in js
                const lengthBytes = data.subarray(pos, pos + lenLen);
                if (lengthBytes.length !== lenLen)
                    throw new E('tlv.decode: length bytes not complete');
                if (lengthBytes[0] === 0)
                    throw new E('tlv.decode(long): zero leftmost byte');
                for (const b of lengthBytes)
                    length = (length << 8) | b;
                pos += lenLen;
                if (length < 128)
                    throw new E('tlv.decode(long): not minimal encoding');
            }
            const v = data.subarray(pos, pos + length);
            if (v.length !== length)
                throw new E('tlv.decode: wrong value length');
            return { v, l: data.subarray(pos + length) };
        },
    },
    // https://crypto.stackexchange.com/a/57734 Leftmost bit of first byte is 'negative' flag,
    // since we always use positive integers here. It must always be empty:
    // - add zero byte if exists
    // - if next byte doesn't have a flag, leading zero is not allowed (minimal encoding)
    _int: {
        encode(num) {
            const { Err: E } = exports.DER;
            if (num < _0n)
                throw new E('integer: negative integers are not allowed');
            let hex = (0, utils_ts_1.numberToHexUnpadded)(num);
            // Pad with zero byte if negative flag is present
            if (Number.parseInt(hex[0], 16) & 0b1000)
                hex = '00' + hex;
            if (hex.length & 1)
                throw new E('unexpected DER parsing assertion: unpadded hex');
            return hex;
        },
        decode(data) {
            const { Err: E } = exports.DER;
            if (data[0] & 128)
                throw new E('invalid signature integer: negative');
            if (data[0] === 0x00 && !(data[1] & 128))
                throw new E('invalid signature integer: unnecessary leading zero');
            return (0, utils_ts_1.bytesToNumberBE)(data);
        },
    },
    toSig(hex) {
        // parse DER signature
        const { Err: E, _int: int, _tlv: tlv } = exports.DER;
        const data = (0, utils_ts_1.ensureBytes)('signature', hex);
        const { v: seqBytes, l: seqLeftBytes } = tlv.decode(0x30, data);
        if (seqLeftBytes.length)
            throw new E('invalid signature: left bytes after parsing');
        const { v: rBytes, l: rLeftBytes } = tlv.decode(0x02, seqBytes);
        const { v: sBytes, l: sLeftBytes } = tlv.decode(0x02, rLeftBytes);
        if (sLeftBytes.length)
            throw new E('invalid signature: left bytes after parsing');
        return { r: int.decode(rBytes), s: int.decode(sBytes) };
    },
    hexFromSig(sig) {
        const { _tlv: tlv, _int: int } = exports.DER;
        const rs = tlv.encode(0x02, int.encode(sig.r));
        const ss = tlv.encode(0x02, int.encode(sig.s));
        const seq = rs + ss;
        return tlv.encode(0x30, seq);
    },
};
// Be friendly to bad ECMAScript parsers by not using bigint literals
// prettier-ignore
const _0n = BigInt(0), _1n = BigInt(1), _2n = BigInt(2), _3n = BigInt(3), _4n = BigInt(4);
function _normFnElement(Fn, key) {
    const { BYTES: expected } = Fn;
    let num;
    if (typeof key === 'bigint') {
        num = key;
    }
    else {
        let bytes = (0, utils_ts_1.ensureBytes)('private key', key);
        try {
            num = Fn.fromBytes(bytes);
        }
        catch (error) {
            throw new Error(`invalid private key: expected ui8a of size ${expected}, got ${typeof key}`);
        }
    }
    if (!Fn.isValidNot0(num))
        throw new Error('invalid private key: out of range [1..N-1]');
    return num;
}
/**
 * Creates weierstrass Point constructor, based on specified curve options.
 *
 * @example
```js
const opts = {
  p: BigInt('0xffffffff00000001000000000000000000000000ffffffffffffffffffffffff'),
  n: BigInt('0xffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2fc632551'),
  h: BigInt(1),
  a: BigInt('0xffffffff00000001000000000000000000000000fffffffffffffffffffffffc'),
  b: BigInt('0x5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b'),
  Gx: BigInt('0x6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296'),
  Gy: BigInt('0x4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5'),
};
const p256_Point = weierstrass(opts);
```
 */
function weierstrassN(params, extraOpts = {}) {
    const validated = (0, curve_ts_1._createCurveFields)('weierstrass', params, extraOpts);
    const { Fp, Fn } = validated;
    let CURVE = validated.CURVE;
    const { h: cofactor, n: CURVE_ORDER } = CURVE;
    (0, utils_ts_1._validateObject)(extraOpts, {}, {
        allowInfinityPoint: 'boolean',
        clearCofactor: 'function',
        isTorsionFree: 'function',
        fromBytes: 'function',
        toBytes: 'function',
        endo: 'object',
        wrapPrivateKey: 'boolean',
    });
    const { endo } = extraOpts;
    if (endo) {
        // validateObject(endo, { beta: 'bigint', splitScalar: 'function' });
        if (!Fp.is0(CURVE.a) || typeof endo.beta !== 'bigint' || !Array.isArray(endo.basises)) {
            throw new Error('invalid endo: expected "beta": bigint and "basises": array');
        }
    }
    const lengths = getWLengths(Fp, Fn);
    function assertCompressionIsSupported() {
        if (!Fp.isOdd)
            throw new Error('compression is not supported: Field does not have .isOdd()');
    }
    // Implements IEEE P1363 point encoding
    function pointToBytes(_c, point, isCompressed) {
        const { x, y } = point.toAffine();
        const bx = Fp.toBytes(x);
        (0, utils_ts_1._abool2)(isCompressed, 'isCompressed');
        if (isCompressed) {
            assertCompressionIsSupported();
            const hasEvenY = !Fp.isOdd(y);
            return (0, utils_ts_1.concatBytes)(pprefix(hasEvenY), bx);
        }
        else {
            return (0, utils_ts_1.concatBytes)(Uint8Array.of(0x04), bx, Fp.toBytes(y));
        }
    }
    function pointFromBytes(bytes) {
        (0, utils_ts_1._abytes2)(bytes, undefined, 'Point');
        const { publicKey: comp, publicKeyUncompressed: uncomp } = lengths; // e.g. for 32-byte: 33, 65
        const length = bytes.length;
        const head = bytes[0];
        const tail = bytes.subarray(1);
        // No actual validation is done here: use .assertValidity()
        if (length === comp && (head === 0x02 || head === 0x03)) {
            const x = Fp.fromBytes(tail);
            if (!Fp.isValid(x))
                throw new Error('bad point: is not on curve, wrong x');
            const y2 = weierstrassEquation(x); // y² = x³ + ax + b
            let y;
            try {
                y = Fp.sqrt(y2); // y = y² ^ (p+1)/4
            }
            catch (sqrtError) {
                const err = sqrtError instanceof Error ? ': ' + sqrtError.message : '';
                throw new Error('bad point: is not on curve, sqrt error' + err);
            }
            assertCompressionIsSupported();
            const isYOdd = Fp.isOdd(y); // (y & _1n) === _1n;
            const isHeadOdd = (head & 1) === 1; // ECDSA-specific
            if (isHeadOdd !== isYOdd)
                y = Fp.neg(y);
            return { x, y };
        }
        else if (length === uncomp && head === 0x04) {
            // TODO: more checks
            const L = Fp.BYTES;
            const x = Fp.fromBytes(tail.subarray(0, L));
            const y = Fp.fromBytes(tail.subarray(L, L * 2));
            if (!isValidXY(x, y))
                throw new Error('bad point: is not on curve');
            return { x, y };
        }
        else {
            throw new Error(`bad point: got length ${length}, expected compressed=${comp} or uncompressed=${uncomp}`);
        }
    }
    const encodePoint = extraOpts.toBytes || pointToBytes;
    const decodePoint = extraOpts.fromBytes || pointFromBytes;
    function weierstrassEquation(x) {
        const x2 = Fp.sqr(x); // x * x
        const x3 = Fp.mul(x2, x); // x² * x
        return Fp.add(Fp.add(x3, Fp.mul(x, CURVE.a)), CURVE.b); // x³ + a * x + b
    }
    // TODO: move top-level
    /** Checks whether equation holds for given x, y: y² == x³ + ax + b */
    function isValidXY(x, y) {
        const left = Fp.sqr(y); // y²
        const right = weierstrassEquation(x); // x³ + ax + b
        return Fp.eql(left, right);
    }
    // Validate whether the passed curve params are valid.
    // Test 1: equation y² = x³ + ax + b should work for generator point.
    if (!isValidXY(CURVE.Gx, CURVE.Gy))
        throw new Error('bad curve params: generator point');
    // Test 2: discriminant Δ part should be non-zero: 4a³ + 27b² != 0.
    // Guarantees curve is genus-1, smooth (non-singular).
    const _4a3 = Fp.mul(Fp.pow(CURVE.a, _3n), _4n);
    const _27b2 = Fp.mul(Fp.sqr(CURVE.b), BigInt(27));
    if (Fp.is0(Fp.add(_4a3, _27b2)))
        throw new Error('bad curve params: a or b');
    /** Asserts coordinate is valid: 0 <= n < Fp.ORDER. */
    function acoord(title, n, banZero = false) {
        if (!Fp.isValid(n) || (banZero && Fp.is0(n)))
            throw new Error(`bad point coordinate ${title}`);
        return n;
    }
    function aprjpoint(other) {
        if (!(other instanceof Point))
            throw new Error('ProjectivePoint expected');
    }
    function splitEndoScalarN(k) {
        if (!endo || !endo.basises)
            throw new Error('no endo');
        return _splitEndoScalar(k, endo.basises, Fn.ORDER);
    }
    // Memoized toAffine / validity check. They are heavy. Points are immutable.
    // Converts Projective point to affine (x, y) coordinates.
    // Can accept precomputed Z^-1 - for example, from invertBatch.
    // (X, Y, Z) ∋ (x=X/Z, y=Y/Z)
    const toAffineMemo = (0, utils_ts_1.memoized)((p, iz) => {
        const { X, Y, Z } = p;
        // Fast-path for normalized points
        if (Fp.eql(Z, Fp.ONE))
            return { x: X, y: Y };
        const is0 = p.is0();
        // If invZ was 0, we return zero point. However we still want to execute
        // all operations, so we replace invZ with a random number, 1.
        if (iz == null)
            iz = is0 ? Fp.ONE : Fp.inv(Z);
        const x = Fp.mul(X, iz);
        const y = Fp.mul(Y, iz);
        const zz = Fp.mul(Z, iz);
        if (is0)
            return { x: Fp.ZERO, y: Fp.ZERO };
        if (!Fp.eql(zz, Fp.ONE))
            throw new Error('invZ was invalid');
        return { x, y };
    });
    // NOTE: on exception this will crash 'cached' and no value will be set.
    // Otherwise true will be return
    const assertValidMemo = (0, utils_ts_1.memoized)((p) => {
        if (p.is0()) {
            // (0, 1, 0) aka ZERO is invalid in most contexts.
            // In BLS, ZERO can be serialized, so we allow it.
            // (0, 0, 0) is invalid representation of ZERO.
            if (extraOpts.allowInfinityPoint && !Fp.is0(p.Y))
                return;
            throw new Error('bad point: ZERO');
        }
        // Some 3rd-party test vectors require different wording between here & `fromCompressedHex`
        const { x, y } = p.toAffine();
        if (!Fp.isValid(x) || !Fp.isValid(y))
            throw new Error('bad point: x or y not field elements');
        if (!isValidXY(x, y))
            throw new Error('bad point: equation left != right');
        if (!p.isTorsionFree())
            throw new Error('bad point: not in prime-order subgroup');
        return true;
    });
    function finishEndo(endoBeta, k1p, k2p, k1neg, k2neg) {
        k2p = new Point(Fp.mul(k2p.X, endoBeta), k2p.Y, k2p.Z);
        k1p = (0, curve_ts_1.negateCt)(k1neg, k1p);
        k2p = (0, curve_ts_1.negateCt)(k2neg, k2p);
        return k1p.add(k2p);
    }
    /**
     * Projective Point works in 3d / projective (homogeneous) coordinates:(X, Y, Z) ∋ (x=X/Z, y=Y/Z).
     * Default Point works in 2d / affine coordinates: (x, y).
     * We're doing calculations in projective, because its operations don't require costly inversion.
     */
    class Point {
        /** Does NOT validate if the point is valid. Use `.assertValidity()`. */
        constructor(X, Y, Z) {
            this.X = acoord('x', X);
            this.Y = acoord('y', Y, true);
            this.Z = acoord('z', Z);
            Object.freeze(this);
        }
        static CURVE() {
            return CURVE;
        }
        /** Does NOT validate if the point is valid. Use `.assertValidity()`. */
        static fromAffine(p) {
            const { x, y } = p || {};
            if (!p || !Fp.isValid(x) || !Fp.isValid(y))
                throw new Error('invalid affine point');
            if (p instanceof Point)
                throw new Error('projective point not allowed');
            // (0, 0) would've produced (0, 0, 1) - instead, we need (0, 1, 0)
            if (Fp.is0(x) && Fp.is0(y))
                return Point.ZERO;
            return new Point(x, y, Fp.ONE);
        }
        static fromBytes(bytes) {
            const P = Point.fromAffine(decodePoint((0, utils_ts_1._abytes2)(bytes, undefined, 'point')));
            P.assertValidity();
            return P;
        }
        static fromHex(hex) {
            return Point.fromBytes((0, utils_ts_1.ensureBytes)('pointHex', hex));
        }
        get x() {
            return this.toAffine().x;
        }
        get y() {
            return this.toAffine().y;
        }
        /**
         *
         * @param windowSize
         * @param isLazy true will defer table computation until the first multiplication
         * @returns
         */
        precompute(windowSize = 8, isLazy = true) {
            wnaf.createCache(this, windowSize);
            if (!isLazy)
                this.multiply(_3n); // random number
            return this;
        }
        // TODO: return `this`
        /** A point on curve is valid if it conforms to equation. */
        assertValidity() {
            assertValidMemo(this);
        }
        hasEvenY() {
            const { y } = this.toAffine();
            if (!Fp.isOdd)
                throw new Error("Field doesn't support isOdd");
            return !Fp.isOdd(y);
        }
        /** Compare one point to another. */
        equals(other) {
            aprjpoint(other);
            const { X: X1, Y: Y1, Z: Z1 } = this;
            const { X: X2, Y: Y2, Z: Z2 } = other;
            const U1 = Fp.eql(Fp.mul(X1, Z2), Fp.mul(X2, Z1));
            const U2 = Fp.eql(Fp.mul(Y1, Z2), Fp.mul(Y2, Z1));
            return U1 && U2;
        }
        /** Flips point to one corresponding to (x, -y) in Affine coordinates. */
        negate() {
            return new Point(this.X, Fp.neg(this.Y), this.Z);
        }
        // Renes-Costello-Batina exception-free doubling formula.
        // There is 30% faster Jacobian formula, but it is not complete.
        // https://eprint.iacr.org/2015/1060, algorithm 3
        // Cost: 8M + 3S + 3*a + 2*b3 + 15add.
        double() {
            const { a, b } = CURVE;
            const b3 = Fp.mul(b, _3n);
            const { X: X1, Y: Y1, Z: Z1 } = this;
            let X3 = Fp.ZERO, Y3 = Fp.ZERO, Z3 = Fp.ZERO; // prettier-ignore
            let t0 = Fp.mul(X1, X1); // step 1
            let t1 = Fp.mul(Y1, Y1);
            let t2 = Fp.mul(Z1, Z1);
            let t3 = Fp.mul(X1, Y1);
            t3 = Fp.add(t3, t3); // step 5
            Z3 = Fp.mul(X1, Z1);
            Z3 = Fp.add(Z3, Z3);
            X3 = Fp.mul(a, Z3);
            Y3 = Fp.mul(b3, t2);
            Y3 = Fp.add(X3, Y3); // step 10
            X3 = Fp.sub(t1, Y3);
            Y3 = Fp.add(t1, Y3);
            Y3 = Fp.mul(X3, Y3);
            X3 = Fp.mul(t3, X3);
            Z3 = Fp.mul(b3, Z3); // step 15
            t2 = Fp.mul(a, t2);
            t3 = Fp.sub(t0, t2);
            t3 = Fp.mul(a, t3);
            t3 = Fp.add(t3, Z3);
            Z3 = Fp.add(t0, t0); // step 20
            t0 = Fp.add(Z3, t0);
            t0 = Fp.add(t0, t2);
            t0 = Fp.mul(t0, t3);
            Y3 = Fp.add(Y3, t0);
            t2 = Fp.mul(Y1, Z1); // step 25
            t2 = Fp.add(t2, t2);
            t0 = Fp.mul(t2, t3);
            X3 = Fp.sub(X3, t0);
            Z3 = Fp.mul(t2, t1);
            Z3 = Fp.add(Z3, Z3); // step 30
            Z3 = Fp.add(Z3, Z3);
            return new Point(X3, Y3, Z3);
        }
        // Renes-Costello-Batina exception-free addition formula.
        // There is 30% faster Jacobian formula, but it is not complete.
        // https://eprint.iacr.org/2015/1060, algorithm 1
        // Cost: 12M + 0S + 3*a + 3*b3 + 23add.
        add(other) {
            aprjpoint(other);
            const { X: X1, Y: Y1, Z: Z1 } = this;
            const { X: X2, Y: Y2, Z: Z2 } = other;
            let X3 = Fp.ZERO, Y3 = Fp.ZERO, Z3 = Fp.ZERO; // prettier-ignore
            const a = CURVE.a;
            const b3 = Fp.mul(CURVE.b, _3n);
            let t0 = Fp.mul(X1, X2); // step 1
            let t1 = Fp.mul(Y1, Y2);
            let t2 = Fp.mul(Z1, Z2);
            let t3 = Fp.add(X1, Y1);
            let t4 = Fp.add(X2, Y2); // step 5
            t3 = Fp.mul(t3, t4);
            t4 = Fp.add(t0, t1);
            t3 = Fp.sub(t3, t4);
            t4 = Fp.add(X1, Z1);
            let t5 = Fp.add(X2, Z2); // step 10
            t4 = Fp.mul(t4, t5);
            t5 = Fp.add(t0, t2);
            t4 = Fp.sub(t4, t5);
            t5 = Fp.add(Y1, Z1);
            X3 = Fp.add(Y2, Z2); // step 15
            t5 = Fp.mul(t5, X3);
            X3 = Fp.add(t1, t2);
            t5 = Fp.sub(t5, X3);
            Z3 = Fp.mul(a, t4);
            X3 = Fp.mul(b3, t2); // step 20
            Z3 = Fp.add(X3, Z3);
            X3 = Fp.sub(t1, Z3);
            Z3 = Fp.add(t1, Z3);
            Y3 = Fp.mul(X3, Z3);
            t1 = Fp.add(t0, t0); // step 25
            t1 = Fp.add(t1, t0);
            t2 = Fp.mul(a, t2);
            t4 = Fp.mul(b3, t4);
            t1 = Fp.add(t1, t2);
            t2 = Fp.sub(t0, t2); // step 30
            t2 = Fp.mul(a, t2);
            t4 = Fp.add(t4, t2);
            t0 = Fp.mul(t1, t4);
            Y3 = Fp.add(Y3, t0);
            t0 = Fp.mul(t5, t4); // step 35
            X3 = Fp.mul(t3, X3);
            X3 = Fp.sub(X3, t0);
            t0 = Fp.mul(t3, t1);
            Z3 = Fp.mul(t5, Z3);
            Z3 = Fp.add(Z3, t0); // step 40
            return new Point(X3, Y3, Z3);
        }
        subtract(other) {
            return this.add(other.negate());
        }
        is0() {
            return this.equals(Point.ZERO);
        }
        /**
         * Constant time multiplication.
         * Uses wNAF method. Windowed method may be 10% faster,
         * but takes 2x longer to generate and consumes 2x memory.
         * Uses precomputes when available.
         * Uses endomorphism for Koblitz curves.
         * @param scalar by which the point would be multiplied
         * @returns New point
         */
        multiply(scalar) {
            const { endo } = extraOpts;
            if (!Fn.isValidNot0(scalar))
                throw new Error('invalid scalar: out of range'); // 0 is invalid
            let point, fake; // Fake point is used to const-time mult
            const mul = (n) => wnaf.cached(this, n, (p) => (0, curve_ts_1.normalizeZ)(Point, p));
            /** See docs for {@link EndomorphismOpts} */
            if (endo) {
                const { k1neg, k1, k2neg, k2 } = splitEndoScalarN(scalar);
                const { p: k1p, f: k1f } = mul(k1);
                const { p: k2p, f: k2f } = mul(k2);
                fake = k1f.add(k2f);
                point = finishEndo(endo.beta, k1p, k2p, k1neg, k2neg);
            }
            else {
                const { p, f } = mul(scalar);
                point = p;
                fake = f;
            }
            // Normalize `z` for both points, but return only real one
            return (0, curve_ts_1.normalizeZ)(Point, [point, fake])[0];
        }
        /**
         * Non-constant-time multiplication. Uses double-and-add algorithm.
         * It's faster, but should only be used when you don't care about
         * an exposed secret key e.g. sig verification, which works over *public* keys.
         */
        multiplyUnsafe(sc) {
            const { endo } = extraOpts;
            const p = this;
            if (!Fn.isValid(sc))
                throw new Error('invalid scalar: out of range'); // 0 is valid
            if (sc === _0n || p.is0())
                return Point.ZERO;
            if (sc === _1n)
                return p; // fast-path
            if (wnaf.hasCache(this))
                return this.multiply(sc);
            if (endo) {
                const { k1neg, k1, k2neg, k2 } = splitEndoScalarN(sc);
                const { p1, p2 } = (0, curve_ts_1.mulEndoUnsafe)(Point, p, k1, k2); // 30% faster vs wnaf.unsafe
                return finishEndo(endo.beta, p1, p2, k1neg, k2neg);
            }
            else {
                return wnaf.unsafe(p, sc);
            }
        }
        multiplyAndAddUnsafe(Q, a, b) {
            const sum = this.multiplyUnsafe(a).add(Q.multiplyUnsafe(b));
            return sum.is0() ? undefined : sum;
        }
        /**
         * Converts Projective point to affine (x, y) coordinates.
         * @param invertedZ Z^-1 (inverted zero) - optional, precomputation is useful for invertBatch
         */
        toAffine(invertedZ) {
            return toAffineMemo(this, invertedZ);
        }
        /**
         * Checks whether Point is free of torsion elements (is in prime subgroup).
         * Always torsion-free for cofactor=1 curves.
         */
        isTorsionFree() {
            const { isTorsionFree } = extraOpts;
            if (cofactor === _1n)
                return true;
            if (isTorsionFree)
                return isTorsionFree(Point, this);
            return wnaf.unsafe(this, CURVE_ORDER).is0();
        }
        clearCofactor() {
            const { clearCofactor } = extraOpts;
            if (cofactor === _1n)
                return this; // Fast-path
            if (clearCofactor)
                return clearCofactor(Point, this);
            return this.multiplyUnsafe(cofactor);
        }
        isSmallOrder() {
            // can we use this.clearCofactor()?
            return this.multiplyUnsafe(cofactor).is0();
        }
        toBytes(isCompressed = true) {
            (0, utils_ts_1._abool2)(isCompressed, 'isCompressed');
            this.assertValidity();
            return encodePoint(Point, this, isCompressed);
        }
        toHex(isCompressed = true) {
            return (0, utils_ts_1.bytesToHex)(this.toBytes(isCompressed));
        }
        toString() {
            return `<Point ${this.is0() ? 'ZERO' : this.toHex()}>`;
        }
        // TODO: remove
        get px() {
            return this.X;
        }
        get py() {
            return this.X;
        }
        get pz() {
            return this.Z;
        }
        toRawBytes(isCompressed = true) {
            return this.toBytes(isCompressed);
        }
        _setWindowSize(windowSize) {
            this.precompute(windowSize);
        }
        static normalizeZ(points) {
            return (0, curve_ts_1.normalizeZ)(Point, points);
        }
        static msm(points, scalars) {
            return (0, curve_ts_1.pippenger)(Point, Fn, points, scalars);
        }
        static fromPrivateKey(privateKey) {
            return Point.BASE.multiply(_normFnElement(Fn, privateKey));
        }
    }
    // base / generator point
    Point.BASE = new Point(CURVE.Gx, CURVE.Gy, Fp.ONE);
    // zero / infinity / identity point
    Point.ZERO = new Point(Fp.ZERO, Fp.ONE, Fp.ZERO); // 0, 1, 0
    // math field
    Point.Fp = Fp;
    // scalar field
    Point.Fn = Fn;
    const bits = Fn.BITS;
    const wnaf = new curve_ts_1.wNAF(Point, extraOpts.endo ? Math.ceil(bits / 2) : bits);
    Point.BASE.precompute(8); // Enable precomputes. Slows down first publicKey computation by 20ms.
    return Point;
}
// Points start with byte 0x02 when y is even; otherwise 0x03
function pprefix(hasEvenY) {
    return Uint8Array.of(hasEvenY ? 0x02 : 0x03);
}
/**
 * Implementation of the Shallue and van de Woestijne method for any weierstrass curve.
 * TODO: check if there is a way to merge this with uvRatio in Edwards; move to modular.
 * b = True and y = sqrt(u / v) if (u / v) is square in F, and
 * b = False and y = sqrt(Z * (u / v)) otherwise.
 * @param Fp
 * @param Z
 * @returns
 */
function SWUFpSqrtRatio(Fp, Z) {
    // Generic implementation
    const q = Fp.ORDER;
    let l = _0n;
    for (let o = q - _1n; o % _2n === _0n; o /= _2n)
        l += _1n;
    const c1 = l; // 1. c1, the largest integer such that 2^c1 divides q - 1.
    // We need 2n ** c1 and 2n ** (c1-1). We can't use **; but we can use <<.
    // 2n ** c1 == 2n << (c1-1)
    const _2n_pow_c1_1 = _2n << (c1 - _1n - _1n);
    const _2n_pow_c1 = _2n_pow_c1_1 * _2n;
    const c2 = (q - _1n) / _2n_pow_c1; // 2. c2 = (q - 1) / (2^c1)  # Integer arithmetic
    const c3 = (c2 - _1n) / _2n; // 3. c3 = (c2 - 1) / 2            # Integer arithmetic
    const c4 = _2n_pow_c1 - _1n; // 4. c4 = 2^c1 - 1                # Integer arithmetic
    const c5 = _2n_pow_c1_1; // 5. c5 = 2^(c1 - 1)                  # Integer arithmetic
    const c6 = Fp.pow(Z, c2); // 6. c6 = Z^c2
    const c7 = Fp.pow(Z, (c2 + _1n) / _2n); // 7. c7 = Z^((c2 + 1) / 2)
    let sqrtRatio = (u, v) => {
        let tv1 = c6; // 1. tv1 = c6
        let tv2 = Fp.pow(v, c4); // 2. tv2 = v^c4
        let tv3 = Fp.sqr(tv2); // 3. tv3 = tv2^2
        tv3 = Fp.mul(tv3, v); // 4. tv3 = tv3 * v
        let tv5 = Fp.mul(u, tv3); // 5. tv5 = u * tv3
        tv5 = Fp.pow(tv5, c3); // 6. tv5 = tv5^c3
        tv5 = Fp.mul(tv5, tv2); // 7. tv5 = tv5 * tv2
        tv2 = Fp.mul(tv5, v); // 8. tv2 = tv5 * v
        tv3 = Fp.mul(tv5, u); // 9. tv3 = tv5 * u
        let tv4 = Fp.mul(tv3, tv2); // 10. tv4 = tv3 * tv2
        tv5 = Fp.pow(tv4, c5); // 11. tv5 = tv4^c5
        let isQR = Fp.eql(tv5, Fp.ONE); // 12. isQR = tv5 == 1
        tv2 = Fp.mul(tv3, c7); // 13. tv2 = tv3 * c7
        tv5 = Fp.mul(tv4, tv1); // 14. tv5 = tv4 * tv1
        tv3 = Fp.cmov(tv2, tv3, isQR); // 15. tv3 = CMOV(tv2, tv3, isQR)
        tv4 = Fp.cmov(tv5, tv4, isQR); // 16. tv4 = CMOV(tv5, tv4, isQR)
        // 17. for i in (c1, c1 - 1, ..., 2):
        for (let i = c1; i > _1n; i--) {
            let tv5 = i - _2n; // 18.    tv5 = i - 2
            tv5 = _2n << (tv5 - _1n); // 19.    tv5 = 2^tv5
            let tvv5 = Fp.pow(tv4, tv5); // 20.    tv5 = tv4^tv5
            const e1 = Fp.eql(tvv5, Fp.ONE); // 21.    e1 = tv5 == 1
            tv2 = Fp.mul(tv3, tv1); // 22.    tv2 = tv3 * tv1
            tv1 = Fp.mul(tv1, tv1); // 23.    tv1 = tv1 * tv1
            tvv5 = Fp.mul(tv4, tv1); // 24.    tv5 = tv4 * tv1
            tv3 = Fp.cmov(tv2, tv3, e1); // 25.    tv3 = CMOV(tv2, tv3, e1)
            tv4 = Fp.cmov(tvv5, tv4, e1); // 26.    tv4 = CMOV(tv5, tv4, e1)
        }
        return { isValid: isQR, value: tv3 };
    };
    if (Fp.ORDER % _4n === _3n) {
        // sqrt_ratio_3mod4(u, v)
        const c1 = (Fp.ORDER - _3n) / _4n; // 1. c1 = (q - 3) / 4     # Integer arithmetic
        const c2 = Fp.sqrt(Fp.neg(Z)); // 2. c2 = sqrt(-Z)
        sqrtRatio = (u, v) => {
            let tv1 = Fp.sqr(v); // 1. tv1 = v^2
            const tv2 = Fp.mul(u, v); // 2. tv2 = u * v
            tv1 = Fp.mul(tv1, tv2); // 3. tv1 = tv1 * tv2
            let y1 = Fp.pow(tv1, c1); // 4. y1 = tv1^c1
            y1 = Fp.mul(y1, tv2); // 5. y1 = y1 * tv2
            const y2 = Fp.mul(y1, c2); // 6. y2 = y1 * c2
            const tv3 = Fp.mul(Fp.sqr(y1), v); // 7. tv3 = y1^2; 8. tv3 = tv3 * v
            const isQR = Fp.eql(tv3, u); // 9. isQR = tv3 == u
            let y = Fp.cmov(y2, y1, isQR); // 10. y = CMOV(y2, y1, isQR)
            return { isValid: isQR, value: y }; // 11. return (isQR, y) isQR ? y : y*c2
        };
    }
    // No curves uses that
    // if (Fp.ORDER % _8n === _5n) // sqrt_ratio_5mod8
    return sqrtRatio;
}
/**
 * Simplified Shallue-van de Woestijne-Ulas Method
 * https://www.rfc-editor.org/rfc/rfc9380#section-6.6.2
 */
function mapToCurveSimpleSWU(Fp, opts) {
    (0, modular_ts_1.validateField)(Fp);
    const { A, B, Z } = opts;
    if (!Fp.isValid(A) || !Fp.isValid(B) || !Fp.isValid(Z))
        throw new Error('mapToCurveSimpleSWU: invalid opts');
    const sqrtRatio = SWUFpSqrtRatio(Fp, Z);
    if (!Fp.isOdd)
        throw new Error('Field does not have .isOdd()');
    // Input: u, an element of F.
    // Output: (x, y), a point on E.
    return (u) => {
        // prettier-ignore
        let tv1, tv2, tv3, tv4, tv5, tv6, x, y;
        tv1 = Fp.sqr(u); // 1.  tv1 = u^2
        tv1 = Fp.mul(tv1, Z); // 2.  tv1 = Z * tv1
        tv2 = Fp.sqr(tv1); // 3.  tv2 = tv1^2
        tv2 = Fp.add(tv2, tv1); // 4.  tv2 = tv2 + tv1
        tv3 = Fp.add(tv2, Fp.ONE); // 5.  tv3 = tv2 + 1
        tv3 = Fp.mul(tv3, B); // 6.  tv3 = B * tv3
        tv4 = Fp.cmov(Z, Fp.neg(tv2), !Fp.eql(tv2, Fp.ZERO)); // 7.  tv4 = CMOV(Z, -tv2, tv2 != 0)
        tv4 = Fp.mul(tv4, A); // 8.  tv4 = A * tv4
        tv2 = Fp.sqr(tv3); // 9.  tv2 = tv3^2
        tv6 = Fp.sqr(tv4); // 10. tv6 = tv4^2
        tv5 = Fp.mul(tv6, A); // 11. tv5 = A * tv6
        tv2 = Fp.add(tv2, tv5); // 12. tv2 = tv2 + tv5
        tv2 = Fp.mul(tv2, tv3); // 13. tv2 = tv2 * tv3
        tv6 = Fp.mul(tv6, tv4); // 14. tv6 = tv6 * tv4
        tv5 = Fp.mul(tv6, B); // 15. tv5 = B * tv6
        tv2 = Fp.add(tv2, tv5); // 16. tv2 = tv2 + tv5
        x = Fp.mul(tv1, tv3); // 17.   x = tv1 * tv3
        const { isValid, value } = sqrtRatio(tv2, tv6); // 18. (is_gx1_square, y1) = sqrt_ratio(tv2, tv6)
        y = Fp.mul(tv1, u); // 19.   y = tv1 * u  -> Z * u^3 * y1
        y = Fp.mul(y, value); // 20.   y = y * y1
        x = Fp.cmov(x, tv3, isValid); // 21.   x = CMOV(x, tv3, is_gx1_square)
        y = Fp.cmov(y, value, isValid); // 22.   y = CMOV(y, y1, is_gx1_square)
        const e1 = Fp.isOdd(u) === Fp.isOdd(y); // 23.  e1 = sgn0(u) == sgn0(y)
        y = Fp.cmov(Fp.neg(y), y, e1); // 24.   y = CMOV(-y, y, e1)
        const tv4_inv = (0, modular_ts_1.FpInvertBatch)(Fp, [tv4], true)[0];
        x = Fp.mul(x, tv4_inv); // 25.   x = x / tv4
        return { x, y };
    };
}
function getWLengths(Fp, Fn) {
    return {
        secretKey: Fn.BYTES,
        publicKey: 1 + Fp.BYTES,
        publicKeyUncompressed: 1 + 2 * Fp.BYTES,
        publicKeyHasPrefix: true,
        signature: 2 * Fn.BYTES,
    };
}
/**
 * Sometimes users only need getPublicKey, getSharedSecret, and secret key handling.
 * This helper ensures no signature functionality is present. Less code, smaller bundle size.
 */
function ecdh(Point, ecdhOpts = {}) {
    const { Fn } = Point;
    const randomBytes_ = ecdhOpts.randomBytes || utils_ts_1.randomBytes;
    const lengths = Object.assign(getWLengths(Point.Fp, Fn), { seed: (0, modular_ts_1.getMinHashLength)(Fn.ORDER) });
    function isValidSecretKey(secretKey) {
        try {
            return !!_normFnElement(Fn, secretKey);
        }
        catch (error) {
            return false;
        }
    }
    function isValidPublicKey(publicKey, isCompressed) {
        const { publicKey: comp, publicKeyUncompressed } = lengths;
        try {
            const l = publicKey.length;
            if (isCompressed === true && l !== comp)
                return false;
            if (isCompressed === false && l !== publicKeyUncompressed)
                return false;
            return !!Point.fromBytes(publicKey);
        }
        catch (error) {
            return false;
        }
    }
    /**
     * Produces cryptographically secure secret key from random of size
     * (groupLen + ceil(groupLen / 2)) with modulo bias being negligible.
     */
    function randomSecretKey(seed = randomBytes_(lengths.seed)) {
        return (0, modular_ts_1.mapHashToField)((0, utils_ts_1._abytes2)(seed, lengths.seed, 'seed'), Fn.ORDER);
    }
    /**
     * Computes public key for a secret key. Checks for validity of the secret key.
     * @param isCompressed whether to return compact (default), or full key
     * @returns Public key, full when isCompressed=false; short when isCompressed=true
     */
    function getPublicKey(secretKey, isCompressed = true) {
        return Point.BASE.multiply(_normFnElement(Fn, secretKey)).toBytes(isCompressed);
    }
    function keygen(seed) {
        const secretKey = randomSecretKey(seed);
        return { secretKey, publicKey: getPublicKey(secretKey) };
    }
    /**
     * Quick and dirty check for item being public key. Does not validate hex, or being on-curve.
     */
    function isProbPub(item) {
        if (typeof item === 'bigint')
            return false;
        if (item instanceof Point)
            return true;
        const { secretKey, publicKey, publicKeyUncompressed } = lengths;
        if (Fn.allowedLengths || secretKey === publicKey)
            return undefined;
        const l = (0, utils_ts_1.ensureBytes)('key', item).length;
        return l === publicKey || l === publicKeyUncompressed;
    }
    /**
     * ECDH (Elliptic Curve Diffie Hellman).
     * Computes shared public key from secret key A and public key B.
     * Checks: 1) secret key validity 2) shared key is on-curve.
     * Does NOT hash the result.
     * @param isCompressed whether to return compact (default), or full key
     * @returns shared public key
     */
    function getSharedSecret(secretKeyA, publicKeyB, isCompressed = true) {
        if (isProbPub(secretKeyA) === true)
            throw new Error('first arg must be private key');
        if (isProbPub(publicKeyB) === false)
            throw new Error('second arg must be public key');
        const s = _normFnElement(Fn, secretKeyA);
        const b = Point.fromHex(publicKeyB); // checks for being on-curve
        return b.multiply(s).toBytes(isCompressed);
    }
    const utils = {
        isValidSecretKey,
        isValidPublicKey,
        randomSecretKey,
        // TODO: remove
        isValidPrivateKey: isValidSecretKey,
        randomPrivateKey: randomSecretKey,
        normPrivateKeyToScalar: (key) => _normFnElement(Fn, key),
        precompute(windowSize = 8, point = Point.BASE) {
            return point.precompute(windowSize, false);
        },
    };
    return Object.freeze({ getPublicKey, getSharedSecret, keygen, Point, utils, lengths });
}
/**
 * Creates ECDSA signing interface for given elliptic curve `Point` and `hash` function.
 * We need `hash` for 2 features:
 * 1. Message prehash-ing. NOT used if `sign` / `verify` are called with `prehash: false`
 * 2. k generation in `sign`, using HMAC-drbg(hash)
 *
 * ECDSAOpts are only rarely needed.
 *
 * @example
 * ```js
 * const p256_Point = weierstrass(...);
 * const p256_sha256 = ecdsa(p256_Point, sha256);
 * const p256_sha224 = ecdsa(p256_Point, sha224);
 * const p256_sha224_r = ecdsa(p256_Point, sha224, { randomBytes: (length) => { ... } });
 * ```
 */
function ecdsa(Point, hash, ecdsaOpts = {}) {
    (0, utils_1.ahash)(hash);
    (0, utils_ts_1._validateObject)(ecdsaOpts, {}, {
        hmac: 'function',
        lowS: 'boolean',
        randomBytes: 'function',
        bits2int: 'function',
        bits2int_modN: 'function',
    });
    const randomBytes = ecdsaOpts.randomBytes || utils_ts_1.randomBytes;
    const hmac = ecdsaOpts.hmac ||
        ((key, ...msgs) => (0, hmac_js_1.hmac)(hash, key, (0, utils_ts_1.concatBytes)(...msgs)));
    const { Fp, Fn } = Point;
    const { ORDER: CURVE_ORDER, BITS: fnBits } = Fn;
    const { keygen, getPublicKey, getSharedSecret, utils, lengths } = ecdh(Point, ecdsaOpts);
    const defaultSigOpts = {
        prehash: false,
        lowS: typeof ecdsaOpts.lowS === 'boolean' ? ecdsaOpts.lowS : false,
        format: undefined, //'compact' as ECDSASigFormat,
        extraEntropy: false,
    };
    const defaultSigOpts_format = 'compact';
    function isBiggerThanHalfOrder(number) {
        const HALF = CURVE_ORDER >> _1n;
        return number > HALF;
    }
    function validateRS(title, num) {
        if (!Fn.isValidNot0(num))
            throw new Error(`invalid signature ${title}: out of range 1..Point.Fn.ORDER`);
        return num;
    }
    function validateSigLength(bytes, format) {
        validateSigFormat(format);
        const size = lengths.signature;
        const sizer = format === 'compact' ? size : format === 'recovered' ? size + 1 : undefined;
        return (0, utils_ts_1._abytes2)(bytes, sizer, `${format} signature`);
    }
    /**
     * ECDSA signature with its (r, s) properties. Supports compact, recovered & DER representations.
     */
    class Signature {
        constructor(r, s, recovery) {
            this.r = validateRS('r', r); // r in [1..N-1];
            this.s = validateRS('s', s); // s in [1..N-1];
            if (recovery != null)
                this.recovery = recovery;
            Object.freeze(this);
        }
        static fromBytes(bytes, format = defaultSigOpts_format) {
            validateSigLength(bytes, format);
            let recid;
            if (format === 'der') {
                const { r, s } = exports.DER.toSig((0, utils_ts_1._abytes2)(bytes));
                return new Signature(r, s);
            }
            if (format === 'recovered') {
                recid = bytes[0];
                format = 'compact';
                bytes = bytes.subarray(1);
            }
            const L = Fn.BYTES;
            const r = bytes.subarray(0, L);
            const s = bytes.subarray(L, L * 2);
            return new Signature(Fn.fromBytes(r), Fn.fromBytes(s), recid);
        }
        static fromHex(hex, format) {
            return this.fromBytes((0, utils_ts_1.hexToBytes)(hex), format);
        }
        addRecoveryBit(recovery) {
            return new Signature(this.r, this.s, recovery);
        }
        recoverPublicKey(messageHash) {
            const FIELD_ORDER = Fp.ORDER;
            const { r, s, recovery: rec } = this;
            if (rec == null || ![0, 1, 2, 3].includes(rec))
                throw new Error('recovery id invalid');
            // ECDSA recovery is hard for cofactor > 1 curves.
            // In sign, `r = q.x mod n`, and here we recover q.x from r.
            // While recovering q.x >= n, we need to add r+n for cofactor=1 curves.
            // However, for cofactor>1, r+n may not get q.x:
            // r+n*i would need to be done instead where i is unknown.
            // To easily get i, we either need to:
            // a. increase amount of valid recid values (4, 5...); OR
            // b. prohibit non-prime-order signatures (recid > 1).
            const hasCofactor = CURVE_ORDER * _2n < FIELD_ORDER;
            if (hasCofactor && rec > 1)
                throw new Error('recovery id is ambiguous for h>1 curve');
            const radj = rec === 2 || rec === 3 ? r + CURVE_ORDER : r;
            if (!Fp.isValid(radj))
                throw new Error('recovery id 2 or 3 invalid');
            const x = Fp.toBytes(radj);
            const R = Point.fromBytes((0, utils_ts_1.concatBytes)(pprefix((rec & 1) === 0), x));
            const ir = Fn.inv(radj); // r^-1
            const h = bits2int_modN((0, utils_ts_1.ensureBytes)('msgHash', messageHash)); // Truncate hash
            const u1 = Fn.create(-h * ir); // -hr^-1
            const u2 = Fn.create(s * ir); // sr^-1
            // (sr^-1)R-(hr^-1)G = -(hr^-1)G + (sr^-1). unsafe is fine: there is no private data.
            const Q = Point.BASE.multiplyUnsafe(u1).add(R.multiplyUnsafe(u2));
            if (Q.is0())
                throw new Error('point at infinify');
            Q.assertValidity();
            return Q;
        }
        // Signatures should be low-s, to prevent malleability.
        hasHighS() {
            return isBiggerThanHalfOrder(this.s);
        }
        toBytes(format = defaultSigOpts_format) {
            validateSigFormat(format);
            if (format === 'der')
                return (0, utils_ts_1.hexToBytes)(exports.DER.hexFromSig(this));
            const r = Fn.toBytes(this.r);
            const s = Fn.toBytes(this.s);
            if (format === 'recovered') {
                if (this.recovery == null)
                    throw new Error('recovery bit must be present');
                return (0, utils_ts_1.concatBytes)(Uint8Array.of(this.recovery), r, s);
            }
            return (0, utils_ts_1.concatBytes)(r, s);
        }
        toHex(format) {
            return (0, utils_ts_1.bytesToHex)(this.toBytes(format));
        }
        // TODO: remove
        assertValidity() { }
        static fromCompact(hex) {
            return Signature.fromBytes((0, utils_ts_1.ensureBytes)('sig', hex), 'compact');
        }
        static fromDER(hex) {
            return Signature.fromBytes((0, utils_ts_1.ensureBytes)('sig', hex), 'der');
        }
        normalizeS() {
            return this.hasHighS() ? new Signature(this.r, Fn.neg(this.s), this.recovery) : this;
        }
        toDERRawBytes() {
            return this.toBytes('der');
        }
        toDERHex() {
            return (0, utils_ts_1.bytesToHex)(this.toBytes('der'));
        }
        toCompactRawBytes() {
            return this.toBytes('compact');
        }
        toCompactHex() {
            return (0, utils_ts_1.bytesToHex)(this.toBytes('compact'));
        }
    }
    // RFC6979: ensure ECDSA msg is X bytes and < N. RFC suggests optional truncating via bits2octets.
    // FIPS 186-4 4.6 suggests the leftmost min(nBitLen, outLen) bits, which matches bits2int.
    // bits2int can produce res>N, we can do mod(res, N) since the bitLen is the same.
    // int2octets can't be used; pads small msgs with 0: unacceptatble for trunc as per RFC vectors
    const bits2int = ecdsaOpts.bits2int ||
        function bits2int_def(bytes) {
            // Our custom check "just in case", for protection against DoS
            if (bytes.length > 8192)
                throw new Error('input is too large');
            // For curves with nBitLength % 8 !== 0: bits2octets(bits2octets(m)) !== bits2octets(m)
            // for some cases, since bytes.length * 8 is not actual bitLength.
            const num = (0, utils_ts_1.bytesToNumberBE)(bytes); // check for == u8 done here
            const delta = bytes.length * 8 - fnBits; // truncate to nBitLength leftmost bits
            return delta > 0 ? num >> BigInt(delta) : num;
        };
    const bits2int_modN = ecdsaOpts.bits2int_modN ||
        function bits2int_modN_def(bytes) {
            return Fn.create(bits2int(bytes)); // can't use bytesToNumberBE here
        };
    // Pads output with zero as per spec
    const ORDER_MASK = (0, utils_ts_1.bitMask)(fnBits);
    /** Converts to bytes. Checks if num in `[0..ORDER_MASK-1]` e.g.: `[0..2^256-1]`. */
    function int2octets(num) {
        // IMPORTANT: the check ensures working for case `Fn.BYTES != Fn.BITS * 8`
        (0, utils_ts_1.aInRange)('num < 2^' + fnBits, num, _0n, ORDER_MASK);
        return Fn.toBytes(num);
    }
    function validateMsgAndHash(message, prehash) {
        (0, utils_ts_1._abytes2)(message, undefined, 'message');
        return prehash ? (0, utils_ts_1._abytes2)(hash(message), undefined, 'prehashed message') : message;
    }
    /**
     * Steps A, D of RFC6979 3.2.
     * Creates RFC6979 seed; converts msg/privKey to numbers.
     * Used only in sign, not in verify.
     *
     * Warning: we cannot assume here that message has same amount of bytes as curve order,
     * this will be invalid at least for P521. Also it can be bigger for P224 + SHA256.
     */
    function prepSig(message, privateKey, opts) {
        if (['recovered', 'canonical'].some((k) => k in opts))
            throw new Error('sign() legacy options not supported');
        const { lowS, prehash, extraEntropy } = validateSigOpts(opts, defaultSigOpts);
        message = validateMsgAndHash(message, prehash); // RFC6979 3.2 A: h1 = H(m)
        // We can't later call bits2octets, since nested bits2int is broken for curves
        // with fnBits % 8 !== 0. Because of that, we unwrap it here as int2octets call.
        // const bits2octets = (bits) => int2octets(bits2int_modN(bits))
        const h1int = bits2int_modN(message);
        const d = _normFnElement(Fn, privateKey); // validate secret key, convert to bigint
        const seedArgs = [int2octets(d), int2octets(h1int)];
        // extraEntropy. RFC6979 3.6: additional k' (optional).
        if (extraEntropy != null && extraEntropy !== false) {
            // K = HMAC_K(V || 0x00 || int2octets(x) || bits2octets(h1) || k')
            // gen random bytes OR pass as-is
            const e = extraEntropy === true ? randomBytes(lengths.secretKey) : extraEntropy;
            seedArgs.push((0, utils_ts_1.ensureBytes)('extraEntropy', e)); // check for being bytes
        }
        const seed = (0, utils_ts_1.concatBytes)(...seedArgs); // Step D of RFC6979 3.2
        const m = h1int; // NOTE: no need to call bits2int second time here, it is inside truncateHash!
        // Converts signature params into point w r/s, checks result for validity.
        // To transform k => Signature:
        // q = k⋅G
        // r = q.x mod n
        // s = k^-1(m + rd) mod n
        // Can use scalar blinding b^-1(bm + bdr) where b ∈ [1,q−1] according to
        // https://tches.iacr.org/index.php/TCHES/article/view/7337/6509. We've decided against it:
        // a) dependency on CSPRNG b) 15% slowdown c) doesn't really help since bigints are not CT
        function k2sig(kBytes) {
            // RFC 6979 Section 3.2, step 3: k = bits2int(T)
            // Important: all mod() calls here must be done over N
            const k = bits2int(kBytes); // mod n, not mod p
            if (!Fn.isValidNot0(k))
                return; // Valid scalars (including k) must be in 1..N-1
            const ik = Fn.inv(k); // k^-1 mod n
            const q = Point.BASE.multiply(k).toAffine(); // q = k⋅G
            const r = Fn.create(q.x); // r = q.x mod n
            if (r === _0n)
                return;
            const s = Fn.create(ik * Fn.create(m + r * d)); // Not using blinding here, see comment above
            if (s === _0n)
                return;
            let recovery = (q.x === r ? 0 : 2) | Number(q.y & _1n); // recovery bit (2 or 3, when q.x > n)
            let normS = s;
            if (lowS && isBiggerThanHalfOrder(s)) {
                normS = Fn.neg(s); // if lowS was passed, ensure s is always
                recovery ^= 1; // // in the bottom half of N
            }
            return new Signature(r, normS, recovery); // use normS, not s
        }
        return { seed, k2sig };
    }
    /**
     * Signs message hash with a secret key.
     *
     * ```
     * sign(m, d) where
     *   k = rfc6979_hmac_drbg(m, d)
     *   (x, y) = G × k
     *   r = x mod n
     *   s = (m + dr) / k mod n
     * ```
     */
    function sign(message, secretKey, opts = {}) {
        message = (0, utils_ts_1.ensureBytes)('message', message);
        const { seed, k2sig } = prepSig(message, secretKey, opts); // Steps A, D of RFC6979 3.2.
        const drbg = (0, utils_ts_1.createHmacDrbg)(hash.outputLen, Fn.BYTES, hmac);
        const sig = drbg(seed, k2sig); // Steps B, C, D, E, F, G
        return sig;
    }
    function tryParsingSig(sg) {
        // Try to deduce format
        let sig = undefined;
        const isHex = typeof sg === 'string' || (0, utils_ts_1.isBytes)(sg);
        const isObj = !isHex &&
            sg !== null &&
            typeof sg === 'object' &&
            typeof sg.r === 'bigint' &&
            typeof sg.s === 'bigint';
        if (!isHex && !isObj)
            throw new Error('invalid signature, expected Uint8Array, hex string or Signature instance');
        if (isObj) {
            sig = new Signature(sg.r, sg.s);
        }
        else if (isHex) {
            try {
                sig = Signature.fromBytes((0, utils_ts_1.ensureBytes)('sig', sg), 'der');
            }
            catch (derError) {
                if (!(derError instanceof exports.DER.Err))
                    throw derError;
            }
            if (!sig) {
                try {
                    sig = Signature.fromBytes((0, utils_ts_1.ensureBytes)('sig', sg), 'compact');
                }
                catch (error) {
                    return false;
                }
            }
        }
        if (!sig)
            return false;
        return sig;
    }
    /**
     * Verifies a signature against message and public key.
     * Rejects lowS signatures by default: see {@link ECDSAVerifyOpts}.
     * Implements section 4.1.4 from https://www.secg.org/sec1-v2.pdf:
     *
     * ```
     * verify(r, s, h, P) where
     *   u1 = hs^-1 mod n
     *   u2 = rs^-1 mod n
     *   R = u1⋅G + u2⋅P
     *   mod(R.x, n) == r
     * ```
     */
    function verify(signature, message, publicKey, opts = {}) {
        const { lowS, prehash, format } = validateSigOpts(opts, defaultSigOpts);
        publicKey = (0, utils_ts_1.ensureBytes)('publicKey', publicKey);
        message = validateMsgAndHash((0, utils_ts_1.ensureBytes)('message', message), prehash);
        if ('strict' in opts)
            throw new Error('options.strict was renamed to lowS');
        const sig = format === undefined
            ? tryParsingSig(signature)
            : Signature.fromBytes((0, utils_ts_1.ensureBytes)('sig', signature), format);
        if (sig === false)
            return false;
        try {
            const P = Point.fromBytes(publicKey);
            if (lowS && sig.hasHighS())
                return false;
            const { r, s } = sig;
            const h = bits2int_modN(message); // mod n, not mod p
            const is = Fn.inv(s); // s^-1 mod n
            const u1 = Fn.create(h * is); // u1 = hs^-1 mod n
            const u2 = Fn.create(r * is); // u2 = rs^-1 mod n
            const R = Point.BASE.multiplyUnsafe(u1).add(P.multiplyUnsafe(u2)); // u1⋅G + u2⋅P
            if (R.is0())
                return false;
            const v = Fn.create(R.x); // v = r.x mod n
            return v === r;
        }
        catch (e) {
            return false;
        }
    }
    function recoverPublicKey(signature, message, opts = {}) {
        const { prehash } = validateSigOpts(opts, defaultSigOpts);
        message = validateMsgAndHash(message, prehash);
        return Signature.fromBytes(signature, 'recovered').recoverPublicKey(message).toBytes();
    }
    return Object.freeze({
        keygen,
        getPublicKey,
        getSharedSecret,
        utils,
        lengths,
        Point,
        sign,
        verify,
        recoverPublicKey,
        Signature,
        hash,
    });
}
/** @deprecated use `weierstrass` in newer releases */
function weierstrassPoints(c) {
    const { CURVE, curveOpts } = _weierstrass_legacy_opts_to_new(c);
    const Point = weierstrassN(CURVE, curveOpts);
    return _weierstrass_new_output_to_legacy(c, Point);
}
function _weierstrass_legacy_opts_to_new(c) {
    const CURVE = {
        a: c.a,
        b: c.b,
        p: c.Fp.ORDER,
        n: c.n,
        h: c.h,
        Gx: c.Gx,
        Gy: c.Gy,
    };
    const Fp = c.Fp;
    let allowedLengths = c.allowedPrivateKeyLengths
        ? Array.from(new Set(c.allowedPrivateKeyLengths.map((l) => Math.ceil(l / 2))))
        : undefined;
    const Fn = (0, modular_ts_1.Field)(CURVE.n, {
        BITS: c.nBitLength,
        allowedLengths: allowedLengths,
        modFromBytes: c.wrapPrivateKey,
    });
    const curveOpts = {
        Fp,
        Fn,
        allowInfinityPoint: c.allowInfinityPoint,
        endo: c.endo,
        isTorsionFree: c.isTorsionFree,
        clearCofactor: c.clearCofactor,
        fromBytes: c.fromBytes,
        toBytes: c.toBytes,
    };
    return { CURVE, curveOpts };
}
function _ecdsa_legacy_opts_to_new(c) {
    const { CURVE, curveOpts } = _weierstrass_legacy_opts_to_new(c);
    const ecdsaOpts = {
        hmac: c.hmac,
        randomBytes: c.randomBytes,
        lowS: c.lowS,
        bits2int: c.bits2int,
        bits2int_modN: c.bits2int_modN,
    };
    return { CURVE, curveOpts, hash: c.hash, ecdsaOpts };
}
function _legacyHelperEquat(Fp, a, b) {
    /**
     * y² = x³ + ax + b: Short weierstrass curve formula. Takes x, returns y².
     * @returns y²
     */
    function weierstrassEquation(x) {
        const x2 = Fp.sqr(x); // x * x
        const x3 = Fp.mul(x2, x); // x² * x
        return Fp.add(Fp.add(x3, Fp.mul(x, a)), b); // x³ + a * x + b
    }
    return weierstrassEquation;
}
function _weierstrass_new_output_to_legacy(c, Point) {
    const { Fp, Fn } = Point;
    function isWithinCurveOrder(num) {
        return (0, utils_ts_1.inRange)(num, _1n, Fn.ORDER);
    }
    const weierstrassEquation = _legacyHelperEquat(Fp, c.a, c.b);
    return Object.assign({}, {
        CURVE: c,
        Point: Point,
        ProjectivePoint: Point,
        normPrivateKeyToScalar: (key) => _normFnElement(Fn, key),
        weierstrassEquation,
        isWithinCurveOrder,
    });
}
function _ecdsa_new_output_to_legacy(c, _ecdsa) {
    const Point = _ecdsa.Point;
    return Object.assign({}, _ecdsa, {
        ProjectivePoint: Point,
        CURVE: Object.assign({}, c, (0, modular_ts_1.nLength)(Point.Fn.ORDER, Point.Fn.BITS)),
    });
}
// _ecdsa_legacy
function weierstrass(c) {
    const { CURVE, curveOpts, hash, ecdsaOpts } = _ecdsa_legacy_opts_to_new(c);
    const Point = weierstrassN(CURVE, curveOpts);
    const signs = ecdsa(Point, hash, ecdsaOpts);
    return _ecdsa_new_output_to_legacy(c, signs);
}
//# sourceMappingURL=weierstrass.js.map

Выполнить команду


Для локальной разработки. Не используйте в интернете!