PHP WebShell

Текущая директория: /usr/lib/node_modules/bitgo/node_modules/@solana/spl-stake-pool/dist

Просмотр файла: index.iife.js

var solanaStakePool = (function (exports) {
	'use strict';

	function getDefaultExportFromCjs (x) {
		return x && x.__esModule && Object.prototype.hasOwnProperty.call(x, 'default') ? x['default'] : x;
	}

	function getAugmentedNamespace(n) {
	  if (n.__esModule) return n;
	  var f = n.default;
		if (typeof f == "function") {
			var a = function a () {
				if (this instanceof a) {
	        return Reflect.construct(f, arguments, this.constructor);
				}
				return f.apply(this, arguments);
			};
			a.prototype = f.prototype;
	  } else a = {};
	  Object.defineProperty(a, '__esModule', {value: true});
		Object.keys(n).forEach(function (k) {
			var d = Object.getOwnPropertyDescriptor(n, k);
			Object.defineProperty(a, k, d.get ? d : {
				enumerable: true,
				get: function () {
					return n[k];
				}
			});
		});
		return a;
	}

	var buffer = {};

	var base64Js = {};

	var hasRequiredBase64Js;

	function requireBase64Js () {
		if (hasRequiredBase64Js) return base64Js;
		hasRequiredBase64Js = 1;

		base64Js.byteLength = byteLength;
		base64Js.toByteArray = toByteArray;
		base64Js.fromByteArray = fromByteArray;

		var lookup = [];
		var revLookup = [];
		var Arr = typeof Uint8Array !== 'undefined' ? Uint8Array : Array;

		var code = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/';
		for (var i = 0, len = code.length; i < len; ++i) {
		  lookup[i] = code[i];
		  revLookup[code.charCodeAt(i)] = i;
		}

		// Support decoding URL-safe base64 strings, as Node.js does.
		// See: https://en.wikipedia.org/wiki/Base64#URL_applications
		revLookup['-'.charCodeAt(0)] = 62;
		revLookup['_'.charCodeAt(0)] = 63;

		function getLens (b64) {
		  var len = b64.length;

		  if (len % 4 > 0) {
		    throw new Error('Invalid string. Length must be a multiple of 4')
		  }

		  // Trim off extra bytes after placeholder bytes are found
		  // See: https://github.com/beatgammit/base64-js/issues/42
		  var validLen = b64.indexOf('=');
		  if (validLen === -1) validLen = len;

		  var placeHoldersLen = validLen === len
		    ? 0
		    : 4 - (validLen % 4);

		  return [validLen, placeHoldersLen]
		}

		// base64 is 4/3 + up to two characters of the original data
		function byteLength (b64) {
		  var lens = getLens(b64);
		  var validLen = lens[0];
		  var placeHoldersLen = lens[1];
		  return ((validLen + placeHoldersLen) * 3 / 4) - placeHoldersLen
		}

		function _byteLength (b64, validLen, placeHoldersLen) {
		  return ((validLen + placeHoldersLen) * 3 / 4) - placeHoldersLen
		}

		function toByteArray (b64) {
		  var tmp;
		  var lens = getLens(b64);
		  var validLen = lens[0];
		  var placeHoldersLen = lens[1];

		  var arr = new Arr(_byteLength(b64, validLen, placeHoldersLen));

		  var curByte = 0;

		  // if there are placeholders, only get up to the last complete 4 chars
		  var len = placeHoldersLen > 0
		    ? validLen - 4
		    : validLen;

		  var i;
		  for (i = 0; i < len; i += 4) {
		    tmp =
		      (revLookup[b64.charCodeAt(i)] << 18) |
		      (revLookup[b64.charCodeAt(i + 1)] << 12) |
		      (revLookup[b64.charCodeAt(i + 2)] << 6) |
		      revLookup[b64.charCodeAt(i + 3)];
		    arr[curByte++] = (tmp >> 16) & 0xFF;
		    arr[curByte++] = (tmp >> 8) & 0xFF;
		    arr[curByte++] = tmp & 0xFF;
		  }

		  if (placeHoldersLen === 2) {
		    tmp =
		      (revLookup[b64.charCodeAt(i)] << 2) |
		      (revLookup[b64.charCodeAt(i + 1)] >> 4);
		    arr[curByte++] = tmp & 0xFF;
		  }

		  if (placeHoldersLen === 1) {
		    tmp =
		      (revLookup[b64.charCodeAt(i)] << 10) |
		      (revLookup[b64.charCodeAt(i + 1)] << 4) |
		      (revLookup[b64.charCodeAt(i + 2)] >> 2);
		    arr[curByte++] = (tmp >> 8) & 0xFF;
		    arr[curByte++] = tmp & 0xFF;
		  }

		  return arr
		}

		function tripletToBase64 (num) {
		  return lookup[num >> 18 & 0x3F] +
		    lookup[num >> 12 & 0x3F] +
		    lookup[num >> 6 & 0x3F] +
		    lookup[num & 0x3F]
		}

		function encodeChunk (uint8, start, end) {
		  var tmp;
		  var output = [];
		  for (var i = start; i < end; i += 3) {
		    tmp =
		      ((uint8[i] << 16) & 0xFF0000) +
		      ((uint8[i + 1] << 8) & 0xFF00) +
		      (uint8[i + 2] & 0xFF);
		    output.push(tripletToBase64(tmp));
		  }
		  return output.join('')
		}

		function fromByteArray (uint8) {
		  var tmp;
		  var len = uint8.length;
		  var extraBytes = len % 3; // if we have 1 byte left, pad 2 bytes
		  var parts = [];
		  var maxChunkLength = 16383; // must be multiple of 3

		  // go through the array every three bytes, we'll deal with trailing stuff later
		  for (var i = 0, len2 = len - extraBytes; i < len2; i += maxChunkLength) {
		    parts.push(encodeChunk(uint8, i, (i + maxChunkLength) > len2 ? len2 : (i + maxChunkLength)));
		  }

		  // pad the end with zeros, but make sure to not forget the extra bytes
		  if (extraBytes === 1) {
		    tmp = uint8[len - 1];
		    parts.push(
		      lookup[tmp >> 2] +
		      lookup[(tmp << 4) & 0x3F] +
		      '=='
		    );
		  } else if (extraBytes === 2) {
		    tmp = (uint8[len - 2] << 8) + uint8[len - 1];
		    parts.push(
		      lookup[tmp >> 10] +
		      lookup[(tmp >> 4) & 0x3F] +
		      lookup[(tmp << 2) & 0x3F] +
		      '='
		    );
		  }

		  return parts.join('')
		}
		return base64Js;
	}

	var ieee754 = {};

	/*! ieee754. BSD-3-Clause License. Feross Aboukhadijeh <https://feross.org/opensource> */

	var hasRequiredIeee754;

	function requireIeee754 () {
		if (hasRequiredIeee754) return ieee754;
		hasRequiredIeee754 = 1;
		ieee754.read = function (buffer, offset, isLE, mLen, nBytes) {
		  var e, m;
		  var eLen = (nBytes * 8) - mLen - 1;
		  var eMax = (1 << eLen) - 1;
		  var eBias = eMax >> 1;
		  var nBits = -7;
		  var i = isLE ? (nBytes - 1) : 0;
		  var d = isLE ? -1 : 1;
		  var s = buffer[offset + i];

		  i += d;

		  e = s & ((1 << (-nBits)) - 1);
		  s >>= (-nBits);
		  nBits += eLen;
		  for (; nBits > 0; e = (e * 256) + buffer[offset + i], i += d, nBits -= 8) {}

		  m = e & ((1 << (-nBits)) - 1);
		  e >>= (-nBits);
		  nBits += mLen;
		  for (; nBits > 0; m = (m * 256) + buffer[offset + i], i += d, nBits -= 8) {}

		  if (e === 0) {
		    e = 1 - eBias;
		  } else if (e === eMax) {
		    return m ? NaN : ((s ? -1 : 1) * Infinity)
		  } else {
		    m = m + Math.pow(2, mLen);
		    e = e - eBias;
		  }
		  return (s ? -1 : 1) * m * Math.pow(2, e - mLen)
		};

		ieee754.write = function (buffer, value, offset, isLE, mLen, nBytes) {
		  var e, m, c;
		  var eLen = (nBytes * 8) - mLen - 1;
		  var eMax = (1 << eLen) - 1;
		  var eBias = eMax >> 1;
		  var rt = (mLen === 23 ? Math.pow(2, -24) - Math.pow(2, -77) : 0);
		  var i = isLE ? 0 : (nBytes - 1);
		  var d = isLE ? 1 : -1;
		  var s = value < 0 || (value === 0 && 1 / value < 0) ? 1 : 0;

		  value = Math.abs(value);

		  if (isNaN(value) || value === Infinity) {
		    m = isNaN(value) ? 1 : 0;
		    e = eMax;
		  } else {
		    e = Math.floor(Math.log(value) / Math.LN2);
		    if (value * (c = Math.pow(2, -e)) < 1) {
		      e--;
		      c *= 2;
		    }
		    if (e + eBias >= 1) {
		      value += rt / c;
		    } else {
		      value += rt * Math.pow(2, 1 - eBias);
		    }
		    if (value * c >= 2) {
		      e++;
		      c /= 2;
		    }

		    if (e + eBias >= eMax) {
		      m = 0;
		      e = eMax;
		    } else if (e + eBias >= 1) {
		      m = ((value * c) - 1) * Math.pow(2, mLen);
		      e = e + eBias;
		    } else {
		      m = value * Math.pow(2, eBias - 1) * Math.pow(2, mLen);
		      e = 0;
		    }
		  }

		  for (; mLen >= 8; buffer[offset + i] = m & 0xff, i += d, m /= 256, mLen -= 8) {}

		  e = (e << mLen) | m;
		  eLen += mLen;
		  for (; eLen > 0; buffer[offset + i] = e & 0xff, i += d, e /= 256, eLen -= 8) {}

		  buffer[offset + i - d] |= s * 128;
		};
		return ieee754;
	}

	/*!
	 * The buffer module from node.js, for the browser.
	 *
	 * @author   Feross Aboukhadijeh <https://feross.org>
	 * @license  MIT
	 */

	var hasRequiredBuffer;

	function requireBuffer () {
		if (hasRequiredBuffer) return buffer;
		hasRequiredBuffer = 1;
		(function (exports) {

			const base64 = /*@__PURE__*/ requireBase64Js();
			const ieee754 = /*@__PURE__*/ requireIeee754();
			const customInspectSymbol =
			  (typeof Symbol === 'function' && typeof Symbol['for'] === 'function') // eslint-disable-line dot-notation
			    ? Symbol['for']('nodejs.util.inspect.custom') // eslint-disable-line dot-notation
			    : null;

			exports.Buffer = Buffer;
			exports.SlowBuffer = SlowBuffer;
			exports.INSPECT_MAX_BYTES = 50;

			const K_MAX_LENGTH = 0x7fffffff;
			exports.kMaxLength = K_MAX_LENGTH;

			/**
			 * If `Buffer.TYPED_ARRAY_SUPPORT`:
			 *   === true    Use Uint8Array implementation (fastest)
			 *   === false   Print warning and recommend using `buffer` v4.x which has an Object
			 *               implementation (most compatible, even IE6)
			 *
			 * Browsers that support typed arrays are IE 10+, Firefox 4+, Chrome 7+, Safari 5.1+,
			 * Opera 11.6+, iOS 4.2+.
			 *
			 * We report that the browser does not support typed arrays if the are not subclassable
			 * using __proto__. Firefox 4-29 lacks support for adding new properties to `Uint8Array`
			 * (See: https://bugzilla.mozilla.org/show_bug.cgi?id=695438). IE 10 lacks support
			 * for __proto__ and has a buggy typed array implementation.
			 */
			Buffer.TYPED_ARRAY_SUPPORT = typedArraySupport();

			if (!Buffer.TYPED_ARRAY_SUPPORT && typeof console !== 'undefined' &&
			    typeof console.error === 'function') {
			  console.error(
			    'This browser lacks typed array (Uint8Array) support which is required by ' +
			    '`buffer` v5.x. Use `buffer` v4.x if you require old browser support.'
			  );
			}

			function typedArraySupport () {
			  // Can typed array instances can be augmented?
			  try {
			    const arr = new Uint8Array(1);
			    const proto = { foo: function () { return 42 } };
			    Object.setPrototypeOf(proto, Uint8Array.prototype);
			    Object.setPrototypeOf(arr, proto);
			    return arr.foo() === 42
			  } catch (e) {
			    return false
			  }
			}

			Object.defineProperty(Buffer.prototype, 'parent', {
			  enumerable: true,
			  get: function () {
			    if (!Buffer.isBuffer(this)) return undefined
			    return this.buffer
			  }
			});

			Object.defineProperty(Buffer.prototype, 'offset', {
			  enumerable: true,
			  get: function () {
			    if (!Buffer.isBuffer(this)) return undefined
			    return this.byteOffset
			  }
			});

			function createBuffer (length) {
			  if (length > K_MAX_LENGTH) {
			    throw new RangeError('The value "' + length + '" is invalid for option "size"')
			  }
			  // Return an augmented `Uint8Array` instance
			  const buf = new Uint8Array(length);
			  Object.setPrototypeOf(buf, Buffer.prototype);
			  return buf
			}

			/**
			 * The Buffer constructor returns instances of `Uint8Array` that have their
			 * prototype changed to `Buffer.prototype`. Furthermore, `Buffer` is a subclass of
			 * `Uint8Array`, so the returned instances will have all the node `Buffer` methods
			 * and the `Uint8Array` methods. Square bracket notation works as expected -- it
			 * returns a single octet.
			 *
			 * The `Uint8Array` prototype remains unmodified.
			 */

			function Buffer (arg, encodingOrOffset, length) {
			  // Common case.
			  if (typeof arg === 'number') {
			    if (typeof encodingOrOffset === 'string') {
			      throw new TypeError(
			        'The "string" argument must be of type string. Received type number'
			      )
			    }
			    return allocUnsafe(arg)
			  }
			  return from(arg, encodingOrOffset, length)
			}

			Buffer.poolSize = 8192; // not used by this implementation

			function from (value, encodingOrOffset, length) {
			  if (typeof value === 'string') {
			    return fromString(value, encodingOrOffset)
			  }

			  if (ArrayBuffer.isView(value)) {
			    return fromArrayView(value)
			  }

			  if (value == null) {
			    throw new TypeError(
			      'The first argument must be one of type string, Buffer, ArrayBuffer, Array, ' +
			      'or Array-like Object. Received type ' + (typeof value)
			    )
			  }

			  if (isInstance(value, ArrayBuffer) ||
			      (value && isInstance(value.buffer, ArrayBuffer))) {
			    return fromArrayBuffer(value, encodingOrOffset, length)
			  }

			  if (typeof SharedArrayBuffer !== 'undefined' &&
			      (isInstance(value, SharedArrayBuffer) ||
			      (value && isInstance(value.buffer, SharedArrayBuffer)))) {
			    return fromArrayBuffer(value, encodingOrOffset, length)
			  }

			  if (typeof value === 'number') {
			    throw new TypeError(
			      'The "value" argument must not be of type number. Received type number'
			    )
			  }

			  const valueOf = value.valueOf && value.valueOf();
			  if (valueOf != null && valueOf !== value) {
			    return Buffer.from(valueOf, encodingOrOffset, length)
			  }

			  const b = fromObject(value);
			  if (b) return b

			  if (typeof Symbol !== 'undefined' && Symbol.toPrimitive != null &&
			      typeof value[Symbol.toPrimitive] === 'function') {
			    return Buffer.from(value[Symbol.toPrimitive]('string'), encodingOrOffset, length)
			  }

			  throw new TypeError(
			    'The first argument must be one of type string, Buffer, ArrayBuffer, Array, ' +
			    'or Array-like Object. Received type ' + (typeof value)
			  )
			}

			/**
			 * Functionally equivalent to Buffer(arg, encoding) but throws a TypeError
			 * if value is a number.
			 * Buffer.from(str[, encoding])
			 * Buffer.from(array)
			 * Buffer.from(buffer)
			 * Buffer.from(arrayBuffer[, byteOffset[, length]])
			 **/
			Buffer.from = function (value, encodingOrOffset, length) {
			  return from(value, encodingOrOffset, length)
			};

			// Note: Change prototype *after* Buffer.from is defined to workaround Chrome bug:
			// https://github.com/feross/buffer/pull/148
			Object.setPrototypeOf(Buffer.prototype, Uint8Array.prototype);
			Object.setPrototypeOf(Buffer, Uint8Array);

			function assertSize (size) {
			  if (typeof size !== 'number') {
			    throw new TypeError('"size" argument must be of type number')
			  } else if (size < 0) {
			    throw new RangeError('The value "' + size + '" is invalid for option "size"')
			  }
			}

			function alloc (size, fill, encoding) {
			  assertSize(size);
			  if (size <= 0) {
			    return createBuffer(size)
			  }
			  if (fill !== undefined) {
			    // Only pay attention to encoding if it's a string. This
			    // prevents accidentally sending in a number that would
			    // be interpreted as a start offset.
			    return typeof encoding === 'string'
			      ? createBuffer(size).fill(fill, encoding)
			      : createBuffer(size).fill(fill)
			  }
			  return createBuffer(size)
			}

			/**
			 * Creates a new filled Buffer instance.
			 * alloc(size[, fill[, encoding]])
			 **/
			Buffer.alloc = function (size, fill, encoding) {
			  return alloc(size, fill, encoding)
			};

			function allocUnsafe (size) {
			  assertSize(size);
			  return createBuffer(size < 0 ? 0 : checked(size) | 0)
			}

			/**
			 * Equivalent to Buffer(num), by default creates a non-zero-filled Buffer instance.
			 * */
			Buffer.allocUnsafe = function (size) {
			  return allocUnsafe(size)
			};
			/**
			 * Equivalent to SlowBuffer(num), by default creates a non-zero-filled Buffer instance.
			 */
			Buffer.allocUnsafeSlow = function (size) {
			  return allocUnsafe(size)
			};

			function fromString (string, encoding) {
			  if (typeof encoding !== 'string' || encoding === '') {
			    encoding = 'utf8';
			  }

			  if (!Buffer.isEncoding(encoding)) {
			    throw new TypeError('Unknown encoding: ' + encoding)
			  }

			  const length = byteLength(string, encoding) | 0;
			  let buf = createBuffer(length);

			  const actual = buf.write(string, encoding);

			  if (actual !== length) {
			    // Writing a hex string, for example, that contains invalid characters will
			    // cause everything after the first invalid character to be ignored. (e.g.
			    // 'abxxcd' will be treated as 'ab')
			    buf = buf.slice(0, actual);
			  }

			  return buf
			}

			function fromArrayLike (array) {
			  const length = array.length < 0 ? 0 : checked(array.length) | 0;
			  const buf = createBuffer(length);
			  for (let i = 0; i < length; i += 1) {
			    buf[i] = array[i] & 255;
			  }
			  return buf
			}

			function fromArrayView (arrayView) {
			  if (isInstance(arrayView, Uint8Array)) {
			    const copy = new Uint8Array(arrayView);
			    return fromArrayBuffer(copy.buffer, copy.byteOffset, copy.byteLength)
			  }
			  return fromArrayLike(arrayView)
			}

			function fromArrayBuffer (array, byteOffset, length) {
			  if (byteOffset < 0 || array.byteLength < byteOffset) {
			    throw new RangeError('"offset" is outside of buffer bounds')
			  }

			  if (array.byteLength < byteOffset + (length || 0)) {
			    throw new RangeError('"length" is outside of buffer bounds')
			  }

			  let buf;
			  if (byteOffset === undefined && length === undefined) {
			    buf = new Uint8Array(array);
			  } else if (length === undefined) {
			    buf = new Uint8Array(array, byteOffset);
			  } else {
			    buf = new Uint8Array(array, byteOffset, length);
			  }

			  // Return an augmented `Uint8Array` instance
			  Object.setPrototypeOf(buf, Buffer.prototype);

			  return buf
			}

			function fromObject (obj) {
			  if (Buffer.isBuffer(obj)) {
			    const len = checked(obj.length) | 0;
			    const buf = createBuffer(len);

			    if (buf.length === 0) {
			      return buf
			    }

			    obj.copy(buf, 0, 0, len);
			    return buf
			  }

			  if (obj.length !== undefined) {
			    if (typeof obj.length !== 'number' || numberIsNaN(obj.length)) {
			      return createBuffer(0)
			    }
			    return fromArrayLike(obj)
			  }

			  if (obj.type === 'Buffer' && Array.isArray(obj.data)) {
			    return fromArrayLike(obj.data)
			  }
			}

			function checked (length) {
			  // Note: cannot use `length < K_MAX_LENGTH` here because that fails when
			  // length is NaN (which is otherwise coerced to zero.)
			  if (length >= K_MAX_LENGTH) {
			    throw new RangeError('Attempt to allocate Buffer larger than maximum ' +
			                         'size: 0x' + K_MAX_LENGTH.toString(16) + ' bytes')
			  }
			  return length | 0
			}

			function SlowBuffer (length) {
			  if (+length != length) { // eslint-disable-line eqeqeq
			    length = 0;
			  }
			  return Buffer.alloc(+length)
			}

			Buffer.isBuffer = function isBuffer (b) {
			  return b != null && b._isBuffer === true &&
			    b !== Buffer.prototype // so Buffer.isBuffer(Buffer.prototype) will be false
			};

			Buffer.compare = function compare (a, b) {
			  if (isInstance(a, Uint8Array)) a = Buffer.from(a, a.offset, a.byteLength);
			  if (isInstance(b, Uint8Array)) b = Buffer.from(b, b.offset, b.byteLength);
			  if (!Buffer.isBuffer(a) || !Buffer.isBuffer(b)) {
			    throw new TypeError(
			      'The "buf1", "buf2" arguments must be one of type Buffer or Uint8Array'
			    )
			  }

			  if (a === b) return 0

			  let x = a.length;
			  let y = b.length;

			  for (let i = 0, len = Math.min(x, y); i < len; ++i) {
			    if (a[i] !== b[i]) {
			      x = a[i];
			      y = b[i];
			      break
			    }
			  }

			  if (x < y) return -1
			  if (y < x) return 1
			  return 0
			};

			Buffer.isEncoding = function isEncoding (encoding) {
			  switch (String(encoding).toLowerCase()) {
			    case 'hex':
			    case 'utf8':
			    case 'utf-8':
			    case 'ascii':
			    case 'latin1':
			    case 'binary':
			    case 'base64':
			    case 'ucs2':
			    case 'ucs-2':
			    case 'utf16le':
			    case 'utf-16le':
			      return true
			    default:
			      return false
			  }
			};

			Buffer.concat = function concat (list, length) {
			  if (!Array.isArray(list)) {
			    throw new TypeError('"list" argument must be an Array of Buffers')
			  }

			  if (list.length === 0) {
			    return Buffer.alloc(0)
			  }

			  let i;
			  if (length === undefined) {
			    length = 0;
			    for (i = 0; i < list.length; ++i) {
			      length += list[i].length;
			    }
			  }

			  const buffer = Buffer.allocUnsafe(length);
			  let pos = 0;
			  for (i = 0; i < list.length; ++i) {
			    let buf = list[i];
			    if (isInstance(buf, Uint8Array)) {
			      if (pos + buf.length > buffer.length) {
			        if (!Buffer.isBuffer(buf)) buf = Buffer.from(buf);
			        buf.copy(buffer, pos);
			      } else {
			        Uint8Array.prototype.set.call(
			          buffer,
			          buf,
			          pos
			        );
			      }
			    } else if (!Buffer.isBuffer(buf)) {
			      throw new TypeError('"list" argument must be an Array of Buffers')
			    } else {
			      buf.copy(buffer, pos);
			    }
			    pos += buf.length;
			  }
			  return buffer
			};

			function byteLength (string, encoding) {
			  if (Buffer.isBuffer(string)) {
			    return string.length
			  }
			  if (ArrayBuffer.isView(string) || isInstance(string, ArrayBuffer)) {
			    return string.byteLength
			  }
			  if (typeof string !== 'string') {
			    throw new TypeError(
			      'The "string" argument must be one of type string, Buffer, or ArrayBuffer. ' +
			      'Received type ' + typeof string
			    )
			  }

			  const len = string.length;
			  const mustMatch = (arguments.length > 2 && arguments[2] === true);
			  if (!mustMatch && len === 0) return 0

			  // Use a for loop to avoid recursion
			  let loweredCase = false;
			  for (;;) {
			    switch (encoding) {
			      case 'ascii':
			      case 'latin1':
			      case 'binary':
			        return len
			      case 'utf8':
			      case 'utf-8':
			        return utf8ToBytes(string).length
			      case 'ucs2':
			      case 'ucs-2':
			      case 'utf16le':
			      case 'utf-16le':
			        return len * 2
			      case 'hex':
			        return len >>> 1
			      case 'base64':
			        return base64ToBytes(string).length
			      default:
			        if (loweredCase) {
			          return mustMatch ? -1 : utf8ToBytes(string).length // assume utf8
			        }
			        encoding = ('' + encoding).toLowerCase();
			        loweredCase = true;
			    }
			  }
			}
			Buffer.byteLength = byteLength;

			function slowToString (encoding, start, end) {
			  let loweredCase = false;

			  // No need to verify that "this.length <= MAX_UINT32" since it's a read-only
			  // property of a typed array.

			  // This behaves neither like String nor Uint8Array in that we set start/end
			  // to their upper/lower bounds if the value passed is out of range.
			  // undefined is handled specially as per ECMA-262 6th Edition,
			  // Section 13.3.3.7 Runtime Semantics: KeyedBindingInitialization.
			  if (start === undefined || start < 0) {
			    start = 0;
			  }
			  // Return early if start > this.length. Done here to prevent potential uint32
			  // coercion fail below.
			  if (start > this.length) {
			    return ''
			  }

			  if (end === undefined || end > this.length) {
			    end = this.length;
			  }

			  if (end <= 0) {
			    return ''
			  }

			  // Force coercion to uint32. This will also coerce falsey/NaN values to 0.
			  end >>>= 0;
			  start >>>= 0;

			  if (end <= start) {
			    return ''
			  }

			  if (!encoding) encoding = 'utf8';

			  while (true) {
			    switch (encoding) {
			      case 'hex':
			        return hexSlice(this, start, end)

			      case 'utf8':
			      case 'utf-8':
			        return utf8Slice(this, start, end)

			      case 'ascii':
			        return asciiSlice(this, start, end)

			      case 'latin1':
			      case 'binary':
			        return latin1Slice(this, start, end)

			      case 'base64':
			        return base64Slice(this, start, end)

			      case 'ucs2':
			      case 'ucs-2':
			      case 'utf16le':
			      case 'utf-16le':
			        return utf16leSlice(this, start, end)

			      default:
			        if (loweredCase) throw new TypeError('Unknown encoding: ' + encoding)
			        encoding = (encoding + '').toLowerCase();
			        loweredCase = true;
			    }
			  }
			}

			// This property is used by `Buffer.isBuffer` (and the `is-buffer` npm package)
			// to detect a Buffer instance. It's not possible to use `instanceof Buffer`
			// reliably in a browserify context because there could be multiple different
			// copies of the 'buffer' package in use. This method works even for Buffer
			// instances that were created from another copy of the `buffer` package.
			// See: https://github.com/feross/buffer/issues/154
			Buffer.prototype._isBuffer = true;

			function swap (b, n, m) {
			  const i = b[n];
			  b[n] = b[m];
			  b[m] = i;
			}

			Buffer.prototype.swap16 = function swap16 () {
			  const len = this.length;
			  if (len % 2 !== 0) {
			    throw new RangeError('Buffer size must be a multiple of 16-bits')
			  }
			  for (let i = 0; i < len; i += 2) {
			    swap(this, i, i + 1);
			  }
			  return this
			};

			Buffer.prototype.swap32 = function swap32 () {
			  const len = this.length;
			  if (len % 4 !== 0) {
			    throw new RangeError('Buffer size must be a multiple of 32-bits')
			  }
			  for (let i = 0; i < len; i += 4) {
			    swap(this, i, i + 3);
			    swap(this, i + 1, i + 2);
			  }
			  return this
			};

			Buffer.prototype.swap64 = function swap64 () {
			  const len = this.length;
			  if (len % 8 !== 0) {
			    throw new RangeError('Buffer size must be a multiple of 64-bits')
			  }
			  for (let i = 0; i < len; i += 8) {
			    swap(this, i, i + 7);
			    swap(this, i + 1, i + 6);
			    swap(this, i + 2, i + 5);
			    swap(this, i + 3, i + 4);
			  }
			  return this
			};

			Buffer.prototype.toString = function toString () {
			  const length = this.length;
			  if (length === 0) return ''
			  if (arguments.length === 0) return utf8Slice(this, 0, length)
			  return slowToString.apply(this, arguments)
			};

			Buffer.prototype.toLocaleString = Buffer.prototype.toString;

			Buffer.prototype.equals = function equals (b) {
			  if (!Buffer.isBuffer(b)) throw new TypeError('Argument must be a Buffer')
			  if (this === b) return true
			  return Buffer.compare(this, b) === 0
			};

			Buffer.prototype.inspect = function inspect () {
			  let str = '';
			  const max = exports.INSPECT_MAX_BYTES;
			  str = this.toString('hex', 0, max).replace(/(.{2})/g, '$1 ').trim();
			  if (this.length > max) str += ' ... ';
			  return '<Buffer ' + str + '>'
			};
			if (customInspectSymbol) {
			  Buffer.prototype[customInspectSymbol] = Buffer.prototype.inspect;
			}

			Buffer.prototype.compare = function compare (target, start, end, thisStart, thisEnd) {
			  if (isInstance(target, Uint8Array)) {
			    target = Buffer.from(target, target.offset, target.byteLength);
			  }
			  if (!Buffer.isBuffer(target)) {
			    throw new TypeError(
			      'The "target" argument must be one of type Buffer or Uint8Array. ' +
			      'Received type ' + (typeof target)
			    )
			  }

			  if (start === undefined) {
			    start = 0;
			  }
			  if (end === undefined) {
			    end = target ? target.length : 0;
			  }
			  if (thisStart === undefined) {
			    thisStart = 0;
			  }
			  if (thisEnd === undefined) {
			    thisEnd = this.length;
			  }

			  if (start < 0 || end > target.length || thisStart < 0 || thisEnd > this.length) {
			    throw new RangeError('out of range index')
			  }

			  if (thisStart >= thisEnd && start >= end) {
			    return 0
			  }
			  if (thisStart >= thisEnd) {
			    return -1
			  }
			  if (start >= end) {
			    return 1
			  }

			  start >>>= 0;
			  end >>>= 0;
			  thisStart >>>= 0;
			  thisEnd >>>= 0;

			  if (this === target) return 0

			  let x = thisEnd - thisStart;
			  let y = end - start;
			  const len = Math.min(x, y);

			  const thisCopy = this.slice(thisStart, thisEnd);
			  const targetCopy = target.slice(start, end);

			  for (let i = 0; i < len; ++i) {
			    if (thisCopy[i] !== targetCopy[i]) {
			      x = thisCopy[i];
			      y = targetCopy[i];
			      break
			    }
			  }

			  if (x < y) return -1
			  if (y < x) return 1
			  return 0
			};

			// Finds either the first index of `val` in `buffer` at offset >= `byteOffset`,
			// OR the last index of `val` in `buffer` at offset <= `byteOffset`.
			//
			// Arguments:
			// - buffer - a Buffer to search
			// - val - a string, Buffer, or number
			// - byteOffset - an index into `buffer`; will be clamped to an int32
			// - encoding - an optional encoding, relevant is val is a string
			// - dir - true for indexOf, false for lastIndexOf
			function bidirectionalIndexOf (buffer, val, byteOffset, encoding, dir) {
			  // Empty buffer means no match
			  if (buffer.length === 0) return -1

			  // Normalize byteOffset
			  if (typeof byteOffset === 'string') {
			    encoding = byteOffset;
			    byteOffset = 0;
			  } else if (byteOffset > 0x7fffffff) {
			    byteOffset = 0x7fffffff;
			  } else if (byteOffset < -0x80000000) {
			    byteOffset = -0x80000000;
			  }
			  byteOffset = +byteOffset; // Coerce to Number.
			  if (numberIsNaN(byteOffset)) {
			    // byteOffset: it it's undefined, null, NaN, "foo", etc, search whole buffer
			    byteOffset = dir ? 0 : (buffer.length - 1);
			  }

			  // Normalize byteOffset: negative offsets start from the end of the buffer
			  if (byteOffset < 0) byteOffset = buffer.length + byteOffset;
			  if (byteOffset >= buffer.length) {
			    if (dir) return -1
			    else byteOffset = buffer.length - 1;
			  } else if (byteOffset < 0) {
			    if (dir) byteOffset = 0;
			    else return -1
			  }

			  // Normalize val
			  if (typeof val === 'string') {
			    val = Buffer.from(val, encoding);
			  }

			  // Finally, search either indexOf (if dir is true) or lastIndexOf
			  if (Buffer.isBuffer(val)) {
			    // Special case: looking for empty string/buffer always fails
			    if (val.length === 0) {
			      return -1
			    }
			    return arrayIndexOf(buffer, val, byteOffset, encoding, dir)
			  } else if (typeof val === 'number') {
			    val = val & 0xFF; // Search for a byte value [0-255]
			    if (typeof Uint8Array.prototype.indexOf === 'function') {
			      if (dir) {
			        return Uint8Array.prototype.indexOf.call(buffer, val, byteOffset)
			      } else {
			        return Uint8Array.prototype.lastIndexOf.call(buffer, val, byteOffset)
			      }
			    }
			    return arrayIndexOf(buffer, [val], byteOffset, encoding, dir)
			  }

			  throw new TypeError('val must be string, number or Buffer')
			}

			function arrayIndexOf (arr, val, byteOffset, encoding, dir) {
			  let indexSize = 1;
			  let arrLength = arr.length;
			  let valLength = val.length;

			  if (encoding !== undefined) {
			    encoding = String(encoding).toLowerCase();
			    if (encoding === 'ucs2' || encoding === 'ucs-2' ||
			        encoding === 'utf16le' || encoding === 'utf-16le') {
			      if (arr.length < 2 || val.length < 2) {
			        return -1
			      }
			      indexSize = 2;
			      arrLength /= 2;
			      valLength /= 2;
			      byteOffset /= 2;
			    }
			  }

			  function read (buf, i) {
			    if (indexSize === 1) {
			      return buf[i]
			    } else {
			      return buf.readUInt16BE(i * indexSize)
			    }
			  }

			  let i;
			  if (dir) {
			    let foundIndex = -1;
			    for (i = byteOffset; i < arrLength; i++) {
			      if (read(arr, i) === read(val, foundIndex === -1 ? 0 : i - foundIndex)) {
			        if (foundIndex === -1) foundIndex = i;
			        if (i - foundIndex + 1 === valLength) return foundIndex * indexSize
			      } else {
			        if (foundIndex !== -1) i -= i - foundIndex;
			        foundIndex = -1;
			      }
			    }
			  } else {
			    if (byteOffset + valLength > arrLength) byteOffset = arrLength - valLength;
			    for (i = byteOffset; i >= 0; i--) {
			      let found = true;
			      for (let j = 0; j < valLength; j++) {
			        if (read(arr, i + j) !== read(val, j)) {
			          found = false;
			          break
			        }
			      }
			      if (found) return i
			    }
			  }

			  return -1
			}

			Buffer.prototype.includes = function includes (val, byteOffset, encoding) {
			  return this.indexOf(val, byteOffset, encoding) !== -1
			};

			Buffer.prototype.indexOf = function indexOf (val, byteOffset, encoding) {
			  return bidirectionalIndexOf(this, val, byteOffset, encoding, true)
			};

			Buffer.prototype.lastIndexOf = function lastIndexOf (val, byteOffset, encoding) {
			  return bidirectionalIndexOf(this, val, byteOffset, encoding, false)
			};

			function hexWrite (buf, string, offset, length) {
			  offset = Number(offset) || 0;
			  const remaining = buf.length - offset;
			  if (!length) {
			    length = remaining;
			  } else {
			    length = Number(length);
			    if (length > remaining) {
			      length = remaining;
			    }
			  }

			  const strLen = string.length;

			  if (length > strLen / 2) {
			    length = strLen / 2;
			  }
			  let i;
			  for (i = 0; i < length; ++i) {
			    const parsed = parseInt(string.substr(i * 2, 2), 16);
			    if (numberIsNaN(parsed)) return i
			    buf[offset + i] = parsed;
			  }
			  return i
			}

			function utf8Write (buf, string, offset, length) {
			  return blitBuffer(utf8ToBytes(string, buf.length - offset), buf, offset, length)
			}

			function asciiWrite (buf, string, offset, length) {
			  return blitBuffer(asciiToBytes(string), buf, offset, length)
			}

			function base64Write (buf, string, offset, length) {
			  return blitBuffer(base64ToBytes(string), buf, offset, length)
			}

			function ucs2Write (buf, string, offset, length) {
			  return blitBuffer(utf16leToBytes(string, buf.length - offset), buf, offset, length)
			}

			Buffer.prototype.write = function write (string, offset, length, encoding) {
			  // Buffer#write(string)
			  if (offset === undefined) {
			    encoding = 'utf8';
			    length = this.length;
			    offset = 0;
			  // Buffer#write(string, encoding)
			  } else if (length === undefined && typeof offset === 'string') {
			    encoding = offset;
			    length = this.length;
			    offset = 0;
			  // Buffer#write(string, offset[, length][, encoding])
			  } else if (isFinite(offset)) {
			    offset = offset >>> 0;
			    if (isFinite(length)) {
			      length = length >>> 0;
			      if (encoding === undefined) encoding = 'utf8';
			    } else {
			      encoding = length;
			      length = undefined;
			    }
			  } else {
			    throw new Error(
			      'Buffer.write(string, encoding, offset[, length]) is no longer supported'
			    )
			  }

			  const remaining = this.length - offset;
			  if (length === undefined || length > remaining) length = remaining;

			  if ((string.length > 0 && (length < 0 || offset < 0)) || offset > this.length) {
			    throw new RangeError('Attempt to write outside buffer bounds')
			  }

			  if (!encoding) encoding = 'utf8';

			  let loweredCase = false;
			  for (;;) {
			    switch (encoding) {
			      case 'hex':
			        return hexWrite(this, string, offset, length)

			      case 'utf8':
			      case 'utf-8':
			        return utf8Write(this, string, offset, length)

			      case 'ascii':
			      case 'latin1':
			      case 'binary':
			        return asciiWrite(this, string, offset, length)

			      case 'base64':
			        // Warning: maxLength not taken into account in base64Write
			        return base64Write(this, string, offset, length)

			      case 'ucs2':
			      case 'ucs-2':
			      case 'utf16le':
			      case 'utf-16le':
			        return ucs2Write(this, string, offset, length)

			      default:
			        if (loweredCase) throw new TypeError('Unknown encoding: ' + encoding)
			        encoding = ('' + encoding).toLowerCase();
			        loweredCase = true;
			    }
			  }
			};

			Buffer.prototype.toJSON = function toJSON () {
			  return {
			    type: 'Buffer',
			    data: Array.prototype.slice.call(this._arr || this, 0)
			  }
			};

			function base64Slice (buf, start, end) {
			  if (start === 0 && end === buf.length) {
			    return base64.fromByteArray(buf)
			  } else {
			    return base64.fromByteArray(buf.slice(start, end))
			  }
			}

			function utf8Slice (buf, start, end) {
			  end = Math.min(buf.length, end);
			  const res = [];

			  let i = start;
			  while (i < end) {
			    const firstByte = buf[i];
			    let codePoint = null;
			    let bytesPerSequence = (firstByte > 0xEF)
			      ? 4
			      : (firstByte > 0xDF)
			          ? 3
			          : (firstByte > 0xBF)
			              ? 2
			              : 1;

			    if (i + bytesPerSequence <= end) {
			      let secondByte, thirdByte, fourthByte, tempCodePoint;

			      switch (bytesPerSequence) {
			        case 1:
			          if (firstByte < 0x80) {
			            codePoint = firstByte;
			          }
			          break
			        case 2:
			          secondByte = buf[i + 1];
			          if ((secondByte & 0xC0) === 0x80) {
			            tempCodePoint = (firstByte & 0x1F) << 0x6 | (secondByte & 0x3F);
			            if (tempCodePoint > 0x7F) {
			              codePoint = tempCodePoint;
			            }
			          }
			          break
			        case 3:
			          secondByte = buf[i + 1];
			          thirdByte = buf[i + 2];
			          if ((secondByte & 0xC0) === 0x80 && (thirdByte & 0xC0) === 0x80) {
			            tempCodePoint = (firstByte & 0xF) << 0xC | (secondByte & 0x3F) << 0x6 | (thirdByte & 0x3F);
			            if (tempCodePoint > 0x7FF && (tempCodePoint < 0xD800 || tempCodePoint > 0xDFFF)) {
			              codePoint = tempCodePoint;
			            }
			          }
			          break
			        case 4:
			          secondByte = buf[i + 1];
			          thirdByte = buf[i + 2];
			          fourthByte = buf[i + 3];
			          if ((secondByte & 0xC0) === 0x80 && (thirdByte & 0xC0) === 0x80 && (fourthByte & 0xC0) === 0x80) {
			            tempCodePoint = (firstByte & 0xF) << 0x12 | (secondByte & 0x3F) << 0xC | (thirdByte & 0x3F) << 0x6 | (fourthByte & 0x3F);
			            if (tempCodePoint > 0xFFFF && tempCodePoint < 0x110000) {
			              codePoint = tempCodePoint;
			            }
			          }
			      }
			    }

			    if (codePoint === null) {
			      // we did not generate a valid codePoint so insert a
			      // replacement char (U+FFFD) and advance only 1 byte
			      codePoint = 0xFFFD;
			      bytesPerSequence = 1;
			    } else if (codePoint > 0xFFFF) {
			      // encode to utf16 (surrogate pair dance)
			      codePoint -= 0x10000;
			      res.push(codePoint >>> 10 & 0x3FF | 0xD800);
			      codePoint = 0xDC00 | codePoint & 0x3FF;
			    }

			    res.push(codePoint);
			    i += bytesPerSequence;
			  }

			  return decodeCodePointsArray(res)
			}

			// Based on http://stackoverflow.com/a/22747272/680742, the browser with
			// the lowest limit is Chrome, with 0x10000 args.
			// We go 1 magnitude less, for safety
			const MAX_ARGUMENTS_LENGTH = 0x1000;

			function decodeCodePointsArray (codePoints) {
			  const len = codePoints.length;
			  if (len <= MAX_ARGUMENTS_LENGTH) {
			    return String.fromCharCode.apply(String, codePoints) // avoid extra slice()
			  }

			  // Decode in chunks to avoid "call stack size exceeded".
			  let res = '';
			  let i = 0;
			  while (i < len) {
			    res += String.fromCharCode.apply(
			      String,
			      codePoints.slice(i, i += MAX_ARGUMENTS_LENGTH)
			    );
			  }
			  return res
			}

			function asciiSlice (buf, start, end) {
			  let ret = '';
			  end = Math.min(buf.length, end);

			  for (let i = start; i < end; ++i) {
			    ret += String.fromCharCode(buf[i] & 0x7F);
			  }
			  return ret
			}

			function latin1Slice (buf, start, end) {
			  let ret = '';
			  end = Math.min(buf.length, end);

			  for (let i = start; i < end; ++i) {
			    ret += String.fromCharCode(buf[i]);
			  }
			  return ret
			}

			function hexSlice (buf, start, end) {
			  const len = buf.length;

			  if (!start || start < 0) start = 0;
			  if (!end || end < 0 || end > len) end = len;

			  let out = '';
			  for (let i = start; i < end; ++i) {
			    out += hexSliceLookupTable[buf[i]];
			  }
			  return out
			}

			function utf16leSlice (buf, start, end) {
			  const bytes = buf.slice(start, end);
			  let res = '';
			  // If bytes.length is odd, the last 8 bits must be ignored (same as node.js)
			  for (let i = 0; i < bytes.length - 1; i += 2) {
			    res += String.fromCharCode(bytes[i] + (bytes[i + 1] * 256));
			  }
			  return res
			}

			Buffer.prototype.slice = function slice (start, end) {
			  const len = this.length;
			  start = ~~start;
			  end = end === undefined ? len : ~~end;

			  if (start < 0) {
			    start += len;
			    if (start < 0) start = 0;
			  } else if (start > len) {
			    start = len;
			  }

			  if (end < 0) {
			    end += len;
			    if (end < 0) end = 0;
			  } else if (end > len) {
			    end = len;
			  }

			  if (end < start) end = start;

			  const newBuf = this.subarray(start, end);
			  // Return an augmented `Uint8Array` instance
			  Object.setPrototypeOf(newBuf, Buffer.prototype);

			  return newBuf
			};

			/*
			 * Need to make sure that buffer isn't trying to write out of bounds.
			 */
			function checkOffset (offset, ext, length) {
			  if ((offset % 1) !== 0 || offset < 0) throw new RangeError('offset is not uint')
			  if (offset + ext > length) throw new RangeError('Trying to access beyond buffer length')
			}

			Buffer.prototype.readUintLE =
			Buffer.prototype.readUIntLE = function readUIntLE (offset, byteLength, noAssert) {
			  offset = offset >>> 0;
			  byteLength = byteLength >>> 0;
			  if (!noAssert) checkOffset(offset, byteLength, this.length);

			  let val = this[offset];
			  let mul = 1;
			  let i = 0;
			  while (++i < byteLength && (mul *= 0x100)) {
			    val += this[offset + i] * mul;
			  }

			  return val
			};

			Buffer.prototype.readUintBE =
			Buffer.prototype.readUIntBE = function readUIntBE (offset, byteLength, noAssert) {
			  offset = offset >>> 0;
			  byteLength = byteLength >>> 0;
			  if (!noAssert) {
			    checkOffset(offset, byteLength, this.length);
			  }

			  let val = this[offset + --byteLength];
			  let mul = 1;
			  while (byteLength > 0 && (mul *= 0x100)) {
			    val += this[offset + --byteLength] * mul;
			  }

			  return val
			};

			Buffer.prototype.readUint8 =
			Buffer.prototype.readUInt8 = function readUInt8 (offset, noAssert) {
			  offset = offset >>> 0;
			  if (!noAssert) checkOffset(offset, 1, this.length);
			  return this[offset]
			};

			Buffer.prototype.readUint16LE =
			Buffer.prototype.readUInt16LE = function readUInt16LE (offset, noAssert) {
			  offset = offset >>> 0;
			  if (!noAssert) checkOffset(offset, 2, this.length);
			  return this[offset] | (this[offset + 1] << 8)
			};

			Buffer.prototype.readUint16BE =
			Buffer.prototype.readUInt16BE = function readUInt16BE (offset, noAssert) {
			  offset = offset >>> 0;
			  if (!noAssert) checkOffset(offset, 2, this.length);
			  return (this[offset] << 8) | this[offset + 1]
			};

			Buffer.prototype.readUint32LE =
			Buffer.prototype.readUInt32LE = function readUInt32LE (offset, noAssert) {
			  offset = offset >>> 0;
			  if (!noAssert) checkOffset(offset, 4, this.length);

			  return ((this[offset]) |
			      (this[offset + 1] << 8) |
			      (this[offset + 2] << 16)) +
			      (this[offset + 3] * 0x1000000)
			};

			Buffer.prototype.readUint32BE =
			Buffer.prototype.readUInt32BE = function readUInt32BE (offset, noAssert) {
			  offset = offset >>> 0;
			  if (!noAssert) checkOffset(offset, 4, this.length);

			  return (this[offset] * 0x1000000) +
			    ((this[offset + 1] << 16) |
			    (this[offset + 2] << 8) |
			    this[offset + 3])
			};

			Buffer.prototype.readBigUInt64LE = defineBigIntMethod(function readBigUInt64LE (offset) {
			  offset = offset >>> 0;
			  validateNumber(offset, 'offset');
			  const first = this[offset];
			  const last = this[offset + 7];
			  if (first === undefined || last === undefined) {
			    boundsError(offset, this.length - 8);
			  }

			  const lo = first +
			    this[++offset] * 2 ** 8 +
			    this[++offset] * 2 ** 16 +
			    this[++offset] * 2 ** 24;

			  const hi = this[++offset] +
			    this[++offset] * 2 ** 8 +
			    this[++offset] * 2 ** 16 +
			    last * 2 ** 24;

			  return BigInt(lo) + (BigInt(hi) << BigInt(32))
			});

			Buffer.prototype.readBigUInt64BE = defineBigIntMethod(function readBigUInt64BE (offset) {
			  offset = offset >>> 0;
			  validateNumber(offset, 'offset');
			  const first = this[offset];
			  const last = this[offset + 7];
			  if (first === undefined || last === undefined) {
			    boundsError(offset, this.length - 8);
			  }

			  const hi = first * 2 ** 24 +
			    this[++offset] * 2 ** 16 +
			    this[++offset] * 2 ** 8 +
			    this[++offset];

			  const lo = this[++offset] * 2 ** 24 +
			    this[++offset] * 2 ** 16 +
			    this[++offset] * 2 ** 8 +
			    last;

			  return (BigInt(hi) << BigInt(32)) + BigInt(lo)
			});

			Buffer.prototype.readIntLE = function readIntLE (offset, byteLength, noAssert) {
			  offset = offset >>> 0;
			  byteLength = byteLength >>> 0;
			  if (!noAssert) checkOffset(offset, byteLength, this.length);

			  let val = this[offset];
			  let mul = 1;
			  let i = 0;
			  while (++i < byteLength && (mul *= 0x100)) {
			    val += this[offset + i] * mul;
			  }
			  mul *= 0x80;

			  if (val >= mul) val -= Math.pow(2, 8 * byteLength);

			  return val
			};

			Buffer.prototype.readIntBE = function readIntBE (offset, byteLength, noAssert) {
			  offset = offset >>> 0;
			  byteLength = byteLength >>> 0;
			  if (!noAssert) checkOffset(offset, byteLength, this.length);

			  let i = byteLength;
			  let mul = 1;
			  let val = this[offset + --i];
			  while (i > 0 && (mul *= 0x100)) {
			    val += this[offset + --i] * mul;
			  }
			  mul *= 0x80;

			  if (val >= mul) val -= Math.pow(2, 8 * byteLength);

			  return val
			};

			Buffer.prototype.readInt8 = function readInt8 (offset, noAssert) {
			  offset = offset >>> 0;
			  if (!noAssert) checkOffset(offset, 1, this.length);
			  if (!(this[offset] & 0x80)) return (this[offset])
			  return ((0xff - this[offset] + 1) * -1)
			};

			Buffer.prototype.readInt16LE = function readInt16LE (offset, noAssert) {
			  offset = offset >>> 0;
			  if (!noAssert) checkOffset(offset, 2, this.length);
			  const val = this[offset] | (this[offset + 1] << 8);
			  return (val & 0x8000) ? val | 0xFFFF0000 : val
			};

			Buffer.prototype.readInt16BE = function readInt16BE (offset, noAssert) {
			  offset = offset >>> 0;
			  if (!noAssert) checkOffset(offset, 2, this.length);
			  const val = this[offset + 1] | (this[offset] << 8);
			  return (val & 0x8000) ? val | 0xFFFF0000 : val
			};

			Buffer.prototype.readInt32LE = function readInt32LE (offset, noAssert) {
			  offset = offset >>> 0;
			  if (!noAssert) checkOffset(offset, 4, this.length);

			  return (this[offset]) |
			    (this[offset + 1] << 8) |
			    (this[offset + 2] << 16) |
			    (this[offset + 3] << 24)
			};

			Buffer.prototype.readInt32BE = function readInt32BE (offset, noAssert) {
			  offset = offset >>> 0;
			  if (!noAssert) checkOffset(offset, 4, this.length);

			  return (this[offset] << 24) |
			    (this[offset + 1] << 16) |
			    (this[offset + 2] << 8) |
			    (this[offset + 3])
			};

			Buffer.prototype.readBigInt64LE = defineBigIntMethod(function readBigInt64LE (offset) {
			  offset = offset >>> 0;
			  validateNumber(offset, 'offset');
			  const first = this[offset];
			  const last = this[offset + 7];
			  if (first === undefined || last === undefined) {
			    boundsError(offset, this.length - 8);
			  }

			  const val = this[offset + 4] +
			    this[offset + 5] * 2 ** 8 +
			    this[offset + 6] * 2 ** 16 +
			    (last << 24); // Overflow

			  return (BigInt(val) << BigInt(32)) +
			    BigInt(first +
			    this[++offset] * 2 ** 8 +
			    this[++offset] * 2 ** 16 +
			    this[++offset] * 2 ** 24)
			});

			Buffer.prototype.readBigInt64BE = defineBigIntMethod(function readBigInt64BE (offset) {
			  offset = offset >>> 0;
			  validateNumber(offset, 'offset');
			  const first = this[offset];
			  const last = this[offset + 7];
			  if (first === undefined || last === undefined) {
			    boundsError(offset, this.length - 8);
			  }

			  const val = (first << 24) + // Overflow
			    this[++offset] * 2 ** 16 +
			    this[++offset] * 2 ** 8 +
			    this[++offset];

			  return (BigInt(val) << BigInt(32)) +
			    BigInt(this[++offset] * 2 ** 24 +
			    this[++offset] * 2 ** 16 +
			    this[++offset] * 2 ** 8 +
			    last)
			});

			Buffer.prototype.readFloatLE = function readFloatLE (offset, noAssert) {
			  offset = offset >>> 0;
			  if (!noAssert) checkOffset(offset, 4, this.length);
			  return ieee754.read(this, offset, true, 23, 4)
			};

			Buffer.prototype.readFloatBE = function readFloatBE (offset, noAssert) {
			  offset = offset >>> 0;
			  if (!noAssert) checkOffset(offset, 4, this.length);
			  return ieee754.read(this, offset, false, 23, 4)
			};

			Buffer.prototype.readDoubleLE = function readDoubleLE (offset, noAssert) {
			  offset = offset >>> 0;
			  if (!noAssert) checkOffset(offset, 8, this.length);
			  return ieee754.read(this, offset, true, 52, 8)
			};

			Buffer.prototype.readDoubleBE = function readDoubleBE (offset, noAssert) {
			  offset = offset >>> 0;
			  if (!noAssert) checkOffset(offset, 8, this.length);
			  return ieee754.read(this, offset, false, 52, 8)
			};

			function checkInt (buf, value, offset, ext, max, min) {
			  if (!Buffer.isBuffer(buf)) throw new TypeError('"buffer" argument must be a Buffer instance')
			  if (value > max || value < min) throw new RangeError('"value" argument is out of bounds')
			  if (offset + ext > buf.length) throw new RangeError('Index out of range')
			}

			Buffer.prototype.writeUintLE =
			Buffer.prototype.writeUIntLE = function writeUIntLE (value, offset, byteLength, noAssert) {
			  value = +value;
			  offset = offset >>> 0;
			  byteLength = byteLength >>> 0;
			  if (!noAssert) {
			    const maxBytes = Math.pow(2, 8 * byteLength) - 1;
			    checkInt(this, value, offset, byteLength, maxBytes, 0);
			  }

			  let mul = 1;
			  let i = 0;
			  this[offset] = value & 0xFF;
			  while (++i < byteLength && (mul *= 0x100)) {
			    this[offset + i] = (value / mul) & 0xFF;
			  }

			  return offset + byteLength
			};

			Buffer.prototype.writeUintBE =
			Buffer.prototype.writeUIntBE = function writeUIntBE (value, offset, byteLength, noAssert) {
			  value = +value;
			  offset = offset >>> 0;
			  byteLength = byteLength >>> 0;
			  if (!noAssert) {
			    const maxBytes = Math.pow(2, 8 * byteLength) - 1;
			    checkInt(this, value, offset, byteLength, maxBytes, 0);
			  }

			  let i = byteLength - 1;
			  let mul = 1;
			  this[offset + i] = value & 0xFF;
			  while (--i >= 0 && (mul *= 0x100)) {
			    this[offset + i] = (value / mul) & 0xFF;
			  }

			  return offset + byteLength
			};

			Buffer.prototype.writeUint8 =
			Buffer.prototype.writeUInt8 = function writeUInt8 (value, offset, noAssert) {
			  value = +value;
			  offset = offset >>> 0;
			  if (!noAssert) checkInt(this, value, offset, 1, 0xff, 0);
			  this[offset] = (value & 0xff);
			  return offset + 1
			};

			Buffer.prototype.writeUint16LE =
			Buffer.prototype.writeUInt16LE = function writeUInt16LE (value, offset, noAssert) {
			  value = +value;
			  offset = offset >>> 0;
			  if (!noAssert) checkInt(this, value, offset, 2, 0xffff, 0);
			  this[offset] = (value & 0xff);
			  this[offset + 1] = (value >>> 8);
			  return offset + 2
			};

			Buffer.prototype.writeUint16BE =
			Buffer.prototype.writeUInt16BE = function writeUInt16BE (value, offset, noAssert) {
			  value = +value;
			  offset = offset >>> 0;
			  if (!noAssert) checkInt(this, value, offset, 2, 0xffff, 0);
			  this[offset] = (value >>> 8);
			  this[offset + 1] = (value & 0xff);
			  return offset + 2
			};

			Buffer.prototype.writeUint32LE =
			Buffer.prototype.writeUInt32LE = function writeUInt32LE (value, offset, noAssert) {
			  value = +value;
			  offset = offset >>> 0;
			  if (!noAssert) checkInt(this, value, offset, 4, 0xffffffff, 0);
			  this[offset + 3] = (value >>> 24);
			  this[offset + 2] = (value >>> 16);
			  this[offset + 1] = (value >>> 8);
			  this[offset] = (value & 0xff);
			  return offset + 4
			};

			Buffer.prototype.writeUint32BE =
			Buffer.prototype.writeUInt32BE = function writeUInt32BE (value, offset, noAssert) {
			  value = +value;
			  offset = offset >>> 0;
			  if (!noAssert) checkInt(this, value, offset, 4, 0xffffffff, 0);
			  this[offset] = (value >>> 24);
			  this[offset + 1] = (value >>> 16);
			  this[offset + 2] = (value >>> 8);
			  this[offset + 3] = (value & 0xff);
			  return offset + 4
			};

			function wrtBigUInt64LE (buf, value, offset, min, max) {
			  checkIntBI(value, min, max, buf, offset, 7);

			  let lo = Number(value & BigInt(0xffffffff));
			  buf[offset++] = lo;
			  lo = lo >> 8;
			  buf[offset++] = lo;
			  lo = lo >> 8;
			  buf[offset++] = lo;
			  lo = lo >> 8;
			  buf[offset++] = lo;
			  let hi = Number(value >> BigInt(32) & BigInt(0xffffffff));
			  buf[offset++] = hi;
			  hi = hi >> 8;
			  buf[offset++] = hi;
			  hi = hi >> 8;
			  buf[offset++] = hi;
			  hi = hi >> 8;
			  buf[offset++] = hi;
			  return offset
			}

			function wrtBigUInt64BE (buf, value, offset, min, max) {
			  checkIntBI(value, min, max, buf, offset, 7);

			  let lo = Number(value & BigInt(0xffffffff));
			  buf[offset + 7] = lo;
			  lo = lo >> 8;
			  buf[offset + 6] = lo;
			  lo = lo >> 8;
			  buf[offset + 5] = lo;
			  lo = lo >> 8;
			  buf[offset + 4] = lo;
			  let hi = Number(value >> BigInt(32) & BigInt(0xffffffff));
			  buf[offset + 3] = hi;
			  hi = hi >> 8;
			  buf[offset + 2] = hi;
			  hi = hi >> 8;
			  buf[offset + 1] = hi;
			  hi = hi >> 8;
			  buf[offset] = hi;
			  return offset + 8
			}

			Buffer.prototype.writeBigUInt64LE = defineBigIntMethod(function writeBigUInt64LE (value, offset = 0) {
			  return wrtBigUInt64LE(this, value, offset, BigInt(0), BigInt('0xffffffffffffffff'))
			});

			Buffer.prototype.writeBigUInt64BE = defineBigIntMethod(function writeBigUInt64BE (value, offset = 0) {
			  return wrtBigUInt64BE(this, value, offset, BigInt(0), BigInt('0xffffffffffffffff'))
			});

			Buffer.prototype.writeIntLE = function writeIntLE (value, offset, byteLength, noAssert) {
			  value = +value;
			  offset = offset >>> 0;
			  if (!noAssert) {
			    const limit = Math.pow(2, (8 * byteLength) - 1);

			    checkInt(this, value, offset, byteLength, limit - 1, -limit);
			  }

			  let i = 0;
			  let mul = 1;
			  let sub = 0;
			  this[offset] = value & 0xFF;
			  while (++i < byteLength && (mul *= 0x100)) {
			    if (value < 0 && sub === 0 && this[offset + i - 1] !== 0) {
			      sub = 1;
			    }
			    this[offset + i] = ((value / mul) >> 0) - sub & 0xFF;
			  }

			  return offset + byteLength
			};

			Buffer.prototype.writeIntBE = function writeIntBE (value, offset, byteLength, noAssert) {
			  value = +value;
			  offset = offset >>> 0;
			  if (!noAssert) {
			    const limit = Math.pow(2, (8 * byteLength) - 1);

			    checkInt(this, value, offset, byteLength, limit - 1, -limit);
			  }

			  let i = byteLength - 1;
			  let mul = 1;
			  let sub = 0;
			  this[offset + i] = value & 0xFF;
			  while (--i >= 0 && (mul *= 0x100)) {
			    if (value < 0 && sub === 0 && this[offset + i + 1] !== 0) {
			      sub = 1;
			    }
			    this[offset + i] = ((value / mul) >> 0) - sub & 0xFF;
			  }

			  return offset + byteLength
			};

			Buffer.prototype.writeInt8 = function writeInt8 (value, offset, noAssert) {
			  value = +value;
			  offset = offset >>> 0;
			  if (!noAssert) checkInt(this, value, offset, 1, 0x7f, -0x80);
			  if (value < 0) value = 0xff + value + 1;
			  this[offset] = (value & 0xff);
			  return offset + 1
			};

			Buffer.prototype.writeInt16LE = function writeInt16LE (value, offset, noAssert) {
			  value = +value;
			  offset = offset >>> 0;
			  if (!noAssert) checkInt(this, value, offset, 2, 0x7fff, -0x8000);
			  this[offset] = (value & 0xff);
			  this[offset + 1] = (value >>> 8);
			  return offset + 2
			};

			Buffer.prototype.writeInt16BE = function writeInt16BE (value, offset, noAssert) {
			  value = +value;
			  offset = offset >>> 0;
			  if (!noAssert) checkInt(this, value, offset, 2, 0x7fff, -0x8000);
			  this[offset] = (value >>> 8);
			  this[offset + 1] = (value & 0xff);
			  return offset + 2
			};

			Buffer.prototype.writeInt32LE = function writeInt32LE (value, offset, noAssert) {
			  value = +value;
			  offset = offset >>> 0;
			  if (!noAssert) checkInt(this, value, offset, 4, 0x7fffffff, -0x80000000);
			  this[offset] = (value & 0xff);
			  this[offset + 1] = (value >>> 8);
			  this[offset + 2] = (value >>> 16);
			  this[offset + 3] = (value >>> 24);
			  return offset + 4
			};

			Buffer.prototype.writeInt32BE = function writeInt32BE (value, offset, noAssert) {
			  value = +value;
			  offset = offset >>> 0;
			  if (!noAssert) checkInt(this, value, offset, 4, 0x7fffffff, -0x80000000);
			  if (value < 0) value = 0xffffffff + value + 1;
			  this[offset] = (value >>> 24);
			  this[offset + 1] = (value >>> 16);
			  this[offset + 2] = (value >>> 8);
			  this[offset + 3] = (value & 0xff);
			  return offset + 4
			};

			Buffer.prototype.writeBigInt64LE = defineBigIntMethod(function writeBigInt64LE (value, offset = 0) {
			  return wrtBigUInt64LE(this, value, offset, -BigInt('0x8000000000000000'), BigInt('0x7fffffffffffffff'))
			});

			Buffer.prototype.writeBigInt64BE = defineBigIntMethod(function writeBigInt64BE (value, offset = 0) {
			  return wrtBigUInt64BE(this, value, offset, -BigInt('0x8000000000000000'), BigInt('0x7fffffffffffffff'))
			});

			function checkIEEE754 (buf, value, offset, ext, max, min) {
			  if (offset + ext > buf.length) throw new RangeError('Index out of range')
			  if (offset < 0) throw new RangeError('Index out of range')
			}

			function writeFloat (buf, value, offset, littleEndian, noAssert) {
			  value = +value;
			  offset = offset >>> 0;
			  if (!noAssert) {
			    checkIEEE754(buf, value, offset, 4);
			  }
			  ieee754.write(buf, value, offset, littleEndian, 23, 4);
			  return offset + 4
			}

			Buffer.prototype.writeFloatLE = function writeFloatLE (value, offset, noAssert) {
			  return writeFloat(this, value, offset, true, noAssert)
			};

			Buffer.prototype.writeFloatBE = function writeFloatBE (value, offset, noAssert) {
			  return writeFloat(this, value, offset, false, noAssert)
			};

			function writeDouble (buf, value, offset, littleEndian, noAssert) {
			  value = +value;
			  offset = offset >>> 0;
			  if (!noAssert) {
			    checkIEEE754(buf, value, offset, 8);
			  }
			  ieee754.write(buf, value, offset, littleEndian, 52, 8);
			  return offset + 8
			}

			Buffer.prototype.writeDoubleLE = function writeDoubleLE (value, offset, noAssert) {
			  return writeDouble(this, value, offset, true, noAssert)
			};

			Buffer.prototype.writeDoubleBE = function writeDoubleBE (value, offset, noAssert) {
			  return writeDouble(this, value, offset, false, noAssert)
			};

			// copy(targetBuffer, targetStart=0, sourceStart=0, sourceEnd=buffer.length)
			Buffer.prototype.copy = function copy (target, targetStart, start, end) {
			  if (!Buffer.isBuffer(target)) throw new TypeError('argument should be a Buffer')
			  if (!start) start = 0;
			  if (!end && end !== 0) end = this.length;
			  if (targetStart >= target.length) targetStart = target.length;
			  if (!targetStart) targetStart = 0;
			  if (end > 0 && end < start) end = start;

			  // Copy 0 bytes; we're done
			  if (end === start) return 0
			  if (target.length === 0 || this.length === 0) return 0

			  // Fatal error conditions
			  if (targetStart < 0) {
			    throw new RangeError('targetStart out of bounds')
			  }
			  if (start < 0 || start >= this.length) throw new RangeError('Index out of range')
			  if (end < 0) throw new RangeError('sourceEnd out of bounds')

			  // Are we oob?
			  if (end > this.length) end = this.length;
			  if (target.length - targetStart < end - start) {
			    end = target.length - targetStart + start;
			  }

			  const len = end - start;

			  if (this === target && typeof Uint8Array.prototype.copyWithin === 'function') {
			    // Use built-in when available, missing from IE11
			    this.copyWithin(targetStart, start, end);
			  } else {
			    Uint8Array.prototype.set.call(
			      target,
			      this.subarray(start, end),
			      targetStart
			    );
			  }

			  return len
			};

			// Usage:
			//    buffer.fill(number[, offset[, end]])
			//    buffer.fill(buffer[, offset[, end]])
			//    buffer.fill(string[, offset[, end]][, encoding])
			Buffer.prototype.fill = function fill (val, start, end, encoding) {
			  // Handle string cases:
			  if (typeof val === 'string') {
			    if (typeof start === 'string') {
			      encoding = start;
			      start = 0;
			      end = this.length;
			    } else if (typeof end === 'string') {
			      encoding = end;
			      end = this.length;
			    }
			    if (encoding !== undefined && typeof encoding !== 'string') {
			      throw new TypeError('encoding must be a string')
			    }
			    if (typeof encoding === 'string' && !Buffer.isEncoding(encoding)) {
			      throw new TypeError('Unknown encoding: ' + encoding)
			    }
			    if (val.length === 1) {
			      const code = val.charCodeAt(0);
			      if ((encoding === 'utf8' && code < 128) ||
			          encoding === 'latin1') {
			        // Fast path: If `val` fits into a single byte, use that numeric value.
			        val = code;
			      }
			    }
			  } else if (typeof val === 'number') {
			    val = val & 255;
			  } else if (typeof val === 'boolean') {
			    val = Number(val);
			  }

			  // Invalid ranges are not set to a default, so can range check early.
			  if (start < 0 || this.length < start || this.length < end) {
			    throw new RangeError('Out of range index')
			  }

			  if (end <= start) {
			    return this
			  }

			  start = start >>> 0;
			  end = end === undefined ? this.length : end >>> 0;

			  if (!val) val = 0;

			  let i;
			  if (typeof val === 'number') {
			    for (i = start; i < end; ++i) {
			      this[i] = val;
			    }
			  } else {
			    const bytes = Buffer.isBuffer(val)
			      ? val
			      : Buffer.from(val, encoding);
			    const len = bytes.length;
			    if (len === 0) {
			      throw new TypeError('The value "' + val +
			        '" is invalid for argument "value"')
			    }
			    for (i = 0; i < end - start; ++i) {
			      this[i + start] = bytes[i % len];
			    }
			  }

			  return this
			};

			// CUSTOM ERRORS
			// =============

			// Simplified versions from Node, changed for Buffer-only usage
			const errors = {};
			function E (sym, getMessage, Base) {
			  errors[sym] = class NodeError extends Base {
			    constructor () {
			      super();

			      Object.defineProperty(this, 'message', {
			        value: getMessage.apply(this, arguments),
			        writable: true,
			        configurable: true
			      });

			      // Add the error code to the name to include it in the stack trace.
			      this.name = `${this.name} [${sym}]`;
			      // Access the stack to generate the error message including the error code
			      // from the name.
			      this.stack; // eslint-disable-line no-unused-expressions
			      // Reset the name to the actual name.
			      delete this.name;
			    }

			    get code () {
			      return sym
			    }

			    set code (value) {
			      Object.defineProperty(this, 'code', {
			        configurable: true,
			        enumerable: true,
			        value,
			        writable: true
			      });
			    }

			    toString () {
			      return `${this.name} [${sym}]: ${this.message}`
			    }
			  };
			}

			E('ERR_BUFFER_OUT_OF_BOUNDS',
			  function (name) {
			    if (name) {
			      return `${name} is outside of buffer bounds`
			    }

			    return 'Attempt to access memory outside buffer bounds'
			  }, RangeError);
			E('ERR_INVALID_ARG_TYPE',
			  function (name, actual) {
			    return `The "${name}" argument must be of type number. Received type ${typeof actual}`
			  }, TypeError);
			E('ERR_OUT_OF_RANGE',
			  function (str, range, input) {
			    let msg = `The value of "${str}" is out of range.`;
			    let received = input;
			    if (Number.isInteger(input) && Math.abs(input) > 2 ** 32) {
			      received = addNumericalSeparator(String(input));
			    } else if (typeof input === 'bigint') {
			      received = String(input);
			      if (input > BigInt(2) ** BigInt(32) || input < -(BigInt(2) ** BigInt(32))) {
			        received = addNumericalSeparator(received);
			      }
			      received += 'n';
			    }
			    msg += ` It must be ${range}. Received ${received}`;
			    return msg
			  }, RangeError);

			function addNumericalSeparator (val) {
			  let res = '';
			  let i = val.length;
			  const start = val[0] === '-' ? 1 : 0;
			  for (; i >= start + 4; i -= 3) {
			    res = `_${val.slice(i - 3, i)}${res}`;
			  }
			  return `${val.slice(0, i)}${res}`
			}

			// CHECK FUNCTIONS
			// ===============

			function checkBounds (buf, offset, byteLength) {
			  validateNumber(offset, 'offset');
			  if (buf[offset] === undefined || buf[offset + byteLength] === undefined) {
			    boundsError(offset, buf.length - (byteLength + 1));
			  }
			}

			function checkIntBI (value, min, max, buf, offset, byteLength) {
			  if (value > max || value < min) {
			    const n = typeof min === 'bigint' ? 'n' : '';
			    let range;
			    {
			      if (min === 0 || min === BigInt(0)) {
			        range = `>= 0${n} and < 2${n} ** ${(byteLength + 1) * 8}${n}`;
			      } else {
			        range = `>= -(2${n} ** ${(byteLength + 1) * 8 - 1}${n}) and < 2 ** ` +
			                `${(byteLength + 1) * 8 - 1}${n}`;
			      }
			    }
			    throw new errors.ERR_OUT_OF_RANGE('value', range, value)
			  }
			  checkBounds(buf, offset, byteLength);
			}

			function validateNumber (value, name) {
			  if (typeof value !== 'number') {
			    throw new errors.ERR_INVALID_ARG_TYPE(name, 'number', value)
			  }
			}

			function boundsError (value, length, type) {
			  if (Math.floor(value) !== value) {
			    validateNumber(value, type);
			    throw new errors.ERR_OUT_OF_RANGE('offset', 'an integer', value)
			  }

			  if (length < 0) {
			    throw new errors.ERR_BUFFER_OUT_OF_BOUNDS()
			  }

			  throw new errors.ERR_OUT_OF_RANGE('offset',
			                                    `>= ${0} and <= ${length}`,
			                                    value)
			}

			// HELPER FUNCTIONS
			// ================

			const INVALID_BASE64_RE = /[^+/0-9A-Za-z-_]/g;

			function base64clean (str) {
			  // Node takes equal signs as end of the Base64 encoding
			  str = str.split('=')[0];
			  // Node strips out invalid characters like \n and \t from the string, base64-js does not
			  str = str.trim().replace(INVALID_BASE64_RE, '');
			  // Node converts strings with length < 2 to ''
			  if (str.length < 2) return ''
			  // Node allows for non-padded base64 strings (missing trailing ===), base64-js does not
			  while (str.length % 4 !== 0) {
			    str = str + '=';
			  }
			  return str
			}

			function utf8ToBytes (string, units) {
			  units = units || Infinity;
			  let codePoint;
			  const length = string.length;
			  let leadSurrogate = null;
			  const bytes = [];

			  for (let i = 0; i < length; ++i) {
			    codePoint = string.charCodeAt(i);

			    // is surrogate component
			    if (codePoint > 0xD7FF && codePoint < 0xE000) {
			      // last char was a lead
			      if (!leadSurrogate) {
			        // no lead yet
			        if (codePoint > 0xDBFF) {
			          // unexpected trail
			          if ((units -= 3) > -1) bytes.push(0xEF, 0xBF, 0xBD);
			          continue
			        } else if (i + 1 === length) {
			          // unpaired lead
			          if ((units -= 3) > -1) bytes.push(0xEF, 0xBF, 0xBD);
			          continue
			        }

			        // valid lead
			        leadSurrogate = codePoint;

			        continue
			      }

			      // 2 leads in a row
			      if (codePoint < 0xDC00) {
			        if ((units -= 3) > -1) bytes.push(0xEF, 0xBF, 0xBD);
			        leadSurrogate = codePoint;
			        continue
			      }

			      // valid surrogate pair
			      codePoint = (leadSurrogate - 0xD800 << 10 | codePoint - 0xDC00) + 0x10000;
			    } else if (leadSurrogate) {
			      // valid bmp char, but last char was a lead
			      if ((units -= 3) > -1) bytes.push(0xEF, 0xBF, 0xBD);
			    }

			    leadSurrogate = null;

			    // encode utf8
			    if (codePoint < 0x80) {
			      if ((units -= 1) < 0) break
			      bytes.push(codePoint);
			    } else if (codePoint < 0x800) {
			      if ((units -= 2) < 0) break
			      bytes.push(
			        codePoint >> 0x6 | 0xC0,
			        codePoint & 0x3F | 0x80
			      );
			    } else if (codePoint < 0x10000) {
			      if ((units -= 3) < 0) break
			      bytes.push(
			        codePoint >> 0xC | 0xE0,
			        codePoint >> 0x6 & 0x3F | 0x80,
			        codePoint & 0x3F | 0x80
			      );
			    } else if (codePoint < 0x110000) {
			      if ((units -= 4) < 0) break
			      bytes.push(
			        codePoint >> 0x12 | 0xF0,
			        codePoint >> 0xC & 0x3F | 0x80,
			        codePoint >> 0x6 & 0x3F | 0x80,
			        codePoint & 0x3F | 0x80
			      );
			    } else {
			      throw new Error('Invalid code point')
			    }
			  }

			  return bytes
			}

			function asciiToBytes (str) {
			  const byteArray = [];
			  for (let i = 0; i < str.length; ++i) {
			    // Node's code seems to be doing this and not & 0x7F..
			    byteArray.push(str.charCodeAt(i) & 0xFF);
			  }
			  return byteArray
			}

			function utf16leToBytes (str, units) {
			  let c, hi, lo;
			  const byteArray = [];
			  for (let i = 0; i < str.length; ++i) {
			    if ((units -= 2) < 0) break

			    c = str.charCodeAt(i);
			    hi = c >> 8;
			    lo = c % 256;
			    byteArray.push(lo);
			    byteArray.push(hi);
			  }

			  return byteArray
			}

			function base64ToBytes (str) {
			  return base64.toByteArray(base64clean(str))
			}

			function blitBuffer (src, dst, offset, length) {
			  let i;
			  for (i = 0; i < length; ++i) {
			    if ((i + offset >= dst.length) || (i >= src.length)) break
			    dst[i + offset] = src[i];
			  }
			  return i
			}

			// ArrayBuffer or Uint8Array objects from other contexts (i.e. iframes) do not pass
			// the `instanceof` check but they should be treated as of that type.
			// See: https://github.com/feross/buffer/issues/166
			function isInstance (obj, type) {
			  return obj instanceof type ||
			    (obj != null && obj.constructor != null && obj.constructor.name != null &&
			      obj.constructor.name === type.name)
			}
			function numberIsNaN (obj) {
			  // For IE11 support
			  return obj !== obj // eslint-disable-line no-self-compare
			}

			// Create lookup table for `toString('hex')`
			// See: https://github.com/feross/buffer/issues/219
			const hexSliceLookupTable = (function () {
			  const alphabet = '0123456789abcdef';
			  const table = new Array(256);
			  for (let i = 0; i < 16; ++i) {
			    const i16 = i * 16;
			    for (let j = 0; j < 16; ++j) {
			      table[i16 + j] = alphabet[i] + alphabet[j];
			    }
			  }
			  return table
			})();

			// Return not function with Error if BigInt not supported
			function defineBigIntMethod (fn) {
			  return typeof BigInt === 'undefined' ? BufferBigIntNotDefined : fn
			}

			function BufferBigIntNotDefined () {
			  throw new Error('BigInt not supported')
			} 
		} (buffer));
		return buffer;
	}

	var bufferExports = /*@__PURE__*/ requireBuffer();

	function number$1(n) {
	    if (!Number.isSafeInteger(n) || n < 0)
	        throw new Error(`positive integer expected, not ${n}`);
	}
	// copied from utils
	function isBytes$1(a) {
	    return (a instanceof Uint8Array ||
	        (a != null && typeof a === 'object' && a.constructor.name === 'Uint8Array'));
	}
	function bytes(b, ...lengths) {
	    if (!isBytes$1(b))
	        throw new Error('Uint8Array expected');
	    if (lengths.length > 0 && !lengths.includes(b.length))
	        throw new Error(`Uint8Array expected of length ${lengths}, not of length=${b.length}`);
	}
	function hash(h) {
	    if (typeof h !== 'function' || typeof h.create !== 'function')
	        throw new Error('Hash should be wrapped by utils.wrapConstructor');
	    number$1(h.outputLen);
	    number$1(h.blockLen);
	}
	function exists(instance, checkFinished = true) {
	    if (instance.destroyed)
	        throw new Error('Hash instance has been destroyed');
	    if (checkFinished && instance.finished)
	        throw new Error('Hash#digest() has already been called');
	}
	function output(out, instance) {
	    bytes(out);
	    const min = instance.outputLen;
	    if (out.length < min) {
	        throw new Error(`digestInto() expects output buffer of length at least ${min}`);
	    }
	}

	const crypto = typeof globalThis === 'object' && 'crypto' in globalThis ? globalThis.crypto : undefined;

	/*! noble-hashes - MIT License (c) 2022 Paul Miller (paulmillr.com) */
	// We use WebCrypto aka globalThis.crypto, which exists in browsers and node.js 16+.
	// node.js versions earlier than v19 don't declare it in global scope.
	// For node.js, package.json#exports field mapping rewrites import
	// from `crypto` to `cryptoNode`, which imports native module.
	// Makes the utils un-importable in browsers without a bundler.
	// Once node.js 18 is deprecated (2025-04-30), we can just drop the import.
	// Cast array to view
	const createView = (arr) => new DataView(arr.buffer, arr.byteOffset, arr.byteLength);
	// The rotate right (circular right shift) operation for uint32
	const rotr = (word, shift) => (word << (32 - shift)) | (word >>> shift);
	new Uint8Array(new Uint32Array([0x11223344]).buffer)[0] === 0x44;
	/**
	 * @example utf8ToBytes('abc') // new Uint8Array([97, 98, 99])
	 */
	function utf8ToBytes$1(str) {
	    if (typeof str !== 'string')
	        throw new Error(`utf8ToBytes expected string, got ${typeof str}`);
	    return new Uint8Array(new TextEncoder().encode(str)); // https://bugzil.la/1681809
	}
	/**
	 * Normalizes (non-hex) string or Uint8Array to Uint8Array.
	 * Warning: when Uint8Array is passed, it would NOT get copied.
	 * Keep in mind for future mutable operations.
	 */
	function toBytes(data) {
	    if (typeof data === 'string')
	        data = utf8ToBytes$1(data);
	    bytes(data);
	    return data;
	}
	/**
	 * Copies several Uint8Arrays into one.
	 */
	function concatBytes$1(...arrays) {
	    let sum = 0;
	    for (let i = 0; i < arrays.length; i++) {
	        const a = arrays[i];
	        bytes(a);
	        sum += a.length;
	    }
	    const res = new Uint8Array(sum);
	    for (let i = 0, pad = 0; i < arrays.length; i++) {
	        const a = arrays[i];
	        res.set(a, pad);
	        pad += a.length;
	    }
	    return res;
	}
	// For runtime check if class implements interface
	class Hash {
	    // Safe version that clones internal state
	    clone() {
	        return this._cloneInto();
	    }
	}
	function wrapConstructor(hashCons) {
	    const hashC = (msg) => hashCons().update(toBytes(msg)).digest();
	    const tmp = hashCons();
	    hashC.outputLen = tmp.outputLen;
	    hashC.blockLen = tmp.blockLen;
	    hashC.create = () => hashCons();
	    return hashC;
	}
	/**
	 * Secure PRNG. Uses `crypto.getRandomValues`, which defers to OS.
	 */
	function randomBytes(bytesLength = 32) {
	    if (crypto && typeof crypto.getRandomValues === 'function') {
	        return crypto.getRandomValues(new Uint8Array(bytesLength));
	    }
	    throw new Error('crypto.getRandomValues must be defined');
	}

	// Polyfill for Safari 14
	function setBigUint64(view, byteOffset, value, isLE) {
	    if (typeof view.setBigUint64 === 'function')
	        return view.setBigUint64(byteOffset, value, isLE);
	    const _32n = BigInt(32);
	    const _u32_max = BigInt(0xffffffff);
	    const wh = Number((value >> _32n) & _u32_max);
	    const wl = Number(value & _u32_max);
	    const h = isLE ? 4 : 0;
	    const l = isLE ? 0 : 4;
	    view.setUint32(byteOffset + h, wh, isLE);
	    view.setUint32(byteOffset + l, wl, isLE);
	}
	// Choice: a ? b : c
	const Chi = (a, b, c) => (a & b) ^ (~a & c);
	// Majority function, true if any two inpust is true
	const Maj = (a, b, c) => (a & b) ^ (a & c) ^ (b & c);
	/**
	 * Merkle-Damgard hash construction base class.
	 * Could be used to create MD5, RIPEMD, SHA1, SHA2.
	 */
	class HashMD extends Hash {
	    constructor(blockLen, outputLen, padOffset, isLE) {
	        super();
	        this.blockLen = blockLen;
	        this.outputLen = outputLen;
	        this.padOffset = padOffset;
	        this.isLE = isLE;
	        this.finished = false;
	        this.length = 0;
	        this.pos = 0;
	        this.destroyed = false;
	        this.buffer = new Uint8Array(blockLen);
	        this.view = createView(this.buffer);
	    }
	    update(data) {
	        exists(this);
	        const { view, buffer, blockLen } = this;
	        data = toBytes(data);
	        const len = data.length;
	        for (let pos = 0; pos < len;) {
	            const take = Math.min(blockLen - this.pos, len - pos);
	            // Fast path: we have at least one block in input, cast it to view and process
	            if (take === blockLen) {
	                const dataView = createView(data);
	                for (; blockLen <= len - pos; pos += blockLen)
	                    this.process(dataView, pos);
	                continue;
	            }
	            buffer.set(data.subarray(pos, pos + take), this.pos);
	            this.pos += take;
	            pos += take;
	            if (this.pos === blockLen) {
	                this.process(view, 0);
	                this.pos = 0;
	            }
	        }
	        this.length += data.length;
	        this.roundClean();
	        return this;
	    }
	    digestInto(out) {
	        exists(this);
	        output(out, this);
	        this.finished = true;
	        // Padding
	        // We can avoid allocation of buffer for padding completely if it
	        // was previously not allocated here. But it won't change performance.
	        const { buffer, view, blockLen, isLE } = this;
	        let { pos } = this;
	        // append the bit '1' to the message
	        buffer[pos++] = 0b10000000;
	        this.buffer.subarray(pos).fill(0);
	        // we have less than padOffset left in buffer, so we cannot put length in
	        // current block, need process it and pad again
	        if (this.padOffset > blockLen - pos) {
	            this.process(view, 0);
	            pos = 0;
	        }
	        // Pad until full block byte with zeros
	        for (let i = pos; i < blockLen; i++)
	            buffer[i] = 0;
	        // Note: sha512 requires length to be 128bit integer, but length in JS will overflow before that
	        // You need to write around 2 exabytes (u64_max / 8 / (1024**6)) for this to happen.
	        // So we just write lowest 64 bits of that value.
	        setBigUint64(view, blockLen - 8, BigInt(this.length * 8), isLE);
	        this.process(view, 0);
	        const oview = createView(out);
	        const len = this.outputLen;
	        // NOTE: we do division by 4 later, which should be fused in single op with modulo by JIT
	        if (len % 4)
	            throw new Error('_sha2: outputLen should be aligned to 32bit');
	        const outLen = len / 4;
	        const state = this.get();
	        if (outLen > state.length)
	            throw new Error('_sha2: outputLen bigger than state');
	        for (let i = 0; i < outLen; i++)
	            oview.setUint32(4 * i, state[i], isLE);
	    }
	    digest() {
	        const { buffer, outputLen } = this;
	        this.digestInto(buffer);
	        const res = buffer.slice(0, outputLen);
	        this.destroy();
	        return res;
	    }
	    _cloneInto(to) {
	        to || (to = new this.constructor());
	        to.set(...this.get());
	        const { blockLen, buffer, length, finished, destroyed, pos } = this;
	        to.length = length;
	        to.pos = pos;
	        to.finished = finished;
	        to.destroyed = destroyed;
	        if (length % blockLen)
	            to.buffer.set(buffer);
	        return to;
	    }
	}

	const U32_MASK64 = /* @__PURE__ */ BigInt(2 ** 32 - 1);
	const _32n = /* @__PURE__ */ BigInt(32);
	// We are not using BigUint64Array, because they are extremely slow as per 2022
	function fromBig(n, le = false) {
	    if (le)
	        return { h: Number(n & U32_MASK64), l: Number((n >> _32n) & U32_MASK64) };
	    return { h: Number((n >> _32n) & U32_MASK64) | 0, l: Number(n & U32_MASK64) | 0 };
	}
	function split(lst, le = false) {
	    let Ah = new Uint32Array(lst.length);
	    let Al = new Uint32Array(lst.length);
	    for (let i = 0; i < lst.length; i++) {
	        const { h, l } = fromBig(lst[i], le);
	        [Ah[i], Al[i]] = [h, l];
	    }
	    return [Ah, Al];
	}
	const toBig = (h, l) => (BigInt(h >>> 0) << _32n) | BigInt(l >>> 0);
	// for Shift in [0, 32)
	const shrSH = (h, _l, s) => h >>> s;
	const shrSL = (h, l, s) => (h << (32 - s)) | (l >>> s);
	// Right rotate for Shift in [1, 32)
	const rotrSH = (h, l, s) => (h >>> s) | (l << (32 - s));
	const rotrSL = (h, l, s) => (h << (32 - s)) | (l >>> s);
	// Right rotate for Shift in (32, 64), NOTE: 32 is special case.
	const rotrBH = (h, l, s) => (h << (64 - s)) | (l >>> (s - 32));
	const rotrBL = (h, l, s) => (h >>> (s - 32)) | (l << (64 - s));
	// Right rotate for shift===32 (just swaps l&h)
	const rotr32H = (_h, l) => l;
	const rotr32L = (h, _l) => h;
	// Left rotate for Shift in [1, 32)
	const rotlSH = (h, l, s) => (h << s) | (l >>> (32 - s));
	const rotlSL = (h, l, s) => (l << s) | (h >>> (32 - s));
	// Left rotate for Shift in (32, 64), NOTE: 32 is special case.
	const rotlBH = (h, l, s) => (l << (s - 32)) | (h >>> (64 - s));
	const rotlBL = (h, l, s) => (h << (s - 32)) | (l >>> (64 - s));
	// JS uses 32-bit signed integers for bitwise operations which means we cannot
	// simple take carry out of low bit sum by shift, we need to use division.
	function add(Ah, Al, Bh, Bl) {
	    const l = (Al >>> 0) + (Bl >>> 0);
	    return { h: (Ah + Bh + ((l / 2 ** 32) | 0)) | 0, l: l | 0 };
	}
	// Addition with more than 2 elements
	const add3L = (Al, Bl, Cl) => (Al >>> 0) + (Bl >>> 0) + (Cl >>> 0);
	const add3H = (low, Ah, Bh, Ch) => (Ah + Bh + Ch + ((low / 2 ** 32) | 0)) | 0;
	const add4L = (Al, Bl, Cl, Dl) => (Al >>> 0) + (Bl >>> 0) + (Cl >>> 0) + (Dl >>> 0);
	const add4H = (low, Ah, Bh, Ch, Dh) => (Ah + Bh + Ch + Dh + ((low / 2 ** 32) | 0)) | 0;
	const add5L = (Al, Bl, Cl, Dl, El) => (Al >>> 0) + (Bl >>> 0) + (Cl >>> 0) + (Dl >>> 0) + (El >>> 0);
	const add5H = (low, Ah, Bh, Ch, Dh, Eh) => (Ah + Bh + Ch + Dh + Eh + ((low / 2 ** 32) | 0)) | 0;
	// prettier-ignore
	const u64$3 = {
	    fromBig, split, toBig,
	    shrSH, shrSL,
	    rotrSH, rotrSL, rotrBH, rotrBL,
	    rotr32H, rotr32L,
	    rotlSH, rotlSL, rotlBH, rotlBL,
	    add, add3L, add3H, add4L, add4H, add5H, add5L,
	};

	// Round contants (first 32 bits of the fractional parts of the cube roots of the first 80 primes 2..409):
	// prettier-ignore
	const [SHA512_Kh, SHA512_Kl] = /* @__PURE__ */ (() => u64$3.split([
	    '0x428a2f98d728ae22', '0x7137449123ef65cd', '0xb5c0fbcfec4d3b2f', '0xe9b5dba58189dbbc',
	    '0x3956c25bf348b538', '0x59f111f1b605d019', '0x923f82a4af194f9b', '0xab1c5ed5da6d8118',
	    '0xd807aa98a3030242', '0x12835b0145706fbe', '0x243185be4ee4b28c', '0x550c7dc3d5ffb4e2',
	    '0x72be5d74f27b896f', '0x80deb1fe3b1696b1', '0x9bdc06a725c71235', '0xc19bf174cf692694',
	    '0xe49b69c19ef14ad2', '0xefbe4786384f25e3', '0x0fc19dc68b8cd5b5', '0x240ca1cc77ac9c65',
	    '0x2de92c6f592b0275', '0x4a7484aa6ea6e483', '0x5cb0a9dcbd41fbd4', '0x76f988da831153b5',
	    '0x983e5152ee66dfab', '0xa831c66d2db43210', '0xb00327c898fb213f', '0xbf597fc7beef0ee4',
	    '0xc6e00bf33da88fc2', '0xd5a79147930aa725', '0x06ca6351e003826f', '0x142929670a0e6e70',
	    '0x27b70a8546d22ffc', '0x2e1b21385c26c926', '0x4d2c6dfc5ac42aed', '0x53380d139d95b3df',
	    '0x650a73548baf63de', '0x766a0abb3c77b2a8', '0x81c2c92e47edaee6', '0x92722c851482353b',
	    '0xa2bfe8a14cf10364', '0xa81a664bbc423001', '0xc24b8b70d0f89791', '0xc76c51a30654be30',
	    '0xd192e819d6ef5218', '0xd69906245565a910', '0xf40e35855771202a', '0x106aa07032bbd1b8',
	    '0x19a4c116b8d2d0c8', '0x1e376c085141ab53', '0x2748774cdf8eeb99', '0x34b0bcb5e19b48a8',
	    '0x391c0cb3c5c95a63', '0x4ed8aa4ae3418acb', '0x5b9cca4f7763e373', '0x682e6ff3d6b2b8a3',
	    '0x748f82ee5defb2fc', '0x78a5636f43172f60', '0x84c87814a1f0ab72', '0x8cc702081a6439ec',
	    '0x90befffa23631e28', '0xa4506cebde82bde9', '0xbef9a3f7b2c67915', '0xc67178f2e372532b',
	    '0xca273eceea26619c', '0xd186b8c721c0c207', '0xeada7dd6cde0eb1e', '0xf57d4f7fee6ed178',
	    '0x06f067aa72176fba', '0x0a637dc5a2c898a6', '0x113f9804bef90dae', '0x1b710b35131c471b',
	    '0x28db77f523047d84', '0x32caab7b40c72493', '0x3c9ebe0a15c9bebc', '0x431d67c49c100d4c',
	    '0x4cc5d4becb3e42b6', '0x597f299cfc657e2a', '0x5fcb6fab3ad6faec', '0x6c44198c4a475817'
	].map(n => BigInt(n))))();
	// Temporary buffer, not used to store anything between runs
	const SHA512_W_H = /* @__PURE__ */ new Uint32Array(80);
	const SHA512_W_L = /* @__PURE__ */ new Uint32Array(80);
	class SHA512 extends HashMD {
	    constructor() {
	        super(128, 64, 16, false);
	        // We cannot use array here since array allows indexing by variable which means optimizer/compiler cannot use registers.
	        // Also looks cleaner and easier to verify with spec.
	        // Initial state (first 32 bits of the fractional parts of the square roots of the first 8 primes 2..19):
	        // h -- high 32 bits, l -- low 32 bits
	        this.Ah = 0x6a09e667 | 0;
	        this.Al = 0xf3bcc908 | 0;
	        this.Bh = 0xbb67ae85 | 0;
	        this.Bl = 0x84caa73b | 0;
	        this.Ch = 0x3c6ef372 | 0;
	        this.Cl = 0xfe94f82b | 0;
	        this.Dh = 0xa54ff53a | 0;
	        this.Dl = 0x5f1d36f1 | 0;
	        this.Eh = 0x510e527f | 0;
	        this.El = 0xade682d1 | 0;
	        this.Fh = 0x9b05688c | 0;
	        this.Fl = 0x2b3e6c1f | 0;
	        this.Gh = 0x1f83d9ab | 0;
	        this.Gl = 0xfb41bd6b | 0;
	        this.Hh = 0x5be0cd19 | 0;
	        this.Hl = 0x137e2179 | 0;
	    }
	    // prettier-ignore
	    get() {
	        const { Ah, Al, Bh, Bl, Ch, Cl, Dh, Dl, Eh, El, Fh, Fl, Gh, Gl, Hh, Hl } = this;
	        return [Ah, Al, Bh, Bl, Ch, Cl, Dh, Dl, Eh, El, Fh, Fl, Gh, Gl, Hh, Hl];
	    }
	    // prettier-ignore
	    set(Ah, Al, Bh, Bl, Ch, Cl, Dh, Dl, Eh, El, Fh, Fl, Gh, Gl, Hh, Hl) {
	        this.Ah = Ah | 0;
	        this.Al = Al | 0;
	        this.Bh = Bh | 0;
	        this.Bl = Bl | 0;
	        this.Ch = Ch | 0;
	        this.Cl = Cl | 0;
	        this.Dh = Dh | 0;
	        this.Dl = Dl | 0;
	        this.Eh = Eh | 0;
	        this.El = El | 0;
	        this.Fh = Fh | 0;
	        this.Fl = Fl | 0;
	        this.Gh = Gh | 0;
	        this.Gl = Gl | 0;
	        this.Hh = Hh | 0;
	        this.Hl = Hl | 0;
	    }
	    process(view, offset) {
	        // Extend the first 16 words into the remaining 64 words w[16..79] of the message schedule array
	        for (let i = 0; i < 16; i++, offset += 4) {
	            SHA512_W_H[i] = view.getUint32(offset);
	            SHA512_W_L[i] = view.getUint32((offset += 4));
	        }
	        for (let i = 16; i < 80; i++) {
	            // s0 := (w[i-15] rightrotate 1) xor (w[i-15] rightrotate 8) xor (w[i-15] rightshift 7)
	            const W15h = SHA512_W_H[i - 15] | 0;
	            const W15l = SHA512_W_L[i - 15] | 0;
	            const s0h = u64$3.rotrSH(W15h, W15l, 1) ^ u64$3.rotrSH(W15h, W15l, 8) ^ u64$3.shrSH(W15h, W15l, 7);
	            const s0l = u64$3.rotrSL(W15h, W15l, 1) ^ u64$3.rotrSL(W15h, W15l, 8) ^ u64$3.shrSL(W15h, W15l, 7);
	            // s1 := (w[i-2] rightrotate 19) xor (w[i-2] rightrotate 61) xor (w[i-2] rightshift 6)
	            const W2h = SHA512_W_H[i - 2] | 0;
	            const W2l = SHA512_W_L[i - 2] | 0;
	            const s1h = u64$3.rotrSH(W2h, W2l, 19) ^ u64$3.rotrBH(W2h, W2l, 61) ^ u64$3.shrSH(W2h, W2l, 6);
	            const s1l = u64$3.rotrSL(W2h, W2l, 19) ^ u64$3.rotrBL(W2h, W2l, 61) ^ u64$3.shrSL(W2h, W2l, 6);
	            // SHA256_W[i] = s0 + s1 + SHA256_W[i - 7] + SHA256_W[i - 16];
	            const SUMl = u64$3.add4L(s0l, s1l, SHA512_W_L[i - 7], SHA512_W_L[i - 16]);
	            const SUMh = u64$3.add4H(SUMl, s0h, s1h, SHA512_W_H[i - 7], SHA512_W_H[i - 16]);
	            SHA512_W_H[i] = SUMh | 0;
	            SHA512_W_L[i] = SUMl | 0;
	        }
	        let { Ah, Al, Bh, Bl, Ch, Cl, Dh, Dl, Eh, El, Fh, Fl, Gh, Gl, Hh, Hl } = this;
	        // Compression function main loop, 80 rounds
	        for (let i = 0; i < 80; i++) {
	            // S1 := (e rightrotate 14) xor (e rightrotate 18) xor (e rightrotate 41)
	            const sigma1h = u64$3.rotrSH(Eh, El, 14) ^ u64$3.rotrSH(Eh, El, 18) ^ u64$3.rotrBH(Eh, El, 41);
	            const sigma1l = u64$3.rotrSL(Eh, El, 14) ^ u64$3.rotrSL(Eh, El, 18) ^ u64$3.rotrBL(Eh, El, 41);
	            //const T1 = (H + sigma1 + Chi(E, F, G) + SHA256_K[i] + SHA256_W[i]) | 0;
	            const CHIh = (Eh & Fh) ^ (~Eh & Gh);
	            const CHIl = (El & Fl) ^ (~El & Gl);
	            // T1 = H + sigma1 + Chi(E, F, G) + SHA512_K[i] + SHA512_W[i]
	            // prettier-ignore
	            const T1ll = u64$3.add5L(Hl, sigma1l, CHIl, SHA512_Kl[i], SHA512_W_L[i]);
	            const T1h = u64$3.add5H(T1ll, Hh, sigma1h, CHIh, SHA512_Kh[i], SHA512_W_H[i]);
	            const T1l = T1ll | 0;
	            // S0 := (a rightrotate 28) xor (a rightrotate 34) xor (a rightrotate 39)
	            const sigma0h = u64$3.rotrSH(Ah, Al, 28) ^ u64$3.rotrBH(Ah, Al, 34) ^ u64$3.rotrBH(Ah, Al, 39);
	            const sigma0l = u64$3.rotrSL(Ah, Al, 28) ^ u64$3.rotrBL(Ah, Al, 34) ^ u64$3.rotrBL(Ah, Al, 39);
	            const MAJh = (Ah & Bh) ^ (Ah & Ch) ^ (Bh & Ch);
	            const MAJl = (Al & Bl) ^ (Al & Cl) ^ (Bl & Cl);
	            Hh = Gh | 0;
	            Hl = Gl | 0;
	            Gh = Fh | 0;
	            Gl = Fl | 0;
	            Fh = Eh | 0;
	            Fl = El | 0;
	            ({ h: Eh, l: El } = u64$3.add(Dh | 0, Dl | 0, T1h | 0, T1l | 0));
	            Dh = Ch | 0;
	            Dl = Cl | 0;
	            Ch = Bh | 0;
	            Cl = Bl | 0;
	            Bh = Ah | 0;
	            Bl = Al | 0;
	            const All = u64$3.add3L(T1l, sigma0l, MAJl);
	            Ah = u64$3.add3H(All, T1h, sigma0h, MAJh);
	            Al = All | 0;
	        }
	        // Add the compressed chunk to the current hash value
	        ({ h: Ah, l: Al } = u64$3.add(this.Ah | 0, this.Al | 0, Ah | 0, Al | 0));
	        ({ h: Bh, l: Bl } = u64$3.add(this.Bh | 0, this.Bl | 0, Bh | 0, Bl | 0));
	        ({ h: Ch, l: Cl } = u64$3.add(this.Ch | 0, this.Cl | 0, Ch | 0, Cl | 0));
	        ({ h: Dh, l: Dl } = u64$3.add(this.Dh | 0, this.Dl | 0, Dh | 0, Dl | 0));
	        ({ h: Eh, l: El } = u64$3.add(this.Eh | 0, this.El | 0, Eh | 0, El | 0));
	        ({ h: Fh, l: Fl } = u64$3.add(this.Fh | 0, this.Fl | 0, Fh | 0, Fl | 0));
	        ({ h: Gh, l: Gl } = u64$3.add(this.Gh | 0, this.Gl | 0, Gh | 0, Gl | 0));
	        ({ h: Hh, l: Hl } = u64$3.add(this.Hh | 0, this.Hl | 0, Hh | 0, Hl | 0));
	        this.set(Ah, Al, Bh, Bl, Ch, Cl, Dh, Dl, Eh, El, Fh, Fl, Gh, Gl, Hh, Hl);
	    }
	    roundClean() {
	        SHA512_W_H.fill(0);
	        SHA512_W_L.fill(0);
	    }
	    destroy() {
	        this.buffer.fill(0);
	        this.set(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
	    }
	}
	const sha512 = /* @__PURE__ */ wrapConstructor(() => new SHA512());

	/*! noble-curves - MIT License (c) 2022 Paul Miller (paulmillr.com) */
	// 100 lines of code in the file are duplicated from noble-hashes (utils).
	// This is OK: `abstract` directory does not use noble-hashes.
	// User may opt-in into using different hashing library. This way, noble-hashes
	// won't be included into their bundle.
	const _0n$4 = /* @__PURE__ */ BigInt(0);
	const _1n$6 = /* @__PURE__ */ BigInt(1);
	const _2n$4 = /* @__PURE__ */ BigInt(2);
	function isBytes(a) {
	    return (a instanceof Uint8Array ||
	        (a != null && typeof a === 'object' && a.constructor.name === 'Uint8Array'));
	}
	function abytes(item) {
	    if (!isBytes(item))
	        throw new Error('Uint8Array expected');
	}
	// Array where index 0xf0 (240) is mapped to string 'f0'
	const hexes = /* @__PURE__ */ Array.from({ length: 256 }, (_, i) => i.toString(16).padStart(2, '0'));
	/**
	 * @example bytesToHex(Uint8Array.from([0xca, 0xfe, 0x01, 0x23])) // 'cafe0123'
	 */
	function bytesToHex(bytes) {
	    abytes(bytes);
	    // pre-caching improves the speed 6x
	    let hex = '';
	    for (let i = 0; i < bytes.length; i++) {
	        hex += hexes[bytes[i]];
	    }
	    return hex;
	}
	function numberToHexUnpadded(num) {
	    const hex = num.toString(16);
	    return hex.length & 1 ? `0${hex}` : hex;
	}
	function hexToNumber(hex) {
	    if (typeof hex !== 'string')
	        throw new Error('hex string expected, got ' + typeof hex);
	    // Big Endian
	    return BigInt(hex === '' ? '0' : `0x${hex}`);
	}
	// We use optimized technique to convert hex string to byte array
	const asciis = { _0: 48, _9: 57, _A: 65, _F: 70, _a: 97, _f: 102 };
	function asciiToBase16(char) {
	    if (char >= asciis._0 && char <= asciis._9)
	        return char - asciis._0;
	    if (char >= asciis._A && char <= asciis._F)
	        return char - (asciis._A - 10);
	    if (char >= asciis._a && char <= asciis._f)
	        return char - (asciis._a - 10);
	    return;
	}
	/**
	 * @example hexToBytes('cafe0123') // Uint8Array.from([0xca, 0xfe, 0x01, 0x23])
	 */
	function hexToBytes(hex) {
	    if (typeof hex !== 'string')
	        throw new Error('hex string expected, got ' + typeof hex);
	    const hl = hex.length;
	    const al = hl / 2;
	    if (hl % 2)
	        throw new Error('padded hex string expected, got unpadded hex of length ' + hl);
	    const array = new Uint8Array(al);
	    for (let ai = 0, hi = 0; ai < al; ai++, hi += 2) {
	        const n1 = asciiToBase16(hex.charCodeAt(hi));
	        const n2 = asciiToBase16(hex.charCodeAt(hi + 1));
	        if (n1 === undefined || n2 === undefined) {
	            const char = hex[hi] + hex[hi + 1];
	            throw new Error('hex string expected, got non-hex character "' + char + '" at index ' + hi);
	        }
	        array[ai] = n1 * 16 + n2;
	    }
	    return array;
	}
	// BE: Big Endian, LE: Little Endian
	function bytesToNumberBE(bytes) {
	    return hexToNumber(bytesToHex(bytes));
	}
	function bytesToNumberLE(bytes) {
	    abytes(bytes);
	    return hexToNumber(bytesToHex(Uint8Array.from(bytes).reverse()));
	}
	function numberToBytesBE(n, len) {
	    return hexToBytes(n.toString(16).padStart(len * 2, '0'));
	}
	function numberToBytesLE(n, len) {
	    return numberToBytesBE(n, len).reverse();
	}
	// Unpadded, rarely used
	function numberToVarBytesBE(n) {
	    return hexToBytes(numberToHexUnpadded(n));
	}
	/**
	 * Takes hex string or Uint8Array, converts to Uint8Array.
	 * Validates output length.
	 * Will throw error for other types.
	 * @param title descriptive title for an error e.g. 'private key'
	 * @param hex hex string or Uint8Array
	 * @param expectedLength optional, will compare to result array's length
	 * @returns
	 */
	function ensureBytes(title, hex, expectedLength) {
	    let res;
	    if (typeof hex === 'string') {
	        try {
	            res = hexToBytes(hex);
	        }
	        catch (e) {
	            throw new Error(`${title} must be valid hex string, got "${hex}". Cause: ${e}`);
	        }
	    }
	    else if (isBytes(hex)) {
	        // Uint8Array.from() instead of hash.slice() because node.js Buffer
	        // is instance of Uint8Array, and its slice() creates **mutable** copy
	        res = Uint8Array.from(hex);
	    }
	    else {
	        throw new Error(`${title} must be hex string or Uint8Array`);
	    }
	    const len = res.length;
	    if (typeof expectedLength === 'number' && len !== expectedLength)
	        throw new Error(`${title} expected ${expectedLength} bytes, got ${len}`);
	    return res;
	}
	/**
	 * Copies several Uint8Arrays into one.
	 */
	function concatBytes(...arrays) {
	    let sum = 0;
	    for (let i = 0; i < arrays.length; i++) {
	        const a = arrays[i];
	        abytes(a);
	        sum += a.length;
	    }
	    const res = new Uint8Array(sum);
	    for (let i = 0, pad = 0; i < arrays.length; i++) {
	        const a = arrays[i];
	        res.set(a, pad);
	        pad += a.length;
	    }
	    return res;
	}
	// Compares 2 u8a-s in kinda constant time
	function equalBytes(a, b) {
	    if (a.length !== b.length)
	        return false;
	    let diff = 0;
	    for (let i = 0; i < a.length; i++)
	        diff |= a[i] ^ b[i];
	    return diff === 0;
	}
	/**
	 * @example utf8ToBytes('abc') // new Uint8Array([97, 98, 99])
	 */
	function utf8ToBytes(str) {
	    if (typeof str !== 'string')
	        throw new Error(`utf8ToBytes expected string, got ${typeof str}`);
	    return new Uint8Array(new TextEncoder().encode(str)); // https://bugzil.la/1681809
	}
	// Bit operations
	/**
	 * Calculates amount of bits in a bigint.
	 * Same as `n.toString(2).length`
	 */
	function bitLen(n) {
	    let len;
	    for (len = 0; n > _0n$4; n >>= _1n$6, len += 1)
	        ;
	    return len;
	}
	/**
	 * Gets single bit at position.
	 * NOTE: first bit position is 0 (same as arrays)
	 * Same as `!!+Array.from(n.toString(2)).reverse()[pos]`
	 */
	function bitGet(n, pos) {
	    return (n >> BigInt(pos)) & _1n$6;
	}
	/**
	 * Sets single bit at position.
	 */
	function bitSet(n, pos, value) {
	    return n | ((value ? _1n$6 : _0n$4) << BigInt(pos));
	}
	/**
	 * Calculate mask for N bits. Not using ** operator with bigints because of old engines.
	 * Same as BigInt(`0b${Array(i).fill('1').join('')}`)
	 */
	const bitMask = (n) => (_2n$4 << BigInt(n - 1)) - _1n$6;
	// DRBG
	const u8n = (data) => new Uint8Array(data); // creates Uint8Array
	const u8fr = (arr) => Uint8Array.from(arr); // another shortcut
	/**
	 * Minimal HMAC-DRBG from NIST 800-90 for RFC6979 sigs.
	 * @returns function that will call DRBG until 2nd arg returns something meaningful
	 * @example
	 *   const drbg = createHmacDRBG<Key>(32, 32, hmac);
	 *   drbg(seed, bytesToKey); // bytesToKey must return Key or undefined
	 */
	function createHmacDrbg(hashLen, qByteLen, hmacFn) {
	    if (typeof hashLen !== 'number' || hashLen < 2)
	        throw new Error('hashLen must be a number');
	    if (typeof qByteLen !== 'number' || qByteLen < 2)
	        throw new Error('qByteLen must be a number');
	    if (typeof hmacFn !== 'function')
	        throw new Error('hmacFn must be a function');
	    // Step B, Step C: set hashLen to 8*ceil(hlen/8)
	    let v = u8n(hashLen); // Minimal non-full-spec HMAC-DRBG from NIST 800-90 for RFC6979 sigs.
	    let k = u8n(hashLen); // Steps B and C of RFC6979 3.2: set hashLen, in our case always same
	    let i = 0; // Iterations counter, will throw when over 1000
	    const reset = () => {
	        v.fill(1);
	        k.fill(0);
	        i = 0;
	    };
	    const h = (...b) => hmacFn(k, v, ...b); // hmac(k)(v, ...values)
	    const reseed = (seed = u8n()) => {
	        // HMAC-DRBG reseed() function. Steps D-G
	        k = h(u8fr([0x00]), seed); // k = hmac(k || v || 0x00 || seed)
	        v = h(); // v = hmac(k || v)
	        if (seed.length === 0)
	            return;
	        k = h(u8fr([0x01]), seed); // k = hmac(k || v || 0x01 || seed)
	        v = h(); // v = hmac(k || v)
	    };
	    const gen = () => {
	        // HMAC-DRBG generate() function
	        if (i++ >= 1000)
	            throw new Error('drbg: tried 1000 values');
	        let len = 0;
	        const out = [];
	        while (len < qByteLen) {
	            v = h();
	            const sl = v.slice();
	            out.push(sl);
	            len += v.length;
	        }
	        return concatBytes(...out);
	    };
	    const genUntil = (seed, pred) => {
	        reset();
	        reseed(seed); // Steps D-G
	        let res = undefined; // Step H: grind until k is in [1..n-1]
	        while (!(res = pred(gen())))
	            reseed();
	        reset();
	        return res;
	    };
	    return genUntil;
	}
	// Validating curves and fields
	const validatorFns = {
	    bigint: (val) => typeof val === 'bigint',
	    function: (val) => typeof val === 'function',
	    boolean: (val) => typeof val === 'boolean',
	    string: (val) => typeof val === 'string',
	    stringOrUint8Array: (val) => typeof val === 'string' || isBytes(val),
	    isSafeInteger: (val) => Number.isSafeInteger(val),
	    array: (val) => Array.isArray(val),
	    field: (val, object) => object.Fp.isValid(val),
	    hash: (val) => typeof val === 'function' && Number.isSafeInteger(val.outputLen),
	};
	// type Record<K extends string | number | symbol, T> = { [P in K]: T; }
	function validateObject(object, validators, optValidators = {}) {
	    const checkField = (fieldName, type, isOptional) => {
	        const checkVal = validatorFns[type];
	        if (typeof checkVal !== 'function')
	            throw new Error(`Invalid validator "${type}", expected function`);
	        const val = object[fieldName];
	        if (isOptional && val === undefined)
	            return;
	        if (!checkVal(val, object)) {
	            throw new Error(`Invalid param ${String(fieldName)}=${val} (${typeof val}), expected ${type}`);
	        }
	    };
	    for (const [fieldName, type] of Object.entries(validators))
	        checkField(fieldName, type, false);
	    for (const [fieldName, type] of Object.entries(optValidators))
	        checkField(fieldName, type, true);
	    return object;
	}
	// validate type tests
	// const o: { a: number; b: number; c: number } = { a: 1, b: 5, c: 6 };
	// const z0 = validateObject(o, { a: 'isSafeInteger' }, { c: 'bigint' }); // Ok!
	// // Should fail type-check
	// const z1 = validateObject(o, { a: 'tmp' }, { c: 'zz' });
	// const z2 = validateObject(o, { a: 'isSafeInteger' }, { c: 'zz' });
	// const z3 = validateObject(o, { test: 'boolean', z: 'bug' });
	// const z4 = validateObject(o, { a: 'boolean', z: 'bug' });

	var ut = /*#__PURE__*/Object.freeze({
		__proto__: null,
		abytes: abytes,
		bitGet: bitGet,
		bitLen: bitLen,
		bitMask: bitMask,
		bitSet: bitSet,
		bytesToHex: bytesToHex,
		bytesToNumberBE: bytesToNumberBE,
		bytesToNumberLE: bytesToNumberLE,
		concatBytes: concatBytes,
		createHmacDrbg: createHmacDrbg,
		ensureBytes: ensureBytes,
		equalBytes: equalBytes,
		hexToBytes: hexToBytes,
		hexToNumber: hexToNumber,
		isBytes: isBytes,
		numberToBytesBE: numberToBytesBE,
		numberToBytesLE: numberToBytesLE,
		numberToHexUnpadded: numberToHexUnpadded,
		numberToVarBytesBE: numberToVarBytesBE,
		utf8ToBytes: utf8ToBytes,
		validateObject: validateObject
	});

	/*! noble-curves - MIT License (c) 2022 Paul Miller (paulmillr.com) */
	// Utilities for modular arithmetics and finite fields
	// prettier-ignore
	const _0n$3 = BigInt(0), _1n$5 = BigInt(1), _2n$3 = BigInt(2), _3n$1 = BigInt(3);
	// prettier-ignore
	const _4n = BigInt(4), _5n$1 = BigInt(5), _8n$2 = BigInt(8);
	// prettier-ignore
	BigInt(9); BigInt(16);
	// Calculates a modulo b
	function mod(a, b) {
	    const result = a % b;
	    return result >= _0n$3 ? result : b + result;
	}
	/**
	 * Efficiently raise num to power and do modular division.
	 * Unsafe in some contexts: uses ladder, so can expose bigint bits.
	 * @example
	 * pow(2n, 6n, 11n) // 64n % 11n == 9n
	 */
	// TODO: use field version && remove
	function pow(num, power, modulo) {
	    if (modulo <= _0n$3 || power < _0n$3)
	        throw new Error('Expected power/modulo > 0');
	    if (modulo === _1n$5)
	        return _0n$3;
	    let res = _1n$5;
	    while (power > _0n$3) {
	        if (power & _1n$5)
	            res = (res * num) % modulo;
	        num = (num * num) % modulo;
	        power >>= _1n$5;
	    }
	    return res;
	}
	// Does x ^ (2 ^ power) mod p. pow2(30, 4) == 30 ^ (2 ^ 4)
	function pow2(x, power, modulo) {
	    let res = x;
	    while (power-- > _0n$3) {
	        res *= res;
	        res %= modulo;
	    }
	    return res;
	}
	// Inverses number over modulo
	function invert(number, modulo) {
	    if (number === _0n$3 || modulo <= _0n$3) {
	        throw new Error(`invert: expected positive integers, got n=${number} mod=${modulo}`);
	    }
	    // Euclidean GCD https://brilliant.org/wiki/extended-euclidean-algorithm/
	    // Fermat's little theorem "CT-like" version inv(n) = n^(m-2) mod m is 30x slower.
	    let a = mod(number, modulo);
	    let b = modulo;
	    // prettier-ignore
	    let x = _0n$3, u = _1n$5;
	    while (a !== _0n$3) {
	        // JIT applies optimization if those two lines follow each other
	        const q = b / a;
	        const r = b % a;
	        const m = x - u * q;
	        // prettier-ignore
	        b = a, a = r, x = u, u = m;
	    }
	    const gcd = b;
	    if (gcd !== _1n$5)
	        throw new Error('invert: does not exist');
	    return mod(x, modulo);
	}
	/**
	 * Tonelli-Shanks square root search algorithm.
	 * 1. https://eprint.iacr.org/2012/685.pdf (page 12)
	 * 2. Square Roots from 1; 24, 51, 10 to Dan Shanks
	 * Will start an infinite loop if field order P is not prime.
	 * @param P field order
	 * @returns function that takes field Fp (created from P) and number n
	 */
	function tonelliShanks(P) {
	    // Legendre constant: used to calculate Legendre symbol (a | p),
	    // which denotes the value of a^((p-1)/2) (mod p).
	    // (a | p) ≡ 1    if a is a square (mod p)
	    // (a | p) ≡ -1   if a is not a square (mod p)
	    // (a | p) ≡ 0    if a ≡ 0 (mod p)
	    const legendreC = (P - _1n$5) / _2n$3;
	    let Q, S, Z;
	    // Step 1: By factoring out powers of 2 from p - 1,
	    // find q and s such that p - 1 = q*(2^s) with q odd
	    for (Q = P - _1n$5, S = 0; Q % _2n$3 === _0n$3; Q /= _2n$3, S++)
	        ;
	    // Step 2: Select a non-square z such that (z | p) ≡ -1 and set c ≡ zq
	    for (Z = _2n$3; Z < P && pow(Z, legendreC, P) !== P - _1n$5; Z++)
	        ;
	    // Fast-path
	    if (S === 1) {
	        const p1div4 = (P + _1n$5) / _4n;
	        return function tonelliFast(Fp, n) {
	            const root = Fp.pow(n, p1div4);
	            if (!Fp.eql(Fp.sqr(root), n))
	                throw new Error('Cannot find square root');
	            return root;
	        };
	    }
	    // Slow-path
	    const Q1div2 = (Q + _1n$5) / _2n$3;
	    return function tonelliSlow(Fp, n) {
	        // Step 0: Check that n is indeed a square: (n | p) should not be ≡ -1
	        if (Fp.pow(n, legendreC) === Fp.neg(Fp.ONE))
	            throw new Error('Cannot find square root');
	        let r = S;
	        // TODO: will fail at Fp2/etc
	        let g = Fp.pow(Fp.mul(Fp.ONE, Z), Q); // will update both x and b
	        let x = Fp.pow(n, Q1div2); // first guess at the square root
	        let b = Fp.pow(n, Q); // first guess at the fudge factor
	        while (!Fp.eql(b, Fp.ONE)) {
	            if (Fp.eql(b, Fp.ZERO))
	                return Fp.ZERO; // https://en.wikipedia.org/wiki/Tonelli%E2%80%93Shanks_algorithm (4. If t = 0, return r = 0)
	            // Find m such b^(2^m)==1
	            let m = 1;
	            for (let t2 = Fp.sqr(b); m < r; m++) {
	                if (Fp.eql(t2, Fp.ONE))
	                    break;
	                t2 = Fp.sqr(t2); // t2 *= t2
	            }
	            // NOTE: r-m-1 can be bigger than 32, need to convert to bigint before shift, otherwise there will be overflow
	            const ge = Fp.pow(g, _1n$5 << BigInt(r - m - 1)); // ge = 2^(r-m-1)
	            g = Fp.sqr(ge); // g = ge * ge
	            x = Fp.mul(x, ge); // x *= ge
	            b = Fp.mul(b, g); // b *= g
	            r = m;
	        }
	        return x;
	    };
	}
	function FpSqrt(P) {
	    // NOTE: different algorithms can give different roots, it is up to user to decide which one they want.
	    // For example there is FpSqrtOdd/FpSqrtEven to choice root based on oddness (used for hash-to-curve).
	    // P ≡ 3 (mod 4)
	    // √n = n^((P+1)/4)
	    if (P % _4n === _3n$1) {
	        // Not all roots possible!
	        // const ORDER =
	        //   0x1a0111ea397fe69a4b1ba7b6434bacd764774b84f38512bf6730d2a0f6b0f6241eabfffeb153ffffb9feffffffffaaabn;
	        // const NUM = 72057594037927816n;
	        const p1div4 = (P + _1n$5) / _4n;
	        return function sqrt3mod4(Fp, n) {
	            const root = Fp.pow(n, p1div4);
	            // Throw if root**2 != n
	            if (!Fp.eql(Fp.sqr(root), n))
	                throw new Error('Cannot find square root');
	            return root;
	        };
	    }
	    // Atkin algorithm for q ≡ 5 (mod 8), https://eprint.iacr.org/2012/685.pdf (page 10)
	    if (P % _8n$2 === _5n$1) {
	        const c1 = (P - _5n$1) / _8n$2;
	        return function sqrt5mod8(Fp, n) {
	            const n2 = Fp.mul(n, _2n$3);
	            const v = Fp.pow(n2, c1);
	            const nv = Fp.mul(n, v);
	            const i = Fp.mul(Fp.mul(nv, _2n$3), v);
	            const root = Fp.mul(nv, Fp.sub(i, Fp.ONE));
	            if (!Fp.eql(Fp.sqr(root), n))
	                throw new Error('Cannot find square root');
	            return root;
	        };
	    }
	    // Other cases: Tonelli-Shanks algorithm
	    return tonelliShanks(P);
	}
	// Little-endian check for first LE bit (last BE bit);
	const isNegativeLE = (num, modulo) => (mod(num, modulo) & _1n$5) === _1n$5;
	// prettier-ignore
	const FIELD_FIELDS = [
	    'create', 'isValid', 'is0', 'neg', 'inv', 'sqrt', 'sqr',
	    'eql', 'add', 'sub', 'mul', 'pow', 'div',
	    'addN', 'subN', 'mulN', 'sqrN'
	];
	function validateField(field) {
	    const initial = {
	        ORDER: 'bigint',
	        MASK: 'bigint',
	        BYTES: 'isSafeInteger',
	        BITS: 'isSafeInteger',
	    };
	    const opts = FIELD_FIELDS.reduce((map, val) => {
	        map[val] = 'function';
	        return map;
	    }, initial);
	    return validateObject(field, opts);
	}
	// Generic field functions
	/**
	 * Same as `pow` but for Fp: non-constant-time.
	 * Unsafe in some contexts: uses ladder, so can expose bigint bits.
	 */
	function FpPow(f, num, power) {
	    // Should have same speed as pow for bigints
	    // TODO: benchmark!
	    if (power < _0n$3)
	        throw new Error('Expected power > 0');
	    if (power === _0n$3)
	        return f.ONE;
	    if (power === _1n$5)
	        return num;
	    let p = f.ONE;
	    let d = num;
	    while (power > _0n$3) {
	        if (power & _1n$5)
	            p = f.mul(p, d);
	        d = f.sqr(d);
	        power >>= _1n$5;
	    }
	    return p;
	}
	/**
	 * Efficiently invert an array of Field elements.
	 * `inv(0)` will return `undefined` here: make sure to throw an error.
	 */
	function FpInvertBatch(f, nums) {
	    const tmp = new Array(nums.length);
	    // Walk from first to last, multiply them by each other MOD p
	    const lastMultiplied = nums.reduce((acc, num, i) => {
	        if (f.is0(num))
	            return acc;
	        tmp[i] = acc;
	        return f.mul(acc, num);
	    }, f.ONE);
	    // Invert last element
	    const inverted = f.inv(lastMultiplied);
	    // Walk from last to first, multiply them by inverted each other MOD p
	    nums.reduceRight((acc, num, i) => {
	        if (f.is0(num))
	            return acc;
	        tmp[i] = f.mul(acc, tmp[i]);
	        return f.mul(acc, num);
	    }, inverted);
	    return tmp;
	}
	// CURVE.n lengths
	function nLength(n, nBitLength) {
	    // Bit size, byte size of CURVE.n
	    const _nBitLength = nBitLength !== undefined ? nBitLength : n.toString(2).length;
	    const nByteLength = Math.ceil(_nBitLength / 8);
	    return { nBitLength: _nBitLength, nByteLength };
	}
	/**
	 * Initializes a finite field over prime. **Non-primes are not supported.**
	 * Do not init in loop: slow. Very fragile: always run a benchmark on a change.
	 * Major performance optimizations:
	 * * a) denormalized operations like mulN instead of mul
	 * * b) same object shape: never add or remove keys
	 * * c) Object.freeze
	 * @param ORDER prime positive bigint
	 * @param bitLen how many bits the field consumes
	 * @param isLE (def: false) if encoding / decoding should be in little-endian
	 * @param redef optional faster redefinitions of sqrt and other methods
	 */
	function Field(ORDER, bitLen, isLE = false, redef = {}) {
	    if (ORDER <= _0n$3)
	        throw new Error(`Expected Field ORDER > 0, got ${ORDER}`);
	    const { nBitLength: BITS, nByteLength: BYTES } = nLength(ORDER, bitLen);
	    if (BYTES > 2048)
	        throw new Error('Field lengths over 2048 bytes are not supported');
	    const sqrtP = FpSqrt(ORDER);
	    const f = Object.freeze({
	        ORDER,
	        BITS,
	        BYTES,
	        MASK: bitMask(BITS),
	        ZERO: _0n$3,
	        ONE: _1n$5,
	        create: (num) => mod(num, ORDER),
	        isValid: (num) => {
	            if (typeof num !== 'bigint')
	                throw new Error(`Invalid field element: expected bigint, got ${typeof num}`);
	            return _0n$3 <= num && num < ORDER; // 0 is valid element, but it's not invertible
	        },
	        is0: (num) => num === _0n$3,
	        isOdd: (num) => (num & _1n$5) === _1n$5,
	        neg: (num) => mod(-num, ORDER),
	        eql: (lhs, rhs) => lhs === rhs,
	        sqr: (num) => mod(num * num, ORDER),
	        add: (lhs, rhs) => mod(lhs + rhs, ORDER),
	        sub: (lhs, rhs) => mod(lhs - rhs, ORDER),
	        mul: (lhs, rhs) => mod(lhs * rhs, ORDER),
	        pow: (num, power) => FpPow(f, num, power),
	        div: (lhs, rhs) => mod(lhs * invert(rhs, ORDER), ORDER),
	        // Same as above, but doesn't normalize
	        sqrN: (num) => num * num,
	        addN: (lhs, rhs) => lhs + rhs,
	        subN: (lhs, rhs) => lhs - rhs,
	        mulN: (lhs, rhs) => lhs * rhs,
	        inv: (num) => invert(num, ORDER),
	        sqrt: redef.sqrt || ((n) => sqrtP(f, n)),
	        invertBatch: (lst) => FpInvertBatch(f, lst),
	        // TODO: do we really need constant cmov?
	        // We don't have const-time bigints anyway, so probably will be not very useful
	        cmov: (a, b, c) => (c ? b : a),
	        toBytes: (num) => (isLE ? numberToBytesLE(num, BYTES) : numberToBytesBE(num, BYTES)),
	        fromBytes: (bytes) => {
	            if (bytes.length !== BYTES)
	                throw new Error(`Fp.fromBytes: expected ${BYTES}, got ${bytes.length}`);
	            return isLE ? bytesToNumberLE(bytes) : bytesToNumberBE(bytes);
	        },
	    });
	    return Object.freeze(f);
	}
	/**
	 * Returns total number of bytes consumed by the field element.
	 * For example, 32 bytes for usual 256-bit weierstrass curve.
	 * @param fieldOrder number of field elements, usually CURVE.n
	 * @returns byte length of field
	 */
	function getFieldBytesLength(fieldOrder) {
	    if (typeof fieldOrder !== 'bigint')
	        throw new Error('field order must be bigint');
	    const bitLength = fieldOrder.toString(2).length;
	    return Math.ceil(bitLength / 8);
	}
	/**
	 * Returns minimal amount of bytes that can be safely reduced
	 * by field order.
	 * Should be 2^-128 for 128-bit curve such as P256.
	 * @param fieldOrder number of field elements, usually CURVE.n
	 * @returns byte length of target hash
	 */
	function getMinHashLength(fieldOrder) {
	    const length = getFieldBytesLength(fieldOrder);
	    return length + Math.ceil(length / 2);
	}
	/**
	 * "Constant-time" private key generation utility.
	 * Can take (n + n/2) or more bytes of uniform input e.g. from CSPRNG or KDF
	 * and convert them into private scalar, with the modulo bias being negligible.
	 * Needs at least 48 bytes of input for 32-byte private key.
	 * https://research.kudelskisecurity.com/2020/07/28/the-definitive-guide-to-modulo-bias-and-how-to-avoid-it/
	 * FIPS 186-5, A.2 https://csrc.nist.gov/publications/detail/fips/186/5/final
	 * RFC 9380, https://www.rfc-editor.org/rfc/rfc9380#section-5
	 * @param hash hash output from SHA3 or a similar function
	 * @param groupOrder size of subgroup - (e.g. secp256k1.CURVE.n)
	 * @param isLE interpret hash bytes as LE num
	 * @returns valid private scalar
	 */
	function mapHashToField(key, fieldOrder, isLE = false) {
	    const len = key.length;
	    const fieldLen = getFieldBytesLength(fieldOrder);
	    const minLen = getMinHashLength(fieldOrder);
	    // No small numbers: need to understand bias story. No huge numbers: easier to detect JS timings.
	    if (len < 16 || len < minLen || len > 1024)
	        throw new Error(`expected ${minLen}-1024 bytes of input, got ${len}`);
	    const num = isLE ? bytesToNumberBE(key) : bytesToNumberLE(key);
	    // `mod(x, 11)` can sometimes produce 0. `mod(x, 10) + 1` is the same, but no 0
	    const reduced = mod(num, fieldOrder - _1n$5) + _1n$5;
	    return isLE ? numberToBytesLE(reduced, fieldLen) : numberToBytesBE(reduced, fieldLen);
	}

	/*! noble-curves - MIT License (c) 2022 Paul Miller (paulmillr.com) */
	// Abelian group utilities
	const _0n$2 = BigInt(0);
	const _1n$4 = BigInt(1);
	// Elliptic curve multiplication of Point by scalar. Fragile.
	// Scalars should always be less than curve order: this should be checked inside of a curve itself.
	// Creates precomputation tables for fast multiplication:
	// - private scalar is split by fixed size windows of W bits
	// - every window point is collected from window's table & added to accumulator
	// - since windows are different, same point inside tables won't be accessed more than once per calc
	// - each multiplication is 'Math.ceil(CURVE_ORDER / 𝑊) + 1' point additions (fixed for any scalar)
	// - +1 window is neccessary for wNAF
	// - wNAF reduces table size: 2x less memory + 2x faster generation, but 10% slower multiplication
	// TODO: Research returning 2d JS array of windows, instead of a single window. This would allow
	// windows to be in different memory locations
	function wNAF(c, bits) {
	    const constTimeNegate = (condition, item) => {
	        const neg = item.negate();
	        return condition ? neg : item;
	    };
	    const opts = (W) => {
	        const windows = Math.ceil(bits / W) + 1; // +1, because
	        const windowSize = 2 ** (W - 1); // -1 because we skip zero
	        return { windows, windowSize };
	    };
	    return {
	        constTimeNegate,
	        // non-const time multiplication ladder
	        unsafeLadder(elm, n) {
	            let p = c.ZERO;
	            let d = elm;
	            while (n > _0n$2) {
	                if (n & _1n$4)
	                    p = p.add(d);
	                d = d.double();
	                n >>= _1n$4;
	            }
	            return p;
	        },
	        /**
	         * Creates a wNAF precomputation window. Used for caching.
	         * Default window size is set by `utils.precompute()` and is equal to 8.
	         * Number of precomputed points depends on the curve size:
	         * 2^(𝑊−1) * (Math.ceil(𝑛 / 𝑊) + 1), where:
	         * - 𝑊 is the window size
	         * - 𝑛 is the bitlength of the curve order.
	         * For a 256-bit curve and window size 8, the number of precomputed points is 128 * 33 = 4224.
	         * @returns precomputed point tables flattened to a single array
	         */
	        precomputeWindow(elm, W) {
	            const { windows, windowSize } = opts(W);
	            const points = [];
	            let p = elm;
	            let base = p;
	            for (let window = 0; window < windows; window++) {
	                base = p;
	                points.push(base);
	                // =1, because we skip zero
	                for (let i = 1; i < windowSize; i++) {
	                    base = base.add(p);
	                    points.push(base);
	                }
	                p = base.double();
	            }
	            return points;
	        },
	        /**
	         * Implements ec multiplication using precomputed tables and w-ary non-adjacent form.
	         * @param W window size
	         * @param precomputes precomputed tables
	         * @param n scalar (we don't check here, but should be less than curve order)
	         * @returns real and fake (for const-time) points
	         */
	        wNAF(W, precomputes, n) {
	            // TODO: maybe check that scalar is less than group order? wNAF behavious is undefined otherwise
	            // But need to carefully remove other checks before wNAF. ORDER == bits here
	            const { windows, windowSize } = opts(W);
	            let p = c.ZERO;
	            let f = c.BASE;
	            const mask = BigInt(2 ** W - 1); // Create mask with W ones: 0b1111 for W=4 etc.
	            const maxNumber = 2 ** W;
	            const shiftBy = BigInt(W);
	            for (let window = 0; window < windows; window++) {
	                const offset = window * windowSize;
	                // Extract W bits.
	                let wbits = Number(n & mask);
	                // Shift number by W bits.
	                n >>= shiftBy;
	                // If the bits are bigger than max size, we'll split those.
	                // +224 => 256 - 32
	                if (wbits > windowSize) {
	                    wbits -= maxNumber;
	                    n += _1n$4;
	                }
	                // This code was first written with assumption that 'f' and 'p' will never be infinity point:
	                // since each addition is multiplied by 2 ** W, it cannot cancel each other. However,
	                // there is negate now: it is possible that negated element from low value
	                // would be the same as high element, which will create carry into next window.
	                // It's not obvious how this can fail, but still worth investigating later.
	                // Check if we're onto Zero point.
	                // Add random point inside current window to f.
	                const offset1 = offset;
	                const offset2 = offset + Math.abs(wbits) - 1; // -1 because we skip zero
	                const cond1 = window % 2 !== 0;
	                const cond2 = wbits < 0;
	                if (wbits === 0) {
	                    // The most important part for const-time getPublicKey
	                    f = f.add(constTimeNegate(cond1, precomputes[offset1]));
	                }
	                else {
	                    p = p.add(constTimeNegate(cond2, precomputes[offset2]));
	                }
	            }
	            // JIT-compiler should not eliminate f here, since it will later be used in normalizeZ()
	            // Even if the variable is still unused, there are some checks which will
	            // throw an exception, so compiler needs to prove they won't happen, which is hard.
	            // At this point there is a way to F be infinity-point even if p is not,
	            // which makes it less const-time: around 1 bigint multiply.
	            return { p, f };
	        },
	        wNAFCached(P, precomputesMap, n, transform) {
	            // @ts-ignore
	            const W = P._WINDOW_SIZE || 1;
	            // Calculate precomputes on a first run, reuse them after
	            let comp = precomputesMap.get(P);
	            if (!comp) {
	                comp = this.precomputeWindow(P, W);
	                if (W !== 1) {
	                    precomputesMap.set(P, transform(comp));
	                }
	            }
	            return this.wNAF(W, comp, n);
	        },
	    };
	}
	function validateBasic(curve) {
	    validateField(curve.Fp);
	    validateObject(curve, {
	        n: 'bigint',
	        h: 'bigint',
	        Gx: 'field',
	        Gy: 'field',
	    }, {
	        nBitLength: 'isSafeInteger',
	        nByteLength: 'isSafeInteger',
	    });
	    // Set defaults
	    return Object.freeze({
	        ...nLength(curve.n, curve.nBitLength),
	        ...curve,
	        ...{ p: curve.Fp.ORDER },
	    });
	}

	/*! noble-curves - MIT License (c) 2022 Paul Miller (paulmillr.com) */
	// Twisted Edwards curve. The formula is: ax² + y² = 1 + dx²y²
	// Be friendly to bad ECMAScript parsers by not using bigint literals
	// prettier-ignore
	const _0n$1 = BigInt(0), _1n$3 = BigInt(1), _2n$2 = BigInt(2), _8n$1 = BigInt(8);
	// verification rule is either zip215 or rfc8032 / nist186-5. Consult fromHex:
	const VERIFY_DEFAULT = { zip215: true };
	function validateOpts$1(curve) {
	    const opts = validateBasic(curve);
	    validateObject(curve, {
	        hash: 'function',
	        a: 'bigint',
	        d: 'bigint',
	        randomBytes: 'function',
	    }, {
	        adjustScalarBytes: 'function',
	        domain: 'function',
	        uvRatio: 'function',
	        mapToCurve: 'function',
	    });
	    // Set defaults
	    return Object.freeze({ ...opts });
	}
	// It is not generic twisted curve for now, but ed25519/ed448 generic implementation
	function twistedEdwards(curveDef) {
	    const CURVE = validateOpts$1(curveDef);
	    const { Fp, n: CURVE_ORDER, prehash: prehash, hash: cHash, randomBytes, nByteLength, h: cofactor, } = CURVE;
	    const MASK = _2n$2 << (BigInt(nByteLength * 8) - _1n$3);
	    const modP = Fp.create; // Function overrides
	    // sqrt(u/v)
	    const uvRatio = CURVE.uvRatio ||
	        ((u, v) => {
	            try {
	                return { isValid: true, value: Fp.sqrt(u * Fp.inv(v)) };
	            }
	            catch (e) {
	                return { isValid: false, value: _0n$1 };
	            }
	        });
	    const adjustScalarBytes = CURVE.adjustScalarBytes || ((bytes) => bytes); // NOOP
	    const domain = CURVE.domain ||
	        ((data, ctx, phflag) => {
	            if (ctx.length || phflag)
	                throw new Error('Contexts/pre-hash are not supported');
	            return data;
	        }); // NOOP
	    const inBig = (n) => typeof n === 'bigint' && _0n$1 < n; // n in [1..]
	    const inRange = (n, max) => inBig(n) && inBig(max) && n < max; // n in [1..max-1]
	    const in0MaskRange = (n) => n === _0n$1 || inRange(n, MASK); // n in [0..MASK-1]
	    function assertInRange(n, max) {
	        // n in [1..max-1]
	        if (inRange(n, max))
	            return n;
	        throw new Error(`Expected valid scalar < ${max}, got ${typeof n} ${n}`);
	    }
	    function assertGE0(n) {
	        // n in [0..CURVE_ORDER-1]
	        return n === _0n$1 ? n : assertInRange(n, CURVE_ORDER); // GE = prime subgroup, not full group
	    }
	    const pointPrecomputes = new Map();
	    function isPoint(other) {
	        if (!(other instanceof Point))
	            throw new Error('ExtendedPoint expected');
	    }
	    // Extended Point works in extended coordinates: (x, y, z, t) ∋ (x=x/z, y=y/z, t=xy).
	    // https://en.wikipedia.org/wiki/Twisted_Edwards_curve#Extended_coordinates
	    class Point {
	        constructor(ex, ey, ez, et) {
	            this.ex = ex;
	            this.ey = ey;
	            this.ez = ez;
	            this.et = et;
	            if (!in0MaskRange(ex))
	                throw new Error('x required');
	            if (!in0MaskRange(ey))
	                throw new Error('y required');
	            if (!in0MaskRange(ez))
	                throw new Error('z required');
	            if (!in0MaskRange(et))
	                throw new Error('t required');
	        }
	        get x() {
	            return this.toAffine().x;
	        }
	        get y() {
	            return this.toAffine().y;
	        }
	        static fromAffine(p) {
	            if (p instanceof Point)
	                throw new Error('extended point not allowed');
	            const { x, y } = p || {};
	            if (!in0MaskRange(x) || !in0MaskRange(y))
	                throw new Error('invalid affine point');
	            return new Point(x, y, _1n$3, modP(x * y));
	        }
	        static normalizeZ(points) {
	            const toInv = Fp.invertBatch(points.map((p) => p.ez));
	            return points.map((p, i) => p.toAffine(toInv[i])).map(Point.fromAffine);
	        }
	        // "Private method", don't use it directly
	        _setWindowSize(windowSize) {
	            this._WINDOW_SIZE = windowSize;
	            pointPrecomputes.delete(this);
	        }
	        // Not required for fromHex(), which always creates valid points.
	        // Could be useful for fromAffine().
	        assertValidity() {
	            const { a, d } = CURVE;
	            if (this.is0())
	                throw new Error('bad point: ZERO'); // TODO: optimize, with vars below?
	            // Equation in affine coordinates: ax² + y² = 1 + dx²y²
	            // Equation in projective coordinates (X/Z, Y/Z, Z):  (aX² + Y²)Z² = Z⁴ + dX²Y²
	            const { ex: X, ey: Y, ez: Z, et: T } = this;
	            const X2 = modP(X * X); // X²
	            const Y2 = modP(Y * Y); // Y²
	            const Z2 = modP(Z * Z); // Z²
	            const Z4 = modP(Z2 * Z2); // Z⁴
	            const aX2 = modP(X2 * a); // aX²
	            const left = modP(Z2 * modP(aX2 + Y2)); // (aX² + Y²)Z²
	            const right = modP(Z4 + modP(d * modP(X2 * Y2))); // Z⁴ + dX²Y²
	            if (left !== right)
	                throw new Error('bad point: equation left != right (1)');
	            // In Extended coordinates we also have T, which is x*y=T/Z: check X*Y == Z*T
	            const XY = modP(X * Y);
	            const ZT = modP(Z * T);
	            if (XY !== ZT)
	                throw new Error('bad point: equation left != right (2)');
	        }
	        // Compare one point to another.
	        equals(other) {
	            isPoint(other);
	            const { ex: X1, ey: Y1, ez: Z1 } = this;
	            const { ex: X2, ey: Y2, ez: Z2 } = other;
	            const X1Z2 = modP(X1 * Z2);
	            const X2Z1 = modP(X2 * Z1);
	            const Y1Z2 = modP(Y1 * Z2);
	            const Y2Z1 = modP(Y2 * Z1);
	            return X1Z2 === X2Z1 && Y1Z2 === Y2Z1;
	        }
	        is0() {
	            return this.equals(Point.ZERO);
	        }
	        negate() {
	            // Flips point sign to a negative one (-x, y in affine coords)
	            return new Point(modP(-this.ex), this.ey, this.ez, modP(-this.et));
	        }
	        // Fast algo for doubling Extended Point.
	        // https://hyperelliptic.org/EFD/g1p/auto-twisted-extended.html#doubling-dbl-2008-hwcd
	        // Cost: 4M + 4S + 1*a + 6add + 1*2.
	        double() {
	            const { a } = CURVE;
	            const { ex: X1, ey: Y1, ez: Z1 } = this;
	            const A = modP(X1 * X1); // A = X12
	            const B = modP(Y1 * Y1); // B = Y12
	            const C = modP(_2n$2 * modP(Z1 * Z1)); // C = 2*Z12
	            const D = modP(a * A); // D = a*A
	            const x1y1 = X1 + Y1;
	            const E = modP(modP(x1y1 * x1y1) - A - B); // E = (X1+Y1)2-A-B
	            const G = D + B; // G = D+B
	            const F = G - C; // F = G-C
	            const H = D - B; // H = D-B
	            const X3 = modP(E * F); // X3 = E*F
	            const Y3 = modP(G * H); // Y3 = G*H
	            const T3 = modP(E * H); // T3 = E*H
	            const Z3 = modP(F * G); // Z3 = F*G
	            return new Point(X3, Y3, Z3, T3);
	        }
	        // Fast algo for adding 2 Extended Points.
	        // https://hyperelliptic.org/EFD/g1p/auto-twisted-extended.html#addition-add-2008-hwcd
	        // Cost: 9M + 1*a + 1*d + 7add.
	        add(other) {
	            isPoint(other);
	            const { a, d } = CURVE;
	            const { ex: X1, ey: Y1, ez: Z1, et: T1 } = this;
	            const { ex: X2, ey: Y2, ez: Z2, et: T2 } = other;
	            // Faster algo for adding 2 Extended Points when curve's a=-1.
	            // http://hyperelliptic.org/EFD/g1p/auto-twisted-extended-1.html#addition-add-2008-hwcd-4
	            // Cost: 8M + 8add + 2*2.
	            // Note: It does not check whether the `other` point is valid.
	            if (a === BigInt(-1)) {
	                const A = modP((Y1 - X1) * (Y2 + X2));
	                const B = modP((Y1 + X1) * (Y2 - X2));
	                const F = modP(B - A);
	                if (F === _0n$1)
	                    return this.double(); // Same point. Tests say it doesn't affect timing
	                const C = modP(Z1 * _2n$2 * T2);
	                const D = modP(T1 * _2n$2 * Z2);
	                const E = D + C;
	                const G = B + A;
	                const H = D - C;
	                const X3 = modP(E * F);
	                const Y3 = modP(G * H);
	                const T3 = modP(E * H);
	                const Z3 = modP(F * G);
	                return new Point(X3, Y3, Z3, T3);
	            }
	            const A = modP(X1 * X2); // A = X1*X2
	            const B = modP(Y1 * Y2); // B = Y1*Y2
	            const C = modP(T1 * d * T2); // C = T1*d*T2
	            const D = modP(Z1 * Z2); // D = Z1*Z2
	            const E = modP((X1 + Y1) * (X2 + Y2) - A - B); // E = (X1+Y1)*(X2+Y2)-A-B
	            const F = D - C; // F = D-C
	            const G = D + C; // G = D+C
	            const H = modP(B - a * A); // H = B-a*A
	            const X3 = modP(E * F); // X3 = E*F
	            const Y3 = modP(G * H); // Y3 = G*H
	            const T3 = modP(E * H); // T3 = E*H
	            const Z3 = modP(F * G); // Z3 = F*G
	            return new Point(X3, Y3, Z3, T3);
	        }
	        subtract(other) {
	            return this.add(other.negate());
	        }
	        wNAF(n) {
	            return wnaf.wNAFCached(this, pointPrecomputes, n, Point.normalizeZ);
	        }
	        // Constant-time multiplication.
	        multiply(scalar) {
	            const { p, f } = this.wNAF(assertInRange(scalar, CURVE_ORDER));
	            return Point.normalizeZ([p, f])[0];
	        }
	        // Non-constant-time multiplication. Uses double-and-add algorithm.
	        // It's faster, but should only be used when you don't care about
	        // an exposed private key e.g. sig verification.
	        // Does NOT allow scalars higher than CURVE.n.
	        multiplyUnsafe(scalar) {
	            let n = assertGE0(scalar); // 0 <= scalar < CURVE.n
	            if (n === _0n$1)
	                return I;
	            if (this.equals(I) || n === _1n$3)
	                return this;
	            if (this.equals(G))
	                return this.wNAF(n).p;
	            return wnaf.unsafeLadder(this, n);
	        }
	        // Checks if point is of small order.
	        // If you add something to small order point, you will have "dirty"
	        // point with torsion component.
	        // Multiplies point by cofactor and checks if the result is 0.
	        isSmallOrder() {
	            return this.multiplyUnsafe(cofactor).is0();
	        }
	        // Multiplies point by curve order and checks if the result is 0.
	        // Returns `false` is the point is dirty.
	        isTorsionFree() {
	            return wnaf.unsafeLadder(this, CURVE_ORDER).is0();
	        }
	        // Converts Extended point to default (x, y) coordinates.
	        // Can accept precomputed Z^-1 - for example, from invertBatch.
	        toAffine(iz) {
	            const { ex: x, ey: y, ez: z } = this;
	            const is0 = this.is0();
	            if (iz == null)
	                iz = is0 ? _8n$1 : Fp.inv(z); // 8 was chosen arbitrarily
	            const ax = modP(x * iz);
	            const ay = modP(y * iz);
	            const zz = modP(z * iz);
	            if (is0)
	                return { x: _0n$1, y: _1n$3 };
	            if (zz !== _1n$3)
	                throw new Error('invZ was invalid');
	            return { x: ax, y: ay };
	        }
	        clearCofactor() {
	            const { h: cofactor } = CURVE;
	            if (cofactor === _1n$3)
	                return this;
	            return this.multiplyUnsafe(cofactor);
	        }
	        // Converts hash string or Uint8Array to Point.
	        // Uses algo from RFC8032 5.1.3.
	        static fromHex(hex, zip215 = false) {
	            const { d, a } = CURVE;
	            const len = Fp.BYTES;
	            hex = ensureBytes('pointHex', hex, len); // copy hex to a new array
	            const normed = hex.slice(); // copy again, we'll manipulate it
	            const lastByte = hex[len - 1]; // select last byte
	            normed[len - 1] = lastByte & ~0x80; // clear last bit
	            const y = bytesToNumberLE(normed);
	            if (y === _0n$1) ;
	            else {
	                // RFC8032 prohibits >= p, but ZIP215 doesn't
	                if (zip215)
	                    assertInRange(y, MASK); // zip215=true [1..P-1] (2^255-19-1 for ed25519)
	                else
	                    assertInRange(y, Fp.ORDER); // zip215=false [1..MASK-1] (2^256-1 for ed25519)
	            }
	            // Ed25519: x² = (y²-1)/(dy²+1) mod p. Ed448: x² = (y²-1)/(dy²-1) mod p. Generic case:
	            // ax²+y²=1+dx²y² => y²-1=dx²y²-ax² => y²-1=x²(dy²-a) => x²=(y²-1)/(dy²-a)
	            const y2 = modP(y * y); // denominator is always non-0 mod p.
	            const u = modP(y2 - _1n$3); // u = y² - 1
	            const v = modP(d * y2 - a); // v = d y² + 1.
	            let { isValid, value: x } = uvRatio(u, v); // √(u/v)
	            if (!isValid)
	                throw new Error('Point.fromHex: invalid y coordinate');
	            const isXOdd = (x & _1n$3) === _1n$3; // There are 2 square roots. Use x_0 bit to select proper
	            const isLastByteOdd = (lastByte & 0x80) !== 0; // x_0, last bit
	            if (!zip215 && x === _0n$1 && isLastByteOdd)
	                // if x=0 and x_0 = 1, fail
	                throw new Error('Point.fromHex: x=0 and x_0=1');
	            if (isLastByteOdd !== isXOdd)
	                x = modP(-x); // if x_0 != x mod 2, set x = p-x
	            return Point.fromAffine({ x, y });
	        }
	        static fromPrivateKey(privKey) {
	            return getExtendedPublicKey(privKey).point;
	        }
	        toRawBytes() {
	            const { x, y } = this.toAffine();
	            const bytes = numberToBytesLE(y, Fp.BYTES); // each y has 2 x values (x, -y)
	            bytes[bytes.length - 1] |= x & _1n$3 ? 0x80 : 0; // when compressing, it's enough to store y
	            return bytes; // and use the last byte to encode sign of x
	        }
	        toHex() {
	            return bytesToHex(this.toRawBytes()); // Same as toRawBytes, but returns string.
	        }
	    }
	    Point.BASE = new Point(CURVE.Gx, CURVE.Gy, _1n$3, modP(CURVE.Gx * CURVE.Gy));
	    Point.ZERO = new Point(_0n$1, _1n$3, _1n$3, _0n$1); // 0, 1, 1, 0
	    const { BASE: G, ZERO: I } = Point;
	    const wnaf = wNAF(Point, nByteLength * 8);
	    function modN(a) {
	        return mod(a, CURVE_ORDER);
	    }
	    // Little-endian SHA512 with modulo n
	    function modN_LE(hash) {
	        return modN(bytesToNumberLE(hash));
	    }
	    /** Convenience method that creates public key and other stuff. RFC8032 5.1.5 */
	    function getExtendedPublicKey(key) {
	        const len = nByteLength;
	        key = ensureBytes('private key', key, len);
	        // Hash private key with curve's hash function to produce uniformingly random input
	        // Check byte lengths: ensure(64, h(ensure(32, key)))
	        const hashed = ensureBytes('hashed private key', cHash(key), 2 * len);
	        const head = adjustScalarBytes(hashed.slice(0, len)); // clear first half bits, produce FE
	        const prefix = hashed.slice(len, 2 * len); // second half is called key prefix (5.1.6)
	        const scalar = modN_LE(head); // The actual private scalar
	        const point = G.multiply(scalar); // Point on Edwards curve aka public key
	        const pointBytes = point.toRawBytes(); // Uint8Array representation
	        return { head, prefix, scalar, point, pointBytes };
	    }
	    // Calculates EdDSA pub key. RFC8032 5.1.5. Privkey is hashed. Use first half with 3 bits cleared
	    function getPublicKey(privKey) {
	        return getExtendedPublicKey(privKey).pointBytes;
	    }
	    // int('LE', SHA512(dom2(F, C) || msgs)) mod N
	    function hashDomainToScalar(context = new Uint8Array(), ...msgs) {
	        const msg = concatBytes(...msgs);
	        return modN_LE(cHash(domain(msg, ensureBytes('context', context), !!prehash)));
	    }
	    /** Signs message with privateKey. RFC8032 5.1.6 */
	    function sign(msg, privKey, options = {}) {
	        msg = ensureBytes('message', msg);
	        if (prehash)
	            msg = prehash(msg); // for ed25519ph etc.
	        const { prefix, scalar, pointBytes } = getExtendedPublicKey(privKey);
	        const r = hashDomainToScalar(options.context, prefix, msg); // r = dom2(F, C) || prefix || PH(M)
	        const R = G.multiply(r).toRawBytes(); // R = rG
	        const k = hashDomainToScalar(options.context, R, pointBytes, msg); // R || A || PH(M)
	        const s = modN(r + k * scalar); // S = (r + k * s) mod L
	        assertGE0(s); // 0 <= s < l
	        const res = concatBytes(R, numberToBytesLE(s, Fp.BYTES));
	        return ensureBytes('result', res, nByteLength * 2); // 64-byte signature
	    }
	    const verifyOpts = VERIFY_DEFAULT;
	    function verify(sig, msg, publicKey, options = verifyOpts) {
	        const { context, zip215 } = options;
	        const len = Fp.BYTES; // Verifies EdDSA signature against message and public key. RFC8032 5.1.7.
	        sig = ensureBytes('signature', sig, 2 * len); // An extended group equation is checked.
	        msg = ensureBytes('message', msg);
	        if (prehash)
	            msg = prehash(msg); // for ed25519ph, etc
	        const s = bytesToNumberLE(sig.slice(len, 2 * len));
	        // zip215: true is good for consensus-critical apps and allows points < 2^256
	        // zip215: false follows RFC8032 / NIST186-5 and restricts points to CURVE.p
	        let A, R, SB;
	        try {
	            A = Point.fromHex(publicKey, zip215);
	            R = Point.fromHex(sig.slice(0, len), zip215);
	            SB = G.multiplyUnsafe(s); // 0 <= s < l is done inside
	        }
	        catch (error) {
	            return false;
	        }
	        if (!zip215 && A.isSmallOrder())
	            return false;
	        const k = hashDomainToScalar(context, R.toRawBytes(), A.toRawBytes(), msg);
	        const RkA = R.add(A.multiplyUnsafe(k));
	        // [8][S]B = [8]R + [8][k]A'
	        return RkA.subtract(SB).clearCofactor().equals(Point.ZERO);
	    }
	    G._setWindowSize(8); // Enable precomputes. Slows down first publicKey computation by 20ms.
	    const utils = {
	        getExtendedPublicKey,
	        // ed25519 private keys are uniform 32b. No need to check for modulo bias, like in secp256k1.
	        randomPrivateKey: () => randomBytes(Fp.BYTES),
	        /**
	         * We're doing scalar multiplication (used in getPublicKey etc) with precomputed BASE_POINT
	         * values. This slows down first getPublicKey() by milliseconds (see Speed section),
	         * but allows to speed-up subsequent getPublicKey() calls up to 20x.
	         * @param windowSize 2, 4, 8, 16
	         */
	        precompute(windowSize = 8, point = Point.BASE) {
	            point._setWindowSize(windowSize);
	            point.multiply(BigInt(3));
	            return point;
	        },
	    };
	    return {
	        CURVE,
	        getPublicKey,
	        sign,
	        verify,
	        ExtendedPoint: Point,
	        utils,
	    };
	}

	/*! noble-curves - MIT License (c) 2022 Paul Miller (paulmillr.com) */
	/**
	 * ed25519 Twisted Edwards curve with following addons:
	 * - X25519 ECDH
	 * - Ristretto cofactor elimination
	 * - Elligator hash-to-group / point indistinguishability
	 */
	const ED25519_P = BigInt('57896044618658097711785492504343953926634992332820282019728792003956564819949');
	// √(-1) aka √(a) aka 2^((p-1)/4)
	const ED25519_SQRT_M1 = /* @__PURE__ */ BigInt('19681161376707505956807079304988542015446066515923890162744021073123829784752');
	// prettier-ignore
	BigInt(0); const _1n$2 = BigInt(1), _2n$1 = BigInt(2); BigInt(3);
	// prettier-ignore
	const _5n = BigInt(5), _8n = BigInt(8);
	function ed25519_pow_2_252_3(x) {
	    // prettier-ignore
	    const _10n = BigInt(10), _20n = BigInt(20), _40n = BigInt(40), _80n = BigInt(80);
	    const P = ED25519_P;
	    const x2 = (x * x) % P;
	    const b2 = (x2 * x) % P; // x^3, 11
	    const b4 = (pow2(b2, _2n$1, P) * b2) % P; // x^15, 1111
	    const b5 = (pow2(b4, _1n$2, P) * x) % P; // x^31
	    const b10 = (pow2(b5, _5n, P) * b5) % P;
	    const b20 = (pow2(b10, _10n, P) * b10) % P;
	    const b40 = (pow2(b20, _20n, P) * b20) % P;
	    const b80 = (pow2(b40, _40n, P) * b40) % P;
	    const b160 = (pow2(b80, _80n, P) * b80) % P;
	    const b240 = (pow2(b160, _80n, P) * b80) % P;
	    const b250 = (pow2(b240, _10n, P) * b10) % P;
	    const pow_p_5_8 = (pow2(b250, _2n$1, P) * x) % P;
	    // ^ To pow to (p+3)/8, multiply it by x.
	    return { pow_p_5_8, b2 };
	}
	function adjustScalarBytes(bytes) {
	    // Section 5: For X25519, in order to decode 32 random bytes as an integer scalar,
	    // set the three least significant bits of the first byte
	    bytes[0] &= 248; // 0b1111_1000
	    // and the most significant bit of the last to zero,
	    bytes[31] &= 127; // 0b0111_1111
	    // set the second most significant bit of the last byte to 1
	    bytes[31] |= 64; // 0b0100_0000
	    return bytes;
	}
	// sqrt(u/v)
	function uvRatio(u, v) {
	    const P = ED25519_P;
	    const v3 = mod(v * v * v, P); // v³
	    const v7 = mod(v3 * v3 * v, P); // v⁷
	    // (p+3)/8 and (p-5)/8
	    const pow = ed25519_pow_2_252_3(u * v7).pow_p_5_8;
	    let x = mod(u * v3 * pow, P); // (uv³)(uv⁷)^(p-5)/8
	    const vx2 = mod(v * x * x, P); // vx²
	    const root1 = x; // First root candidate
	    const root2 = mod(x * ED25519_SQRT_M1, P); // Second root candidate
	    const useRoot1 = vx2 === u; // If vx² = u (mod p), x is a square root
	    const useRoot2 = vx2 === mod(-u, P); // If vx² = -u, set x <-- x * 2^((p-1)/4)
	    const noRoot = vx2 === mod(-u * ED25519_SQRT_M1, P); // There is no valid root, vx² = -u√(-1)
	    if (useRoot1)
	        x = root1;
	    if (useRoot2 || noRoot)
	        x = root2; // We return root2 anyway, for const-time
	    if (isNegativeLE(x, P))
	        x = mod(-x, P);
	    return { isValid: useRoot1 || useRoot2, value: x };
	}
	const Fp$1 = /* @__PURE__ */ (() => Field(ED25519_P, undefined, true))();
	const ed25519Defaults = /* @__PURE__ */ (() => ({
	    // Param: a
	    a: BigInt(-1), // Fp.create(-1) is proper; our way still works and is faster
	    // d is equal to -121665/121666 over finite field.
	    // Negative number is P - number, and division is invert(number, P)
	    d: BigInt('37095705934669439343138083508754565189542113879843219016388785533085940283555'),
	    // Finite field 𝔽p over which we'll do calculations; 2n**255n - 19n
	    Fp: Fp$1,
	    // Subgroup order: how many points curve has
	    // 2n**252n + 27742317777372353535851937790883648493n;
	    n: BigInt('7237005577332262213973186563042994240857116359379907606001950938285454250989'),
	    // Cofactor
	    h: _8n,
	    // Base point (x, y) aka generator point
	    Gx: BigInt('15112221349535400772501151409588531511454012693041857206046113283949847762202'),
	    Gy: BigInt('46316835694926478169428394003475163141307993866256225615783033603165251855960'),
	    hash: sha512,
	    randomBytes,
	    adjustScalarBytes,
	    // dom2
	    // Ratio of u to v. Allows us to combine inversion and square root. Uses algo from RFC8032 5.1.3.
	    // Constant-time, u/√v
	    uvRatio,
	}))();
	const ed25519 = /* @__PURE__ */ (() => twistedEdwards(ed25519Defaults))();

	var bn$1 = {exports: {}};

	var _nodeResolve_empty = {};

	var _nodeResolve_empty$1 = /*#__PURE__*/Object.freeze({
		__proto__: null,
		default: _nodeResolve_empty
	});

	var require$$0 = /*@__PURE__*/getAugmentedNamespace(_nodeResolve_empty$1);

	var bn = bn$1.exports;

	var hasRequiredBn;

	function requireBn () {
		if (hasRequiredBn) return bn$1.exports;
		hasRequiredBn = 1;
		(function (module) {
			(function (module, exports) {

			  // Utils
			  function assert (val, msg) {
			    if (!val) throw new Error(msg || 'Assertion failed');
			  }

			  // Could use `inherits` module, but don't want to move from single file
			  // architecture yet.
			  function inherits (ctor, superCtor) {
			    ctor.super_ = superCtor;
			    var TempCtor = function () {};
			    TempCtor.prototype = superCtor.prototype;
			    ctor.prototype = new TempCtor();
			    ctor.prototype.constructor = ctor;
			  }

			  // BN

			  function BN (number, base, endian) {
			    if (BN.isBN(number)) {
			      return number;
			    }

			    this.negative = 0;
			    this.words = null;
			    this.length = 0;

			    // Reduction context
			    this.red = null;

			    if (number !== null) {
			      if (base === 'le' || base === 'be') {
			        endian = base;
			        base = 10;
			      }

			      this._init(number || 0, base || 10, endian || 'be');
			    }
			  }
			  if (typeof module === 'object') {
			    module.exports = BN;
			  } else {
			    exports.BN = BN;
			  }

			  BN.BN = BN;
			  BN.wordSize = 26;

			  var Buffer;
			  try {
			    if (typeof window !== 'undefined' && typeof window.Buffer !== 'undefined') {
			      Buffer = window.Buffer;
			    } else {
			      Buffer = require$$0.Buffer;
			    }
			  } catch (e) {
			  }

			  BN.isBN = function isBN (num) {
			    if (num instanceof BN) {
			      return true;
			    }

			    return num !== null && typeof num === 'object' &&
			      num.constructor.wordSize === BN.wordSize && Array.isArray(num.words);
			  };

			  BN.max = function max (left, right) {
			    if (left.cmp(right) > 0) return left;
			    return right;
			  };

			  BN.min = function min (left, right) {
			    if (left.cmp(right) < 0) return left;
			    return right;
			  };

			  BN.prototype._init = function init (number, base, endian) {
			    if (typeof number === 'number') {
			      return this._initNumber(number, base, endian);
			    }

			    if (typeof number === 'object') {
			      return this._initArray(number, base, endian);
			    }

			    if (base === 'hex') {
			      base = 16;
			    }
			    assert(base === (base | 0) && base >= 2 && base <= 36);

			    number = number.toString().replace(/\s+/g, '');
			    var start = 0;
			    if (number[0] === '-') {
			      start++;
			      this.negative = 1;
			    }

			    if (start < number.length) {
			      if (base === 16) {
			        this._parseHex(number, start, endian);
			      } else {
			        this._parseBase(number, base, start);
			        if (endian === 'le') {
			          this._initArray(this.toArray(), base, endian);
			        }
			      }
			    }
			  };

			  BN.prototype._initNumber = function _initNumber (number, base, endian) {
			    if (number < 0) {
			      this.negative = 1;
			      number = -number;
			    }
			    if (number < 0x4000000) {
			      this.words = [number & 0x3ffffff];
			      this.length = 1;
			    } else if (number < 0x10000000000000) {
			      this.words = [
			        number & 0x3ffffff,
			        (number / 0x4000000) & 0x3ffffff
			      ];
			      this.length = 2;
			    } else {
			      assert(number < 0x20000000000000); // 2 ^ 53 (unsafe)
			      this.words = [
			        number & 0x3ffffff,
			        (number / 0x4000000) & 0x3ffffff,
			        1
			      ];
			      this.length = 3;
			    }

			    if (endian !== 'le') return;

			    // Reverse the bytes
			    this._initArray(this.toArray(), base, endian);
			  };

			  BN.prototype._initArray = function _initArray (number, base, endian) {
			    // Perhaps a Uint8Array
			    assert(typeof number.length === 'number');
			    if (number.length <= 0) {
			      this.words = [0];
			      this.length = 1;
			      return this;
			    }

			    this.length = Math.ceil(number.length / 3);
			    this.words = new Array(this.length);
			    for (var i = 0; i < this.length; i++) {
			      this.words[i] = 0;
			    }

			    var j, w;
			    var off = 0;
			    if (endian === 'be') {
			      for (i = number.length - 1, j = 0; i >= 0; i -= 3) {
			        w = number[i] | (number[i - 1] << 8) | (number[i - 2] << 16);
			        this.words[j] |= (w << off) & 0x3ffffff;
			        this.words[j + 1] = (w >>> (26 - off)) & 0x3ffffff;
			        off += 24;
			        if (off >= 26) {
			          off -= 26;
			          j++;
			        }
			      }
			    } else if (endian === 'le') {
			      for (i = 0, j = 0; i < number.length; i += 3) {
			        w = number[i] | (number[i + 1] << 8) | (number[i + 2] << 16);
			        this.words[j] |= (w << off) & 0x3ffffff;
			        this.words[j + 1] = (w >>> (26 - off)) & 0x3ffffff;
			        off += 24;
			        if (off >= 26) {
			          off -= 26;
			          j++;
			        }
			      }
			    }
			    return this._strip();
			  };

			  function parseHex4Bits (string, index) {
			    var c = string.charCodeAt(index);
			    // '0' - '9'
			    if (c >= 48 && c <= 57) {
			      return c - 48;
			    // 'A' - 'F'
			    } else if (c >= 65 && c <= 70) {
			      return c - 55;
			    // 'a' - 'f'
			    } else if (c >= 97 && c <= 102) {
			      return c - 87;
			    } else {
			      assert(false, 'Invalid character in ' + string);
			    }
			  }

			  function parseHexByte (string, lowerBound, index) {
			    var r = parseHex4Bits(string, index);
			    if (index - 1 >= lowerBound) {
			      r |= parseHex4Bits(string, index - 1) << 4;
			    }
			    return r;
			  }

			  BN.prototype._parseHex = function _parseHex (number, start, endian) {
			    // Create possibly bigger array to ensure that it fits the number
			    this.length = Math.ceil((number.length - start) / 6);
			    this.words = new Array(this.length);
			    for (var i = 0; i < this.length; i++) {
			      this.words[i] = 0;
			    }

			    // 24-bits chunks
			    var off = 0;
			    var j = 0;

			    var w;
			    if (endian === 'be') {
			      for (i = number.length - 1; i >= start; i -= 2) {
			        w = parseHexByte(number, start, i) << off;
			        this.words[j] |= w & 0x3ffffff;
			        if (off >= 18) {
			          off -= 18;
			          j += 1;
			          this.words[j] |= w >>> 26;
			        } else {
			          off += 8;
			        }
			      }
			    } else {
			      var parseLength = number.length - start;
			      for (i = parseLength % 2 === 0 ? start + 1 : start; i < number.length; i += 2) {
			        w = parseHexByte(number, start, i) << off;
			        this.words[j] |= w & 0x3ffffff;
			        if (off >= 18) {
			          off -= 18;
			          j += 1;
			          this.words[j] |= w >>> 26;
			        } else {
			          off += 8;
			        }
			      }
			    }

			    this._strip();
			  };

			  function parseBase (str, start, end, mul) {
			    var r = 0;
			    var b = 0;
			    var len = Math.min(str.length, end);
			    for (var i = start; i < len; i++) {
			      var c = str.charCodeAt(i) - 48;

			      r *= mul;

			      // 'a'
			      if (c >= 49) {
			        b = c - 49 + 0xa;

			      // 'A'
			      } else if (c >= 17) {
			        b = c - 17 + 0xa;

			      // '0' - '9'
			      } else {
			        b = c;
			      }
			      assert(c >= 0 && b < mul, 'Invalid character');
			      r += b;
			    }
			    return r;
			  }

			  BN.prototype._parseBase = function _parseBase (number, base, start) {
			    // Initialize as zero
			    this.words = [0];
			    this.length = 1;

			    // Find length of limb in base
			    for (var limbLen = 0, limbPow = 1; limbPow <= 0x3ffffff; limbPow *= base) {
			      limbLen++;
			    }
			    limbLen--;
			    limbPow = (limbPow / base) | 0;

			    var total = number.length - start;
			    var mod = total % limbLen;
			    var end = Math.min(total, total - mod) + start;

			    var word = 0;
			    for (var i = start; i < end; i += limbLen) {
			      word = parseBase(number, i, i + limbLen, base);

			      this.imuln(limbPow);
			      if (this.words[0] + word < 0x4000000) {
			        this.words[0] += word;
			      } else {
			        this._iaddn(word);
			      }
			    }

			    if (mod !== 0) {
			      var pow = 1;
			      word = parseBase(number, i, number.length, base);

			      for (i = 0; i < mod; i++) {
			        pow *= base;
			      }

			      this.imuln(pow);
			      if (this.words[0] + word < 0x4000000) {
			        this.words[0] += word;
			      } else {
			        this._iaddn(word);
			      }
			    }

			    this._strip();
			  };

			  BN.prototype.copy = function copy (dest) {
			    dest.words = new Array(this.length);
			    for (var i = 0; i < this.length; i++) {
			      dest.words[i] = this.words[i];
			    }
			    dest.length = this.length;
			    dest.negative = this.negative;
			    dest.red = this.red;
			  };

			  function move (dest, src) {
			    dest.words = src.words;
			    dest.length = src.length;
			    dest.negative = src.negative;
			    dest.red = src.red;
			  }

			  BN.prototype._move = function _move (dest) {
			    move(dest, this);
			  };

			  BN.prototype.clone = function clone () {
			    var r = new BN(null);
			    this.copy(r);
			    return r;
			  };

			  BN.prototype._expand = function _expand (size) {
			    while (this.length < size) {
			      this.words[this.length++] = 0;
			    }
			    return this;
			  };

			  // Remove leading `0` from `this`
			  BN.prototype._strip = function strip () {
			    while (this.length > 1 && this.words[this.length - 1] === 0) {
			      this.length--;
			    }
			    return this._normSign();
			  };

			  BN.prototype._normSign = function _normSign () {
			    // -0 = 0
			    if (this.length === 1 && this.words[0] === 0) {
			      this.negative = 0;
			    }
			    return this;
			  };

			  // Check Symbol.for because not everywhere where Symbol defined
			  // See https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Symbol#Browser_compatibility
			  if (typeof Symbol !== 'undefined' && typeof Symbol.for === 'function') {
			    try {
			      BN.prototype[Symbol.for('nodejs.util.inspect.custom')] = inspect;
			    } catch (e) {
			      BN.prototype.inspect = inspect;
			    }
			  } else {
			    BN.prototype.inspect = inspect;
			  }

			  function inspect () {
			    return (this.red ? '<BN-R: ' : '<BN: ') + this.toString(16) + '>';
			  }

			  /*

			  var zeros = [];
			  var groupSizes = [];
			  var groupBases = [];

			  var s = '';
			  var i = -1;
			  while (++i < BN.wordSize) {
			    zeros[i] = s;
			    s += '0';
			  }
			  groupSizes[0] = 0;
			  groupSizes[1] = 0;
			  groupBases[0] = 0;
			  groupBases[1] = 0;
			  var base = 2 - 1;
			  while (++base < 36 + 1) {
			    var groupSize = 0;
			    var groupBase = 1;
			    while (groupBase < (1 << BN.wordSize) / base) {
			      groupBase *= base;
			      groupSize += 1;
			    }
			    groupSizes[base] = groupSize;
			    groupBases[base] = groupBase;
			  }

			  */

			  var zeros = [
			    '',
			    '0',
			    '00',
			    '000',
			    '0000',
			    '00000',
			    '000000',
			    '0000000',
			    '00000000',
			    '000000000',
			    '0000000000',
			    '00000000000',
			    '000000000000',
			    '0000000000000',
			    '00000000000000',
			    '000000000000000',
			    '0000000000000000',
			    '00000000000000000',
			    '000000000000000000',
			    '0000000000000000000',
			    '00000000000000000000',
			    '000000000000000000000',
			    '0000000000000000000000',
			    '00000000000000000000000',
			    '000000000000000000000000',
			    '0000000000000000000000000'
			  ];

			  var groupSizes = [
			    0, 0,
			    25, 16, 12, 11, 10, 9, 8,
			    8, 7, 7, 7, 7, 6, 6,
			    6, 6, 6, 6, 6, 5, 5,
			    5, 5, 5, 5, 5, 5, 5,
			    5, 5, 5, 5, 5, 5, 5
			  ];

			  var groupBases = [
			    0, 0,
			    33554432, 43046721, 16777216, 48828125, 60466176, 40353607, 16777216,
			    43046721, 10000000, 19487171, 35831808, 62748517, 7529536, 11390625,
			    16777216, 24137569, 34012224, 47045881, 64000000, 4084101, 5153632,
			    6436343, 7962624, 9765625, 11881376, 14348907, 17210368, 20511149,
			    24300000, 28629151, 33554432, 39135393, 45435424, 52521875, 60466176
			  ];

			  BN.prototype.toString = function toString (base, padding) {
			    base = base || 10;
			    padding = padding | 0 || 1;

			    var out;
			    if (base === 16 || base === 'hex') {
			      out = '';
			      var off = 0;
			      var carry = 0;
			      for (var i = 0; i < this.length; i++) {
			        var w = this.words[i];
			        var word = (((w << off) | carry) & 0xffffff).toString(16);
			        carry = (w >>> (24 - off)) & 0xffffff;
			        off += 2;
			        if (off >= 26) {
			          off -= 26;
			          i--;
			        }
			        if (carry !== 0 || i !== this.length - 1) {
			          out = zeros[6 - word.length] + word + out;
			        } else {
			          out = word + out;
			        }
			      }
			      if (carry !== 0) {
			        out = carry.toString(16) + out;
			      }
			      while (out.length % padding !== 0) {
			        out = '0' + out;
			      }
			      if (this.negative !== 0) {
			        out = '-' + out;
			      }
			      return out;
			    }

			    if (base === (base | 0) && base >= 2 && base <= 36) {
			      // var groupSize = Math.floor(BN.wordSize * Math.LN2 / Math.log(base));
			      var groupSize = groupSizes[base];
			      // var groupBase = Math.pow(base, groupSize);
			      var groupBase = groupBases[base];
			      out = '';
			      var c = this.clone();
			      c.negative = 0;
			      while (!c.isZero()) {
			        var r = c.modrn(groupBase).toString(base);
			        c = c.idivn(groupBase);

			        if (!c.isZero()) {
			          out = zeros[groupSize - r.length] + r + out;
			        } else {
			          out = r + out;
			        }
			      }
			      if (this.isZero()) {
			        out = '0' + out;
			      }
			      while (out.length % padding !== 0) {
			        out = '0' + out;
			      }
			      if (this.negative !== 0) {
			        out = '-' + out;
			      }
			      return out;
			    }

			    assert(false, 'Base should be between 2 and 36');
			  };

			  BN.prototype.toNumber = function toNumber () {
			    var ret = this.words[0];
			    if (this.length === 2) {
			      ret += this.words[1] * 0x4000000;
			    } else if (this.length === 3 && this.words[2] === 0x01) {
			      // NOTE: at this stage it is known that the top bit is set
			      ret += 0x10000000000000 + (this.words[1] * 0x4000000);
			    } else if (this.length > 2) {
			      assert(false, 'Number can only safely store up to 53 bits');
			    }
			    return (this.negative !== 0) ? -ret : ret;
			  };

			  BN.prototype.toJSON = function toJSON () {
			    return this.toString(16, 2);
			  };

			  if (Buffer) {
			    BN.prototype.toBuffer = function toBuffer (endian, length) {
			      return this.toArrayLike(Buffer, endian, length);
			    };
			  }

			  BN.prototype.toArray = function toArray (endian, length) {
			    return this.toArrayLike(Array, endian, length);
			  };

			  var allocate = function allocate (ArrayType, size) {
			    if (ArrayType.allocUnsafe) {
			      return ArrayType.allocUnsafe(size);
			    }
			    return new ArrayType(size);
			  };

			  BN.prototype.toArrayLike = function toArrayLike (ArrayType, endian, length) {
			    this._strip();

			    var byteLength = this.byteLength();
			    var reqLength = length || Math.max(1, byteLength);
			    assert(byteLength <= reqLength, 'byte array longer than desired length');
			    assert(reqLength > 0, 'Requested array length <= 0');

			    var res = allocate(ArrayType, reqLength);
			    var postfix = endian === 'le' ? 'LE' : 'BE';
			    this['_toArrayLike' + postfix](res, byteLength);
			    return res;
			  };

			  BN.prototype._toArrayLikeLE = function _toArrayLikeLE (res, byteLength) {
			    var position = 0;
			    var carry = 0;

			    for (var i = 0, shift = 0; i < this.length; i++) {
			      var word = (this.words[i] << shift) | carry;

			      res[position++] = word & 0xff;
			      if (position < res.length) {
			        res[position++] = (word >> 8) & 0xff;
			      }
			      if (position < res.length) {
			        res[position++] = (word >> 16) & 0xff;
			      }

			      if (shift === 6) {
			        if (position < res.length) {
			          res[position++] = (word >> 24) & 0xff;
			        }
			        carry = 0;
			        shift = 0;
			      } else {
			        carry = word >>> 24;
			        shift += 2;
			      }
			    }

			    if (position < res.length) {
			      res[position++] = carry;

			      while (position < res.length) {
			        res[position++] = 0;
			      }
			    }
			  };

			  BN.prototype._toArrayLikeBE = function _toArrayLikeBE (res, byteLength) {
			    var position = res.length - 1;
			    var carry = 0;

			    for (var i = 0, shift = 0; i < this.length; i++) {
			      var word = (this.words[i] << shift) | carry;

			      res[position--] = word & 0xff;
			      if (position >= 0) {
			        res[position--] = (word >> 8) & 0xff;
			      }
			      if (position >= 0) {
			        res[position--] = (word >> 16) & 0xff;
			      }

			      if (shift === 6) {
			        if (position >= 0) {
			          res[position--] = (word >> 24) & 0xff;
			        }
			        carry = 0;
			        shift = 0;
			      } else {
			        carry = word >>> 24;
			        shift += 2;
			      }
			    }

			    if (position >= 0) {
			      res[position--] = carry;

			      while (position >= 0) {
			        res[position--] = 0;
			      }
			    }
			  };

			  if (Math.clz32) {
			    BN.prototype._countBits = function _countBits (w) {
			      return 32 - Math.clz32(w);
			    };
			  } else {
			    BN.prototype._countBits = function _countBits (w) {
			      var t = w;
			      var r = 0;
			      if (t >= 0x1000) {
			        r += 13;
			        t >>>= 13;
			      }
			      if (t >= 0x40) {
			        r += 7;
			        t >>>= 7;
			      }
			      if (t >= 0x8) {
			        r += 4;
			        t >>>= 4;
			      }
			      if (t >= 0x02) {
			        r += 2;
			        t >>>= 2;
			      }
			      return r + t;
			    };
			  }

			  BN.prototype._zeroBits = function _zeroBits (w) {
			    // Short-cut
			    if (w === 0) return 26;

			    var t = w;
			    var r = 0;
			    if ((t & 0x1fff) === 0) {
			      r += 13;
			      t >>>= 13;
			    }
			    if ((t & 0x7f) === 0) {
			      r += 7;
			      t >>>= 7;
			    }
			    if ((t & 0xf) === 0) {
			      r += 4;
			      t >>>= 4;
			    }
			    if ((t & 0x3) === 0) {
			      r += 2;
			      t >>>= 2;
			    }
			    if ((t & 0x1) === 0) {
			      r++;
			    }
			    return r;
			  };

			  // Return number of used bits in a BN
			  BN.prototype.bitLength = function bitLength () {
			    var w = this.words[this.length - 1];
			    var hi = this._countBits(w);
			    return (this.length - 1) * 26 + hi;
			  };

			  function toBitArray (num) {
			    var w = new Array(num.bitLength());

			    for (var bit = 0; bit < w.length; bit++) {
			      var off = (bit / 26) | 0;
			      var wbit = bit % 26;

			      w[bit] = (num.words[off] >>> wbit) & 0x01;
			    }

			    return w;
			  }

			  // Number of trailing zero bits
			  BN.prototype.zeroBits = function zeroBits () {
			    if (this.isZero()) return 0;

			    var r = 0;
			    for (var i = 0; i < this.length; i++) {
			      var b = this._zeroBits(this.words[i]);
			      r += b;
			      if (b !== 26) break;
			    }
			    return r;
			  };

			  BN.prototype.byteLength = function byteLength () {
			    return Math.ceil(this.bitLength() / 8);
			  };

			  BN.prototype.toTwos = function toTwos (width) {
			    if (this.negative !== 0) {
			      return this.abs().inotn(width).iaddn(1);
			    }
			    return this.clone();
			  };

			  BN.prototype.fromTwos = function fromTwos (width) {
			    if (this.testn(width - 1)) {
			      return this.notn(width).iaddn(1).ineg();
			    }
			    return this.clone();
			  };

			  BN.prototype.isNeg = function isNeg () {
			    return this.negative !== 0;
			  };

			  // Return negative clone of `this`
			  BN.prototype.neg = function neg () {
			    return this.clone().ineg();
			  };

			  BN.prototype.ineg = function ineg () {
			    if (!this.isZero()) {
			      this.negative ^= 1;
			    }

			    return this;
			  };

			  // Or `num` with `this` in-place
			  BN.prototype.iuor = function iuor (num) {
			    while (this.length < num.length) {
			      this.words[this.length++] = 0;
			    }

			    for (var i = 0; i < num.length; i++) {
			      this.words[i] = this.words[i] | num.words[i];
			    }

			    return this._strip();
			  };

			  BN.prototype.ior = function ior (num) {
			    assert((this.negative | num.negative) === 0);
			    return this.iuor(num);
			  };

			  // Or `num` with `this`
			  BN.prototype.or = function or (num) {
			    if (this.length > num.length) return this.clone().ior(num);
			    return num.clone().ior(this);
			  };

			  BN.prototype.uor = function uor (num) {
			    if (this.length > num.length) return this.clone().iuor(num);
			    return num.clone().iuor(this);
			  };

			  // And `num` with `this` in-place
			  BN.prototype.iuand = function iuand (num) {
			    // b = min-length(num, this)
			    var b;
			    if (this.length > num.length) {
			      b = num;
			    } else {
			      b = this;
			    }

			    for (var i = 0; i < b.length; i++) {
			      this.words[i] = this.words[i] & num.words[i];
			    }

			    this.length = b.length;

			    return this._strip();
			  };

			  BN.prototype.iand = function iand (num) {
			    assert((this.negative | num.negative) === 0);
			    return this.iuand(num);
			  };

			  // And `num` with `this`
			  BN.prototype.and = function and (num) {
			    if (this.length > num.length) return this.clone().iand(num);
			    return num.clone().iand(this);
			  };

			  BN.prototype.uand = function uand (num) {
			    if (this.length > num.length) return this.clone().iuand(num);
			    return num.clone().iuand(this);
			  };

			  // Xor `num` with `this` in-place
			  BN.prototype.iuxor = function iuxor (num) {
			    // a.length > b.length
			    var a;
			    var b;
			    if (this.length > num.length) {
			      a = this;
			      b = num;
			    } else {
			      a = num;
			      b = this;
			    }

			    for (var i = 0; i < b.length; i++) {
			      this.words[i] = a.words[i] ^ b.words[i];
			    }

			    if (this !== a) {
			      for (; i < a.length; i++) {
			        this.words[i] = a.words[i];
			      }
			    }

			    this.length = a.length;

			    return this._strip();
			  };

			  BN.prototype.ixor = function ixor (num) {
			    assert((this.negative | num.negative) === 0);
			    return this.iuxor(num);
			  };

			  // Xor `num` with `this`
			  BN.prototype.xor = function xor (num) {
			    if (this.length > num.length) return this.clone().ixor(num);
			    return num.clone().ixor(this);
			  };

			  BN.prototype.uxor = function uxor (num) {
			    if (this.length > num.length) return this.clone().iuxor(num);
			    return num.clone().iuxor(this);
			  };

			  // Not ``this`` with ``width`` bitwidth
			  BN.prototype.inotn = function inotn (width) {
			    assert(typeof width === 'number' && width >= 0);

			    var bytesNeeded = Math.ceil(width / 26) | 0;
			    var bitsLeft = width % 26;

			    // Extend the buffer with leading zeroes
			    this._expand(bytesNeeded);

			    if (bitsLeft > 0) {
			      bytesNeeded--;
			    }

			    // Handle complete words
			    for (var i = 0; i < bytesNeeded; i++) {
			      this.words[i] = ~this.words[i] & 0x3ffffff;
			    }

			    // Handle the residue
			    if (bitsLeft > 0) {
			      this.words[i] = ~this.words[i] & (0x3ffffff >> (26 - bitsLeft));
			    }

			    // And remove leading zeroes
			    return this._strip();
			  };

			  BN.prototype.notn = function notn (width) {
			    return this.clone().inotn(width);
			  };

			  // Set `bit` of `this`
			  BN.prototype.setn = function setn (bit, val) {
			    assert(typeof bit === 'number' && bit >= 0);

			    var off = (bit / 26) | 0;
			    var wbit = bit % 26;

			    this._expand(off + 1);

			    if (val) {
			      this.words[off] = this.words[off] | (1 << wbit);
			    } else {
			      this.words[off] = this.words[off] & ~(1 << wbit);
			    }

			    return this._strip();
			  };

			  // Add `num` to `this` in-place
			  BN.prototype.iadd = function iadd (num) {
			    var r;

			    // negative + positive
			    if (this.negative !== 0 && num.negative === 0) {
			      this.negative = 0;
			      r = this.isub(num);
			      this.negative ^= 1;
			      return this._normSign();

			    // positive + negative
			    } else if (this.negative === 0 && num.negative !== 0) {
			      num.negative = 0;
			      r = this.isub(num);
			      num.negative = 1;
			      return r._normSign();
			    }

			    // a.length > b.length
			    var a, b;
			    if (this.length > num.length) {
			      a = this;
			      b = num;
			    } else {
			      a = num;
			      b = this;
			    }

			    var carry = 0;
			    for (var i = 0; i < b.length; i++) {
			      r = (a.words[i] | 0) + (b.words[i] | 0) + carry;
			      this.words[i] = r & 0x3ffffff;
			      carry = r >>> 26;
			    }
			    for (; carry !== 0 && i < a.length; i++) {
			      r = (a.words[i] | 0) + carry;
			      this.words[i] = r & 0x3ffffff;
			      carry = r >>> 26;
			    }

			    this.length = a.length;
			    if (carry !== 0) {
			      this.words[this.length] = carry;
			      this.length++;
			    // Copy the rest of the words
			    } else if (a !== this) {
			      for (; i < a.length; i++) {
			        this.words[i] = a.words[i];
			      }
			    }

			    return this;
			  };

			  // Add `num` to `this`
			  BN.prototype.add = function add (num) {
			    var res;
			    if (num.negative !== 0 && this.negative === 0) {
			      num.negative = 0;
			      res = this.sub(num);
			      num.negative ^= 1;
			      return res;
			    } else if (num.negative === 0 && this.negative !== 0) {
			      this.negative = 0;
			      res = num.sub(this);
			      this.negative = 1;
			      return res;
			    }

			    if (this.length > num.length) return this.clone().iadd(num);

			    return num.clone().iadd(this);
			  };

			  // Subtract `num` from `this` in-place
			  BN.prototype.isub = function isub (num) {
			    // this - (-num) = this + num
			    if (num.negative !== 0) {
			      num.negative = 0;
			      var r = this.iadd(num);
			      num.negative = 1;
			      return r._normSign();

			    // -this - num = -(this + num)
			    } else if (this.negative !== 0) {
			      this.negative = 0;
			      this.iadd(num);
			      this.negative = 1;
			      return this._normSign();
			    }

			    // At this point both numbers are positive
			    var cmp = this.cmp(num);

			    // Optimization - zeroify
			    if (cmp === 0) {
			      this.negative = 0;
			      this.length = 1;
			      this.words[0] = 0;
			      return this;
			    }

			    // a > b
			    var a, b;
			    if (cmp > 0) {
			      a = this;
			      b = num;
			    } else {
			      a = num;
			      b = this;
			    }

			    var carry = 0;
			    for (var i = 0; i < b.length; i++) {
			      r = (a.words[i] | 0) - (b.words[i] | 0) + carry;
			      carry = r >> 26;
			      this.words[i] = r & 0x3ffffff;
			    }
			    for (; carry !== 0 && i < a.length; i++) {
			      r = (a.words[i] | 0) + carry;
			      carry = r >> 26;
			      this.words[i] = r & 0x3ffffff;
			    }

			    // Copy rest of the words
			    if (carry === 0 && i < a.length && a !== this) {
			      for (; i < a.length; i++) {
			        this.words[i] = a.words[i];
			      }
			    }

			    this.length = Math.max(this.length, i);

			    if (a !== this) {
			      this.negative = 1;
			    }

			    return this._strip();
			  };

			  // Subtract `num` from `this`
			  BN.prototype.sub = function sub (num) {
			    return this.clone().isub(num);
			  };

			  function smallMulTo (self, num, out) {
			    out.negative = num.negative ^ self.negative;
			    var len = (self.length + num.length) | 0;
			    out.length = len;
			    len = (len - 1) | 0;

			    // Peel one iteration (compiler can't do it, because of code complexity)
			    var a = self.words[0] | 0;
			    var b = num.words[0] | 0;
			    var r = a * b;

			    var lo = r & 0x3ffffff;
			    var carry = (r / 0x4000000) | 0;
			    out.words[0] = lo;

			    for (var k = 1; k < len; k++) {
			      // Sum all words with the same `i + j = k` and accumulate `ncarry`,
			      // note that ncarry could be >= 0x3ffffff
			      var ncarry = carry >>> 26;
			      var rword = carry & 0x3ffffff;
			      var maxJ = Math.min(k, num.length - 1);
			      for (var j = Math.max(0, k - self.length + 1); j <= maxJ; j++) {
			        var i = (k - j) | 0;
			        a = self.words[i] | 0;
			        b = num.words[j] | 0;
			        r = a * b + rword;
			        ncarry += (r / 0x4000000) | 0;
			        rword = r & 0x3ffffff;
			      }
			      out.words[k] = rword | 0;
			      carry = ncarry | 0;
			    }
			    if (carry !== 0) {
			      out.words[k] = carry | 0;
			    } else {
			      out.length--;
			    }

			    return out._strip();
			  }

			  // TODO(indutny): it may be reasonable to omit it for users who don't need
			  // to work with 256-bit numbers, otherwise it gives 20% improvement for 256-bit
			  // multiplication (like elliptic secp256k1).
			  var comb10MulTo = function comb10MulTo (self, num, out) {
			    var a = self.words;
			    var b = num.words;
			    var o = out.words;
			    var c = 0;
			    var lo;
			    var mid;
			    var hi;
			    var a0 = a[0] | 0;
			    var al0 = a0 & 0x1fff;
			    var ah0 = a0 >>> 13;
			    var a1 = a[1] | 0;
			    var al1 = a1 & 0x1fff;
			    var ah1 = a1 >>> 13;
			    var a2 = a[2] | 0;
			    var al2 = a2 & 0x1fff;
			    var ah2 = a2 >>> 13;
			    var a3 = a[3] | 0;
			    var al3 = a3 & 0x1fff;
			    var ah3 = a3 >>> 13;
			    var a4 = a[4] | 0;
			    var al4 = a4 & 0x1fff;
			    var ah4 = a4 >>> 13;
			    var a5 = a[5] | 0;
			    var al5 = a5 & 0x1fff;
			    var ah5 = a5 >>> 13;
			    var a6 = a[6] | 0;
			    var al6 = a6 & 0x1fff;
			    var ah6 = a6 >>> 13;
			    var a7 = a[7] | 0;
			    var al7 = a7 & 0x1fff;
			    var ah7 = a7 >>> 13;
			    var a8 = a[8] | 0;
			    var al8 = a8 & 0x1fff;
			    var ah8 = a8 >>> 13;
			    var a9 = a[9] | 0;
			    var al9 = a9 & 0x1fff;
			    var ah9 = a9 >>> 13;
			    var b0 = b[0] | 0;
			    var bl0 = b0 & 0x1fff;
			    var bh0 = b0 >>> 13;
			    var b1 = b[1] | 0;
			    var bl1 = b1 & 0x1fff;
			    var bh1 = b1 >>> 13;
			    var b2 = b[2] | 0;
			    var bl2 = b2 & 0x1fff;
			    var bh2 = b2 >>> 13;
			    var b3 = b[3] | 0;
			    var bl3 = b3 & 0x1fff;
			    var bh3 = b3 >>> 13;
			    var b4 = b[4] | 0;
			    var bl4 = b4 & 0x1fff;
			    var bh4 = b4 >>> 13;
			    var b5 = b[5] | 0;
			    var bl5 = b5 & 0x1fff;
			    var bh5 = b5 >>> 13;
			    var b6 = b[6] | 0;
			    var bl6 = b6 & 0x1fff;
			    var bh6 = b6 >>> 13;
			    var b7 = b[7] | 0;
			    var bl7 = b7 & 0x1fff;
			    var bh7 = b7 >>> 13;
			    var b8 = b[8] | 0;
			    var bl8 = b8 & 0x1fff;
			    var bh8 = b8 >>> 13;
			    var b9 = b[9] | 0;
			    var bl9 = b9 & 0x1fff;
			    var bh9 = b9 >>> 13;

			    out.negative = self.negative ^ num.negative;
			    out.length = 19;
			    /* k = 0 */
			    lo = Math.imul(al0, bl0);
			    mid = Math.imul(al0, bh0);
			    mid = (mid + Math.imul(ah0, bl0)) | 0;
			    hi = Math.imul(ah0, bh0);
			    var w0 = (((c + lo) | 0) + ((mid & 0x1fff) << 13)) | 0;
			    c = (((hi + (mid >>> 13)) | 0) + (w0 >>> 26)) | 0;
			    w0 &= 0x3ffffff;
			    /* k = 1 */
			    lo = Math.imul(al1, bl0);
			    mid = Math.imul(al1, bh0);
			    mid = (mid + Math.imul(ah1, bl0)) | 0;
			    hi = Math.imul(ah1, bh0);
			    lo = (lo + Math.imul(al0, bl1)) | 0;
			    mid = (mid + Math.imul(al0, bh1)) | 0;
			    mid = (mid + Math.imul(ah0, bl1)) | 0;
			    hi = (hi + Math.imul(ah0, bh1)) | 0;
			    var w1 = (((c + lo) | 0) + ((mid & 0x1fff) << 13)) | 0;
			    c = (((hi + (mid >>> 13)) | 0) + (w1 >>> 26)) | 0;
			    w1 &= 0x3ffffff;
			    /* k = 2 */
			    lo = Math.imul(al2, bl0);
			    mid = Math.imul(al2, bh0);
			    mid = (mid + Math.imul(ah2, bl0)) | 0;
			    hi = Math.imul(ah2, bh0);
			    lo = (lo + Math.imul(al1, bl1)) | 0;
			    mid = (mid + Math.imul(al1, bh1)) | 0;
			    mid = (mid + Math.imul(ah1, bl1)) | 0;
			    hi = (hi + Math.imul(ah1, bh1)) | 0;
			    lo = (lo + Math.imul(al0, bl2)) | 0;
			    mid = (mid + Math.imul(al0, bh2)) | 0;
			    mid = (mid + Math.imul(ah0, bl2)) | 0;
			    hi = (hi + Math.imul(ah0, bh2)) | 0;
			    var w2 = (((c + lo) | 0) + ((mid & 0x1fff) << 13)) | 0;
			    c = (((hi + (mid >>> 13)) | 0) + (w2 >>> 26)) | 0;
			    w2 &= 0x3ffffff;
			    /* k = 3 */
			    lo = Math.imul(al3, bl0);
			    mid = Math.imul(al3, bh0);
			    mid = (mid + Math.imul(ah3, bl0)) | 0;
			    hi = Math.imul(ah3, bh0);
			    lo = (lo + Math.imul(al2, bl1)) | 0;
			    mid = (mid + Math.imul(al2, bh1)) | 0;
			    mid = (mid + Math.imul(ah2, bl1)) | 0;
			    hi = (hi + Math.imul(ah2, bh1)) | 0;
			    lo = (lo + Math.imul(al1, bl2)) | 0;
			    mid = (mid + Math.imul(al1, bh2)) | 0;
			    mid = (mid + Math.imul(ah1, bl2)) | 0;
			    hi = (hi + Math.imul(ah1, bh2)) | 0;
			    lo = (lo + Math.imul(al0, bl3)) | 0;
			    mid = (mid + Math.imul(al0, bh3)) | 0;
			    mid = (mid + Math.imul(ah0, bl3)) | 0;
			    hi = (hi + Math.imul(ah0, bh3)) | 0;
			    var w3 = (((c + lo) | 0) + ((mid & 0x1fff) << 13)) | 0;
			    c = (((hi + (mid >>> 13)) | 0) + (w3 >>> 26)) | 0;
			    w3 &= 0x3ffffff;
			    /* k = 4 */
			    lo = Math.imul(al4, bl0);
			    mid = Math.imul(al4, bh0);
			    mid = (mid + Math.imul(ah4, bl0)) | 0;
			    hi = Math.imul(ah4, bh0);
			    lo = (lo + Math.imul(al3, bl1)) | 0;
			    mid = (mid + Math.imul(al3, bh1)) | 0;
			    mid = (mid + Math.imul(ah3, bl1)) | 0;
			    hi = (hi + Math.imul(ah3, bh1)) | 0;
			    lo = (lo + Math.imul(al2, bl2)) | 0;
			    mid = (mid + Math.imul(al2, bh2)) | 0;
			    mid = (mid + Math.imul(ah2, bl2)) | 0;
			    hi = (hi + Math.imul(ah2, bh2)) | 0;
			    lo = (lo + Math.imul(al1, bl3)) | 0;
			    mid = (mid + Math.imul(al1, bh3)) | 0;
			    mid = (mid + Math.imul(ah1, bl3)) | 0;
			    hi = (hi + Math.imul(ah1, bh3)) | 0;
			    lo = (lo + Math.imul(al0, bl4)) | 0;
			    mid = (mid + Math.imul(al0, bh4)) | 0;
			    mid = (mid + Math.imul(ah0, bl4)) | 0;
			    hi = (hi + Math.imul(ah0, bh4)) | 0;
			    var w4 = (((c + lo) | 0) + ((mid & 0x1fff) << 13)) | 0;
			    c = (((hi + (mid >>> 13)) | 0) + (w4 >>> 26)) | 0;
			    w4 &= 0x3ffffff;
			    /* k = 5 */
			    lo = Math.imul(al5, bl0);
			    mid = Math.imul(al5, bh0);
			    mid = (mid + Math.imul(ah5, bl0)) | 0;
			    hi = Math.imul(ah5, bh0);
			    lo = (lo + Math.imul(al4, bl1)) | 0;
			    mid = (mid + Math.imul(al4, bh1)) | 0;
			    mid = (mid + Math.imul(ah4, bl1)) | 0;
			    hi = (hi + Math.imul(ah4, bh1)) | 0;
			    lo = (lo + Math.imul(al3, bl2)) | 0;
			    mid = (mid + Math.imul(al3, bh2)) | 0;
			    mid = (mid + Math.imul(ah3, bl2)) | 0;
			    hi = (hi + Math.imul(ah3, bh2)) | 0;
			    lo = (lo + Math.imul(al2, bl3)) | 0;
			    mid = (mid + Math.imul(al2, bh3)) | 0;
			    mid = (mid + Math.imul(ah2, bl3)) | 0;
			    hi = (hi + Math.imul(ah2, bh3)) | 0;
			    lo = (lo + Math.imul(al1, bl4)) | 0;
			    mid = (mid + Math.imul(al1, bh4)) | 0;
			    mid = (mid + Math.imul(ah1, bl4)) | 0;
			    hi = (hi + Math.imul(ah1, bh4)) | 0;
			    lo = (lo + Math.imul(al0, bl5)) | 0;
			    mid = (mid + Math.imul(al0, bh5)) | 0;
			    mid = (mid + Math.imul(ah0, bl5)) | 0;
			    hi = (hi + Math.imul(ah0, bh5)) | 0;
			    var w5 = (((c + lo) | 0) + ((mid & 0x1fff) << 13)) | 0;
			    c = (((hi + (mid >>> 13)) | 0) + (w5 >>> 26)) | 0;
			    w5 &= 0x3ffffff;
			    /* k = 6 */
			    lo = Math.imul(al6, bl0);
			    mid = Math.imul(al6, bh0);
			    mid = (mid + Math.imul(ah6, bl0)) | 0;
			    hi = Math.imul(ah6, bh0);
			    lo = (lo + Math.imul(al5, bl1)) | 0;
			    mid = (mid + Math.imul(al5, bh1)) | 0;
			    mid = (mid + Math.imul(ah5, bl1)) | 0;
			    hi = (hi + Math.imul(ah5, bh1)) | 0;
			    lo = (lo + Math.imul(al4, bl2)) | 0;
			    mid = (mid + Math.imul(al4, bh2)) | 0;
			    mid = (mid + Math.imul(ah4, bl2)) | 0;
			    hi = (hi + Math.imul(ah4, bh2)) | 0;
			    lo = (lo + Math.imul(al3, bl3)) | 0;
			    mid = (mid + Math.imul(al3, bh3)) | 0;
			    mid = (mid + Math.imul(ah3, bl3)) | 0;
			    hi = (hi + Math.imul(ah3, bh3)) | 0;
			    lo = (lo + Math.imul(al2, bl4)) | 0;
			    mid = (mid + Math.imul(al2, bh4)) | 0;
			    mid = (mid + Math.imul(ah2, bl4)) | 0;
			    hi = (hi + Math.imul(ah2, bh4)) | 0;
			    lo = (lo + Math.imul(al1, bl5)) | 0;
			    mid = (mid + Math.imul(al1, bh5)) | 0;
			    mid = (mid + Math.imul(ah1, bl5)) | 0;
			    hi = (hi + Math.imul(ah1, bh5)) | 0;
			    lo = (lo + Math.imul(al0, bl6)) | 0;
			    mid = (mid + Math.imul(al0, bh6)) | 0;
			    mid = (mid + Math.imul(ah0, bl6)) | 0;
			    hi = (hi + Math.imul(ah0, bh6)) | 0;
			    var w6 = (((c + lo) | 0) + ((mid & 0x1fff) << 13)) | 0;
			    c = (((hi + (mid >>> 13)) | 0) + (w6 >>> 26)) | 0;
			    w6 &= 0x3ffffff;
			    /* k = 7 */
			    lo = Math.imul(al7, bl0);
			    mid = Math.imul(al7, bh0);
			    mid = (mid + Math.imul(ah7, bl0)) | 0;
			    hi = Math.imul(ah7, bh0);
			    lo = (lo + Math.imul(al6, bl1)) | 0;
			    mid = (mid + Math.imul(al6, bh1)) | 0;
			    mid = (mid + Math.imul(ah6, bl1)) | 0;
			    hi = (hi + Math.imul(ah6, bh1)) | 0;
			    lo = (lo + Math.imul(al5, bl2)) | 0;
			    mid = (mid + Math.imul(al5, bh2)) | 0;
			    mid = (mid + Math.imul(ah5, bl2)) | 0;
			    hi = (hi + Math.imul(ah5, bh2)) | 0;
			    lo = (lo + Math.imul(al4, bl3)) | 0;
			    mid = (mid + Math.imul(al4, bh3)) | 0;
			    mid = (mid + Math.imul(ah4, bl3)) | 0;
			    hi = (hi + Math.imul(ah4, bh3)) | 0;
			    lo = (lo + Math.imul(al3, bl4)) | 0;
			    mid = (mid + Math.imul(al3, bh4)) | 0;
			    mid = (mid + Math.imul(ah3, bl4)) | 0;
			    hi = (hi + Math.imul(ah3, bh4)) | 0;
			    lo = (lo + Math.imul(al2, bl5)) | 0;
			    mid = (mid + Math.imul(al2, bh5)) | 0;
			    mid = (mid + Math.imul(ah2, bl5)) | 0;
			    hi = (hi + Math.imul(ah2, bh5)) | 0;
			    lo = (lo + Math.imul(al1, bl6)) | 0;
			    mid = (mid + Math.imul(al1, bh6)) | 0;
			    mid = (mid + Math.imul(ah1, bl6)) | 0;
			    hi = (hi + Math.imul(ah1, bh6)) | 0;
			    lo = (lo + Math.imul(al0, bl7)) | 0;
			    mid = (mid + Math.imul(al0, bh7)) | 0;
			    mid = (mid + Math.imul(ah0, bl7)) | 0;
			    hi = (hi + Math.imul(ah0, bh7)) | 0;
			    var w7 = (((c + lo) | 0) + ((mid & 0x1fff) << 13)) | 0;
			    c = (((hi + (mid >>> 13)) | 0) + (w7 >>> 26)) | 0;
			    w7 &= 0x3ffffff;
			    /* k = 8 */
			    lo = Math.imul(al8, bl0);
			    mid = Math.imul(al8, bh0);
			    mid = (mid + Math.imul(ah8, bl0)) | 0;
			    hi = Math.imul(ah8, bh0);
			    lo = (lo + Math.imul(al7, bl1)) | 0;
			    mid = (mid + Math.imul(al7, bh1)) | 0;
			    mid = (mid + Math.imul(ah7, bl1)) | 0;
			    hi = (hi + Math.imul(ah7, bh1)) | 0;
			    lo = (lo + Math.imul(al6, bl2)) | 0;
			    mid = (mid + Math.imul(al6, bh2)) | 0;
			    mid = (mid + Math.imul(ah6, bl2)) | 0;
			    hi = (hi + Math.imul(ah6, bh2)) | 0;
			    lo = (lo + Math.imul(al5, bl3)) | 0;
			    mid = (mid + Math.imul(al5, bh3)) | 0;
			    mid = (mid + Math.imul(ah5, bl3)) | 0;
			    hi = (hi + Math.imul(ah5, bh3)) | 0;
			    lo = (lo + Math.imul(al4, bl4)) | 0;
			    mid = (mid + Math.imul(al4, bh4)) | 0;
			    mid = (mid + Math.imul(ah4, bl4)) | 0;
			    hi = (hi + Math.imul(ah4, bh4)) | 0;
			    lo = (lo + Math.imul(al3, bl5)) | 0;
			    mid = (mid + Math.imul(al3, bh5)) | 0;
			    mid = (mid + Math.imul(ah3, bl5)) | 0;
			    hi = (hi + Math.imul(ah3, bh5)) | 0;
			    lo = (lo + Math.imul(al2, bl6)) | 0;
			    mid = (mid + Math.imul(al2, bh6)) | 0;
			    mid = (mid + Math.imul(ah2, bl6)) | 0;
			    hi = (hi + Math.imul(ah2, bh6)) | 0;
			    lo = (lo + Math.imul(al1, bl7)) | 0;
			    mid = (mid + Math.imul(al1, bh7)) | 0;
			    mid = (mid + Math.imul(ah1, bl7)) | 0;
			    hi = (hi + Math.imul(ah1, bh7)) | 0;
			    lo = (lo + Math.imul(al0, bl8)) | 0;
			    mid = (mid + Math.imul(al0, bh8)) | 0;
			    mid = (mid + Math.imul(ah0, bl8)) | 0;
			    hi = (hi + Math.imul(ah0, bh8)) | 0;
			    var w8 = (((c + lo) | 0) + ((mid & 0x1fff) << 13)) | 0;
			    c = (((hi + (mid >>> 13)) | 0) + (w8 >>> 26)) | 0;
			    w8 &= 0x3ffffff;
			    /* k = 9 */
			    lo = Math.imul(al9, bl0);
			    mid = Math.imul(al9, bh0);
			    mid = (mid + Math.imul(ah9, bl0)) | 0;
			    hi = Math.imul(ah9, bh0);
			    lo = (lo + Math.imul(al8, bl1)) | 0;
			    mid = (mid + Math.imul(al8, bh1)) | 0;
			    mid = (mid + Math.imul(ah8, bl1)) | 0;
			    hi = (hi + Math.imul(ah8, bh1)) | 0;
			    lo = (lo + Math.imul(al7, bl2)) | 0;
			    mid = (mid + Math.imul(al7, bh2)) | 0;
			    mid = (mid + Math.imul(ah7, bl2)) | 0;
			    hi = (hi + Math.imul(ah7, bh2)) | 0;
			    lo = (lo + Math.imul(al6, bl3)) | 0;
			    mid = (mid + Math.imul(al6, bh3)) | 0;
			    mid = (mid + Math.imul(ah6, bl3)) | 0;
			    hi = (hi + Math.imul(ah6, bh3)) | 0;
			    lo = (lo + Math.imul(al5, bl4)) | 0;
			    mid = (mid + Math.imul(al5, bh4)) | 0;
			    mid = (mid + Math.imul(ah5, bl4)) | 0;
			    hi = (hi + Math.imul(ah5, bh4)) | 0;
			    lo = (lo + Math.imul(al4, bl5)) | 0;
			    mid = (mid + Math.imul(al4, bh5)) | 0;
			    mid = (mid + Math.imul(ah4, bl5)) | 0;
			    hi = (hi + Math.imul(ah4, bh5)) | 0;
			    lo = (lo + Math.imul(al3, bl6)) | 0;
			    mid = (mid + Math.imul(al3, bh6)) | 0;
			    mid = (mid + Math.imul(ah3, bl6)) | 0;
			    hi = (hi + Math.imul(ah3, bh6)) | 0;
			    lo = (lo + Math.imul(al2, bl7)) | 0;
			    mid = (mid + Math.imul(al2, bh7)) | 0;
			    mid = (mid + Math.imul(ah2, bl7)) | 0;
			    hi = (hi + Math.imul(ah2, bh7)) | 0;
			    lo = (lo + Math.imul(al1, bl8)) | 0;
			    mid = (mid + Math.imul(al1, bh8)) | 0;
			    mid = (mid + Math.imul(ah1, bl8)) | 0;
			    hi = (hi + Math.imul(ah1, bh8)) | 0;
			    lo = (lo + Math.imul(al0, bl9)) | 0;
			    mid = (mid + Math.imul(al0, bh9)) | 0;
			    mid = (mid + Math.imul(ah0, bl9)) | 0;
			    hi = (hi + Math.imul(ah0, bh9)) | 0;
			    var w9 = (((c + lo) | 0) + ((mid & 0x1fff) << 13)) | 0;
			    c = (((hi + (mid >>> 13)) | 0) + (w9 >>> 26)) | 0;
			    w9 &= 0x3ffffff;
			    /* k = 10 */
			    lo = Math.imul(al9, bl1);
			    mid = Math.imul(al9, bh1);
			    mid = (mid + Math.imul(ah9, bl1)) | 0;
			    hi = Math.imul(ah9, bh1);
			    lo = (lo + Math.imul(al8, bl2)) | 0;
			    mid = (mid + Math.imul(al8, bh2)) | 0;
			    mid = (mid + Math.imul(ah8, bl2)) | 0;
			    hi = (hi + Math.imul(ah8, bh2)) | 0;
			    lo = (lo + Math.imul(al7, bl3)) | 0;
			    mid = (mid + Math.imul(al7, bh3)) | 0;
			    mid = (mid + Math.imul(ah7, bl3)) | 0;
			    hi = (hi + Math.imul(ah7, bh3)) | 0;
			    lo = (lo + Math.imul(al6, bl4)) | 0;
			    mid = (mid + Math.imul(al6, bh4)) | 0;
			    mid = (mid + Math.imul(ah6, bl4)) | 0;
			    hi = (hi + Math.imul(ah6, bh4)) | 0;
			    lo = (lo + Math.imul(al5, bl5)) | 0;
			    mid = (mid + Math.imul(al5, bh5)) | 0;
			    mid = (mid + Math.imul(ah5, bl5)) | 0;
			    hi = (hi + Math.imul(ah5, bh5)) | 0;
			    lo = (lo + Math.imul(al4, bl6)) | 0;
			    mid = (mid + Math.imul(al4, bh6)) | 0;
			    mid = (mid + Math.imul(ah4, bl6)) | 0;
			    hi = (hi + Math.imul(ah4, bh6)) | 0;
			    lo = (lo + Math.imul(al3, bl7)) | 0;
			    mid = (mid + Math.imul(al3, bh7)) | 0;
			    mid = (mid + Math.imul(ah3, bl7)) | 0;
			    hi = (hi + Math.imul(ah3, bh7)) | 0;
			    lo = (lo + Math.imul(al2, bl8)) | 0;
			    mid = (mid + Math.imul(al2, bh8)) | 0;
			    mid = (mid + Math.imul(ah2, bl8)) | 0;
			    hi = (hi + Math.imul(ah2, bh8)) | 0;
			    lo = (lo + Math.imul(al1, bl9)) | 0;
			    mid = (mid + Math.imul(al1, bh9)) | 0;
			    mid = (mid + Math.imul(ah1, bl9)) | 0;
			    hi = (hi + Math.imul(ah1, bh9)) | 0;
			    var w10 = (((c + lo) | 0) + ((mid & 0x1fff) << 13)) | 0;
			    c = (((hi + (mid >>> 13)) | 0) + (w10 >>> 26)) | 0;
			    w10 &= 0x3ffffff;
			    /* k = 11 */
			    lo = Math.imul(al9, bl2);
			    mid = Math.imul(al9, bh2);
			    mid = (mid + Math.imul(ah9, bl2)) | 0;
			    hi = Math.imul(ah9, bh2);
			    lo = (lo + Math.imul(al8, bl3)) | 0;
			    mid = (mid + Math.imul(al8, bh3)) | 0;
			    mid = (mid + Math.imul(ah8, bl3)) | 0;
			    hi = (hi + Math.imul(ah8, bh3)) | 0;
			    lo = (lo + Math.imul(al7, bl4)) | 0;
			    mid = (mid + Math.imul(al7, bh4)) | 0;
			    mid = (mid + Math.imul(ah7, bl4)) | 0;
			    hi = (hi + Math.imul(ah7, bh4)) | 0;
			    lo = (lo + Math.imul(al6, bl5)) | 0;
			    mid = (mid + Math.imul(al6, bh5)) | 0;
			    mid = (mid + Math.imul(ah6, bl5)) | 0;
			    hi = (hi + Math.imul(ah6, bh5)) | 0;
			    lo = (lo + Math.imul(al5, bl6)) | 0;
			    mid = (mid + Math.imul(al5, bh6)) | 0;
			    mid = (mid + Math.imul(ah5, bl6)) | 0;
			    hi = (hi + Math.imul(ah5, bh6)) | 0;
			    lo = (lo + Math.imul(al4, bl7)) | 0;
			    mid = (mid + Math.imul(al4, bh7)) | 0;
			    mid = (mid + Math.imul(ah4, bl7)) | 0;
			    hi = (hi + Math.imul(ah4, bh7)) | 0;
			    lo = (lo + Math.imul(al3, bl8)) | 0;
			    mid = (mid + Math.imul(al3, bh8)) | 0;
			    mid = (mid + Math.imul(ah3, bl8)) | 0;
			    hi = (hi + Math.imul(ah3, bh8)) | 0;
			    lo = (lo + Math.imul(al2, bl9)) | 0;
			    mid = (mid + Math.imul(al2, bh9)) | 0;
			    mid = (mid + Math.imul(ah2, bl9)) | 0;
			    hi = (hi + Math.imul(ah2, bh9)) | 0;
			    var w11 = (((c + lo) | 0) + ((mid & 0x1fff) << 13)) | 0;
			    c = (((hi + (mid >>> 13)) | 0) + (w11 >>> 26)) | 0;
			    w11 &= 0x3ffffff;
			    /* k = 12 */
			    lo = Math.imul(al9, bl3);
			    mid = Math.imul(al9, bh3);
			    mid = (mid + Math.imul(ah9, bl3)) | 0;
			    hi = Math.imul(ah9, bh3);
			    lo = (lo + Math.imul(al8, bl4)) | 0;
			    mid = (mid + Math.imul(al8, bh4)) | 0;
			    mid = (mid + Math.imul(ah8, bl4)) | 0;
			    hi = (hi + Math.imul(ah8, bh4)) | 0;
			    lo = (lo + Math.imul(al7, bl5)) | 0;
			    mid = (mid + Math.imul(al7, bh5)) | 0;
			    mid = (mid + Math.imul(ah7, bl5)) | 0;
			    hi = (hi + Math.imul(ah7, bh5)) | 0;
			    lo = (lo + Math.imul(al6, bl6)) | 0;
			    mid = (mid + Math.imul(al6, bh6)) | 0;
			    mid = (mid + Math.imul(ah6, bl6)) | 0;
			    hi = (hi + Math.imul(ah6, bh6)) | 0;
			    lo = (lo + Math.imul(al5, bl7)) | 0;
			    mid = (mid + Math.imul(al5, bh7)) | 0;
			    mid = (mid + Math.imul(ah5, bl7)) | 0;
			    hi = (hi + Math.imul(ah5, bh7)) | 0;
			    lo = (lo + Math.imul(al4, bl8)) | 0;
			    mid = (mid + Math.imul(al4, bh8)) | 0;
			    mid = (mid + Math.imul(ah4, bl8)) | 0;
			    hi = (hi + Math.imul(ah4, bh8)) | 0;
			    lo = (lo + Math.imul(al3, bl9)) | 0;
			    mid = (mid + Math.imul(al3, bh9)) | 0;
			    mid = (mid + Math.imul(ah3, bl9)) | 0;
			    hi = (hi + Math.imul(ah3, bh9)) | 0;
			    var w12 = (((c + lo) | 0) + ((mid & 0x1fff) << 13)) | 0;
			    c = (((hi + (mid >>> 13)) | 0) + (w12 >>> 26)) | 0;
			    w12 &= 0x3ffffff;
			    /* k = 13 */
			    lo = Math.imul(al9, bl4);
			    mid = Math.imul(al9, bh4);
			    mid = (mid + Math.imul(ah9, bl4)) | 0;
			    hi = Math.imul(ah9, bh4);
			    lo = (lo + Math.imul(al8, bl5)) | 0;
			    mid = (mid + Math.imul(al8, bh5)) | 0;
			    mid = (mid + Math.imul(ah8, bl5)) | 0;
			    hi = (hi + Math.imul(ah8, bh5)) | 0;
			    lo = (lo + Math.imul(al7, bl6)) | 0;
			    mid = (mid + Math.imul(al7, bh6)) | 0;
			    mid = (mid + Math.imul(ah7, bl6)) | 0;
			    hi = (hi + Math.imul(ah7, bh6)) | 0;
			    lo = (lo + Math.imul(al6, bl7)) | 0;
			    mid = (mid + Math.imul(al6, bh7)) | 0;
			    mid = (mid + Math.imul(ah6, bl7)) | 0;
			    hi = (hi + Math.imul(ah6, bh7)) | 0;
			    lo = (lo + Math.imul(al5, bl8)) | 0;
			    mid = (mid + Math.imul(al5, bh8)) | 0;
			    mid = (mid + Math.imul(ah5, bl8)) | 0;
			    hi = (hi + Math.imul(ah5, bh8)) | 0;
			    lo = (lo + Math.imul(al4, bl9)) | 0;
			    mid = (mid + Math.imul(al4, bh9)) | 0;
			    mid = (mid + Math.imul(ah4, bl9)) | 0;
			    hi = (hi + Math.imul(ah4, bh9)) | 0;
			    var w13 = (((c + lo) | 0) + ((mid & 0x1fff) << 13)) | 0;
			    c = (((hi + (mid >>> 13)) | 0) + (w13 >>> 26)) | 0;
			    w13 &= 0x3ffffff;
			    /* k = 14 */
			    lo = Math.imul(al9, bl5);
			    mid = Math.imul(al9, bh5);
			    mid = (mid + Math.imul(ah9, bl5)) | 0;
			    hi = Math.imul(ah9, bh5);
			    lo = (lo + Math.imul(al8, bl6)) | 0;
			    mid = (mid + Math.imul(al8, bh6)) | 0;
			    mid = (mid + Math.imul(ah8, bl6)) | 0;
			    hi = (hi + Math.imul(ah8, bh6)) | 0;
			    lo = (lo + Math.imul(al7, bl7)) | 0;
			    mid = (mid + Math.imul(al7, bh7)) | 0;
			    mid = (mid + Math.imul(ah7, bl7)) | 0;
			    hi = (hi + Math.imul(ah7, bh7)) | 0;
			    lo = (lo + Math.imul(al6, bl8)) | 0;
			    mid = (mid + Math.imul(al6, bh8)) | 0;
			    mid = (mid + Math.imul(ah6, bl8)) | 0;
			    hi = (hi + Math.imul(ah6, bh8)) | 0;
			    lo = (lo + Math.imul(al5, bl9)) | 0;
			    mid = (mid + Math.imul(al5, bh9)) | 0;
			    mid = (mid + Math.imul(ah5, bl9)) | 0;
			    hi = (hi + Math.imul(ah5, bh9)) | 0;
			    var w14 = (((c + lo) | 0) + ((mid & 0x1fff) << 13)) | 0;
			    c = (((hi + (mid >>> 13)) | 0) + (w14 >>> 26)) | 0;
			    w14 &= 0x3ffffff;
			    /* k = 15 */
			    lo = Math.imul(al9, bl6);
			    mid = Math.imul(al9, bh6);
			    mid = (mid + Math.imul(ah9, bl6)) | 0;
			    hi = Math.imul(ah9, bh6);
			    lo = (lo + Math.imul(al8, bl7)) | 0;
			    mid = (mid + Math.imul(al8, bh7)) | 0;
			    mid = (mid + Math.imul(ah8, bl7)) | 0;
			    hi = (hi + Math.imul(ah8, bh7)) | 0;
			    lo = (lo + Math.imul(al7, bl8)) | 0;
			    mid = (mid + Math.imul(al7, bh8)) | 0;
			    mid = (mid + Math.imul(ah7, bl8)) | 0;
			    hi = (hi + Math.imul(ah7, bh8)) | 0;
			    lo = (lo + Math.imul(al6, bl9)) | 0;
			    mid = (mid + Math.imul(al6, bh9)) | 0;
			    mid = (mid + Math.imul(ah6, bl9)) | 0;
			    hi = (hi + Math.imul(ah6, bh9)) | 0;
			    var w15 = (((c + lo) | 0) + ((mid & 0x1fff) << 13)) | 0;
			    c = (((hi + (mid >>> 13)) | 0) + (w15 >>> 26)) | 0;
			    w15 &= 0x3ffffff;
			    /* k = 16 */
			    lo = Math.imul(al9, bl7);
			    mid = Math.imul(al9, bh7);
			    mid = (mid + Math.imul(ah9, bl7)) | 0;
			    hi = Math.imul(ah9, bh7);
			    lo = (lo + Math.imul(al8, bl8)) | 0;
			    mid = (mid + Math.imul(al8, bh8)) | 0;
			    mid = (mid + Math.imul(ah8, bl8)) | 0;
			    hi = (hi + Math.imul(ah8, bh8)) | 0;
			    lo = (lo + Math.imul(al7, bl9)) | 0;
			    mid = (mid + Math.imul(al7, bh9)) | 0;
			    mid = (mid + Math.imul(ah7, bl9)) | 0;
			    hi = (hi + Math.imul(ah7, bh9)) | 0;
			    var w16 = (((c + lo) | 0) + ((mid & 0x1fff) << 13)) | 0;
			    c = (((hi + (mid >>> 13)) | 0) + (w16 >>> 26)) | 0;
			    w16 &= 0x3ffffff;
			    /* k = 17 */
			    lo = Math.imul(al9, bl8);
			    mid = Math.imul(al9, bh8);
			    mid = (mid + Math.imul(ah9, bl8)) | 0;
			    hi = Math.imul(ah9, bh8);
			    lo = (lo + Math.imul(al8, bl9)) | 0;
			    mid = (mid + Math.imul(al8, bh9)) | 0;
			    mid = (mid + Math.imul(ah8, bl9)) | 0;
			    hi = (hi + Math.imul(ah8, bh9)) | 0;
			    var w17 = (((c + lo) | 0) + ((mid & 0x1fff) << 13)) | 0;
			    c = (((hi + (mid >>> 13)) | 0) + (w17 >>> 26)) | 0;
			    w17 &= 0x3ffffff;
			    /* k = 18 */
			    lo = Math.imul(al9, bl9);
			    mid = Math.imul(al9, bh9);
			    mid = (mid + Math.imul(ah9, bl9)) | 0;
			    hi = Math.imul(ah9, bh9);
			    var w18 = (((c + lo) | 0) + ((mid & 0x1fff) << 13)) | 0;
			    c = (((hi + (mid >>> 13)) | 0) + (w18 >>> 26)) | 0;
			    w18 &= 0x3ffffff;
			    o[0] = w0;
			    o[1] = w1;
			    o[2] = w2;
			    o[3] = w3;
			    o[4] = w4;
			    o[5] = w5;
			    o[6] = w6;
			    o[7] = w7;
			    o[8] = w8;
			    o[9] = w9;
			    o[10] = w10;
			    o[11] = w11;
			    o[12] = w12;
			    o[13] = w13;
			    o[14] = w14;
			    o[15] = w15;
			    o[16] = w16;
			    o[17] = w17;
			    o[18] = w18;
			    if (c !== 0) {
			      o[19] = c;
			      out.length++;
			    }
			    return out;
			  };

			  // Polyfill comb
			  if (!Math.imul) {
			    comb10MulTo = smallMulTo;
			  }

			  function bigMulTo (self, num, out) {
			    out.negative = num.negative ^ self.negative;
			    out.length = self.length + num.length;

			    var carry = 0;
			    var hncarry = 0;
			    for (var k = 0; k < out.length - 1; k++) {
			      // Sum all words with the same `i + j = k` and accumulate `ncarry`,
			      // note that ncarry could be >= 0x3ffffff
			      var ncarry = hncarry;
			      hncarry = 0;
			      var rword = carry & 0x3ffffff;
			      var maxJ = Math.min(k, num.length - 1);
			      for (var j = Math.max(0, k - self.length + 1); j <= maxJ; j++) {
			        var i = k - j;
			        var a = self.words[i] | 0;
			        var b = num.words[j] | 0;
			        var r = a * b;

			        var lo = r & 0x3ffffff;
			        ncarry = (ncarry + ((r / 0x4000000) | 0)) | 0;
			        lo = (lo + rword) | 0;
			        rword = lo & 0x3ffffff;
			        ncarry = (ncarry + (lo >>> 26)) | 0;

			        hncarry += ncarry >>> 26;
			        ncarry &= 0x3ffffff;
			      }
			      out.words[k] = rword;
			      carry = ncarry;
			      ncarry = hncarry;
			    }
			    if (carry !== 0) {
			      out.words[k] = carry;
			    } else {
			      out.length--;
			    }

			    return out._strip();
			  }

			  function jumboMulTo (self, num, out) {
			    // Temporary disable, see https://github.com/indutny/bn.js/issues/211
			    // var fftm = new FFTM();
			    // return fftm.mulp(self, num, out);
			    return bigMulTo(self, num, out);
			  }

			  BN.prototype.mulTo = function mulTo (num, out) {
			    var res;
			    var len = this.length + num.length;
			    if (this.length === 10 && num.length === 10) {
			      res = comb10MulTo(this, num, out);
			    } else if (len < 63) {
			      res = smallMulTo(this, num, out);
			    } else if (len < 1024) {
			      res = bigMulTo(this, num, out);
			    } else {
			      res = jumboMulTo(this, num, out);
			    }

			    return res;
			  };

			  // Multiply `this` by `num`
			  BN.prototype.mul = function mul (num) {
			    var out = new BN(null);
			    out.words = new Array(this.length + num.length);
			    return this.mulTo(num, out);
			  };

			  // Multiply employing FFT
			  BN.prototype.mulf = function mulf (num) {
			    var out = new BN(null);
			    out.words = new Array(this.length + num.length);
			    return jumboMulTo(this, num, out);
			  };

			  // In-place Multiplication
			  BN.prototype.imul = function imul (num) {
			    return this.clone().mulTo(num, this);
			  };

			  BN.prototype.imuln = function imuln (num) {
			    var isNegNum = num < 0;
			    if (isNegNum) num = -num;

			    assert(typeof num === 'number');
			    assert(num < 0x4000000);

			    // Carry
			    var carry = 0;
			    for (var i = 0; i < this.length; i++) {
			      var w = (this.words[i] | 0) * num;
			      var lo = (w & 0x3ffffff) + (carry & 0x3ffffff);
			      carry >>= 26;
			      carry += (w / 0x4000000) | 0;
			      // NOTE: lo is 27bit maximum
			      carry += lo >>> 26;
			      this.words[i] = lo & 0x3ffffff;
			    }

			    if (carry !== 0) {
			      this.words[i] = carry;
			      this.length++;
			    }

			    return isNegNum ? this.ineg() : this;
			  };

			  BN.prototype.muln = function muln (num) {
			    return this.clone().imuln(num);
			  };

			  // `this` * `this`
			  BN.prototype.sqr = function sqr () {
			    return this.mul(this);
			  };

			  // `this` * `this` in-place
			  BN.prototype.isqr = function isqr () {
			    return this.imul(this.clone());
			  };

			  // Math.pow(`this`, `num`)
			  BN.prototype.pow = function pow (num) {
			    var w = toBitArray(num);
			    if (w.length === 0) return new BN(1);

			    // Skip leading zeroes
			    var res = this;
			    for (var i = 0; i < w.length; i++, res = res.sqr()) {
			      if (w[i] !== 0) break;
			    }

			    if (++i < w.length) {
			      for (var q = res.sqr(); i < w.length; i++, q = q.sqr()) {
			        if (w[i] === 0) continue;

			        res = res.mul(q);
			      }
			    }

			    return res;
			  };

			  // Shift-left in-place
			  BN.prototype.iushln = function iushln (bits) {
			    assert(typeof bits === 'number' && bits >= 0);
			    var r = bits % 26;
			    var s = (bits - r) / 26;
			    var carryMask = (0x3ffffff >>> (26 - r)) << (26 - r);
			    var i;

			    if (r !== 0) {
			      var carry = 0;

			      for (i = 0; i < this.length; i++) {
			        var newCarry = this.words[i] & carryMask;
			        var c = ((this.words[i] | 0) - newCarry) << r;
			        this.words[i] = c | carry;
			        carry = newCarry >>> (26 - r);
			      }

			      if (carry) {
			        this.words[i] = carry;
			        this.length++;
			      }
			    }

			    if (s !== 0) {
			      for (i = this.length - 1; i >= 0; i--) {
			        this.words[i + s] = this.words[i];
			      }

			      for (i = 0; i < s; i++) {
			        this.words[i] = 0;
			      }

			      this.length += s;
			    }

			    return this._strip();
			  };

			  BN.prototype.ishln = function ishln (bits) {
			    // TODO(indutny): implement me
			    assert(this.negative === 0);
			    return this.iushln(bits);
			  };

			  // Shift-right in-place
			  // NOTE: `hint` is a lowest bit before trailing zeroes
			  // NOTE: if `extended` is present - it will be filled with destroyed bits
			  BN.prototype.iushrn = function iushrn (bits, hint, extended) {
			    assert(typeof bits === 'number' && bits >= 0);
			    var h;
			    if (hint) {
			      h = (hint - (hint % 26)) / 26;
			    } else {
			      h = 0;
			    }

			    var r = bits % 26;
			    var s = Math.min((bits - r) / 26, this.length);
			    var mask = 0x3ffffff ^ ((0x3ffffff >>> r) << r);
			    var maskedWords = extended;

			    h -= s;
			    h = Math.max(0, h);

			    // Extended mode, copy masked part
			    if (maskedWords) {
			      for (var i = 0; i < s; i++) {
			        maskedWords.words[i] = this.words[i];
			      }
			      maskedWords.length = s;
			    }

			    if (s === 0) ; else if (this.length > s) {
			      this.length -= s;
			      for (i = 0; i < this.length; i++) {
			        this.words[i] = this.words[i + s];
			      }
			    } else {
			      this.words[0] = 0;
			      this.length = 1;
			    }

			    var carry = 0;
			    for (i = this.length - 1; i >= 0 && (carry !== 0 || i >= h); i--) {
			      var word = this.words[i] | 0;
			      this.words[i] = (carry << (26 - r)) | (word >>> r);
			      carry = word & mask;
			    }

			    // Push carried bits as a mask
			    if (maskedWords && carry !== 0) {
			      maskedWords.words[maskedWords.length++] = carry;
			    }

			    if (this.length === 0) {
			      this.words[0] = 0;
			      this.length = 1;
			    }

			    return this._strip();
			  };

			  BN.prototype.ishrn = function ishrn (bits, hint, extended) {
			    // TODO(indutny): implement me
			    assert(this.negative === 0);
			    return this.iushrn(bits, hint, extended);
			  };

			  // Shift-left
			  BN.prototype.shln = function shln (bits) {
			    return this.clone().ishln(bits);
			  };

			  BN.prototype.ushln = function ushln (bits) {
			    return this.clone().iushln(bits);
			  };

			  // Shift-right
			  BN.prototype.shrn = function shrn (bits) {
			    return this.clone().ishrn(bits);
			  };

			  BN.prototype.ushrn = function ushrn (bits) {
			    return this.clone().iushrn(bits);
			  };

			  // Test if n bit is set
			  BN.prototype.testn = function testn (bit) {
			    assert(typeof bit === 'number' && bit >= 0);
			    var r = bit % 26;
			    var s = (bit - r) / 26;
			    var q = 1 << r;

			    // Fast case: bit is much higher than all existing words
			    if (this.length <= s) return false;

			    // Check bit and return
			    var w = this.words[s];

			    return !!(w & q);
			  };

			  // Return only lowers bits of number (in-place)
			  BN.prototype.imaskn = function imaskn (bits) {
			    assert(typeof bits === 'number' && bits >= 0);
			    var r = bits % 26;
			    var s = (bits - r) / 26;

			    assert(this.negative === 0, 'imaskn works only with positive numbers');

			    if (this.length <= s) {
			      return this;
			    }

			    if (r !== 0) {
			      s++;
			    }
			    this.length = Math.min(s, this.length);

			    if (r !== 0) {
			      var mask = 0x3ffffff ^ ((0x3ffffff >>> r) << r);
			      this.words[this.length - 1] &= mask;
			    }

			    return this._strip();
			  };

			  // Return only lowers bits of number
			  BN.prototype.maskn = function maskn (bits) {
			    return this.clone().imaskn(bits);
			  };

			  // Add plain number `num` to `this`
			  BN.prototype.iaddn = function iaddn (num) {
			    assert(typeof num === 'number');
			    assert(num < 0x4000000);
			    if (num < 0) return this.isubn(-num);

			    // Possible sign change
			    if (this.negative !== 0) {
			      if (this.length === 1 && (this.words[0] | 0) <= num) {
			        this.words[0] = num - (this.words[0] | 0);
			        this.negative = 0;
			        return this;
			      }

			      this.negative = 0;
			      this.isubn(num);
			      this.negative = 1;
			      return this;
			    }

			    // Add without checks
			    return this._iaddn(num);
			  };

			  BN.prototype._iaddn = function _iaddn (num) {
			    this.words[0] += num;

			    // Carry
			    for (var i = 0; i < this.length && this.words[i] >= 0x4000000; i++) {
			      this.words[i] -= 0x4000000;
			      if (i === this.length - 1) {
			        this.words[i + 1] = 1;
			      } else {
			        this.words[i + 1]++;
			      }
			    }
			    this.length = Math.max(this.length, i + 1);

			    return this;
			  };

			  // Subtract plain number `num` from `this`
			  BN.prototype.isubn = function isubn (num) {
			    assert(typeof num === 'number');
			    assert(num < 0x4000000);
			    if (num < 0) return this.iaddn(-num);

			    if (this.negative !== 0) {
			      this.negative = 0;
			      this.iaddn(num);
			      this.negative = 1;
			      return this;
			    }

			    this.words[0] -= num;

			    if (this.length === 1 && this.words[0] < 0) {
			      this.words[0] = -this.words[0];
			      this.negative = 1;
			    } else {
			      // Carry
			      for (var i = 0; i < this.length && this.words[i] < 0; i++) {
			        this.words[i] += 0x4000000;
			        this.words[i + 1] -= 1;
			      }
			    }

			    return this._strip();
			  };

			  BN.prototype.addn = function addn (num) {
			    return this.clone().iaddn(num);
			  };

			  BN.prototype.subn = function subn (num) {
			    return this.clone().isubn(num);
			  };

			  BN.prototype.iabs = function iabs () {
			    this.negative = 0;

			    return this;
			  };

			  BN.prototype.abs = function abs () {
			    return this.clone().iabs();
			  };

			  BN.prototype._ishlnsubmul = function _ishlnsubmul (num, mul, shift) {
			    var len = num.length + shift;
			    var i;

			    this._expand(len);

			    var w;
			    var carry = 0;
			    for (i = 0; i < num.length; i++) {
			      w = (this.words[i + shift] | 0) + carry;
			      var right = (num.words[i] | 0) * mul;
			      w -= right & 0x3ffffff;
			      carry = (w >> 26) - ((right / 0x4000000) | 0);
			      this.words[i + shift] = w & 0x3ffffff;
			    }
			    for (; i < this.length - shift; i++) {
			      w = (this.words[i + shift] | 0) + carry;
			      carry = w >> 26;
			      this.words[i + shift] = w & 0x3ffffff;
			    }

			    if (carry === 0) return this._strip();

			    // Subtraction overflow
			    assert(carry === -1);
			    carry = 0;
			    for (i = 0; i < this.length; i++) {
			      w = -(this.words[i] | 0) + carry;
			      carry = w >> 26;
			      this.words[i] = w & 0x3ffffff;
			    }
			    this.negative = 1;

			    return this._strip();
			  };

			  BN.prototype._wordDiv = function _wordDiv (num, mode) {
			    var shift = this.length - num.length;

			    var a = this.clone();
			    var b = num;

			    // Normalize
			    var bhi = b.words[b.length - 1] | 0;
			    var bhiBits = this._countBits(bhi);
			    shift = 26 - bhiBits;
			    if (shift !== 0) {
			      b = b.ushln(shift);
			      a.iushln(shift);
			      bhi = b.words[b.length - 1] | 0;
			    }

			    // Initialize quotient
			    var m = a.length - b.length;
			    var q;

			    if (mode !== 'mod') {
			      q = new BN(null);
			      q.length = m + 1;
			      q.words = new Array(q.length);
			      for (var i = 0; i < q.length; i++) {
			        q.words[i] = 0;
			      }
			    }

			    var diff = a.clone()._ishlnsubmul(b, 1, m);
			    if (diff.negative === 0) {
			      a = diff;
			      if (q) {
			        q.words[m] = 1;
			      }
			    }

			    for (var j = m - 1; j >= 0; j--) {
			      var qj = (a.words[b.length + j] | 0) * 0x4000000 +
			        (a.words[b.length + j - 1] | 0);

			      // NOTE: (qj / bhi) is (0x3ffffff * 0x4000000 + 0x3ffffff) / 0x2000000 max
			      // (0x7ffffff)
			      qj = Math.min((qj / bhi) | 0, 0x3ffffff);

			      a._ishlnsubmul(b, qj, j);
			      while (a.negative !== 0) {
			        qj--;
			        a.negative = 0;
			        a._ishlnsubmul(b, 1, j);
			        if (!a.isZero()) {
			          a.negative ^= 1;
			        }
			      }
			      if (q) {
			        q.words[j] = qj;
			      }
			    }
			    if (q) {
			      q._strip();
			    }
			    a._strip();

			    // Denormalize
			    if (mode !== 'div' && shift !== 0) {
			      a.iushrn(shift);
			    }

			    return {
			      div: q || null,
			      mod: a
			    };
			  };

			  // NOTE: 1) `mode` can be set to `mod` to request mod only,
			  //       to `div` to request div only, or be absent to
			  //       request both div & mod
			  //       2) `positive` is true if unsigned mod is requested
			  BN.prototype.divmod = function divmod (num, mode, positive) {
			    assert(!num.isZero());

			    if (this.isZero()) {
			      return {
			        div: new BN(0),
			        mod: new BN(0)
			      };
			    }

			    var div, mod, res;
			    if (this.negative !== 0 && num.negative === 0) {
			      res = this.neg().divmod(num, mode);

			      if (mode !== 'mod') {
			        div = res.div.neg();
			      }

			      if (mode !== 'div') {
			        mod = res.mod.neg();
			        if (positive && mod.negative !== 0) {
			          mod.iadd(num);
			        }
			      }

			      return {
			        div: div,
			        mod: mod
			      };
			    }

			    if (this.negative === 0 && num.negative !== 0) {
			      res = this.divmod(num.neg(), mode);

			      if (mode !== 'mod') {
			        div = res.div.neg();
			      }

			      return {
			        div: div,
			        mod: res.mod
			      };
			    }

			    if ((this.negative & num.negative) !== 0) {
			      res = this.neg().divmod(num.neg(), mode);

			      if (mode !== 'div') {
			        mod = res.mod.neg();
			        if (positive && mod.negative !== 0) {
			          mod.isub(num);
			        }
			      }

			      return {
			        div: res.div,
			        mod: mod
			      };
			    }

			    // Both numbers are positive at this point

			    // Strip both numbers to approximate shift value
			    if (num.length > this.length || this.cmp(num) < 0) {
			      return {
			        div: new BN(0),
			        mod: this
			      };
			    }

			    // Very short reduction
			    if (num.length === 1) {
			      if (mode === 'div') {
			        return {
			          div: this.divn(num.words[0]),
			          mod: null
			        };
			      }

			      if (mode === 'mod') {
			        return {
			          div: null,
			          mod: new BN(this.modrn(num.words[0]))
			        };
			      }

			      return {
			        div: this.divn(num.words[0]),
			        mod: new BN(this.modrn(num.words[0]))
			      };
			    }

			    return this._wordDiv(num, mode);
			  };

			  // Find `this` / `num`
			  BN.prototype.div = function div (num) {
			    return this.divmod(num, 'div', false).div;
			  };

			  // Find `this` % `num`
			  BN.prototype.mod = function mod (num) {
			    return this.divmod(num, 'mod', false).mod;
			  };

			  BN.prototype.umod = function umod (num) {
			    return this.divmod(num, 'mod', true).mod;
			  };

			  // Find Round(`this` / `num`)
			  BN.prototype.divRound = function divRound (num) {
			    var dm = this.divmod(num);

			    // Fast case - exact division
			    if (dm.mod.isZero()) return dm.div;

			    var mod = dm.div.negative !== 0 ? dm.mod.isub(num) : dm.mod;

			    var half = num.ushrn(1);
			    var r2 = num.andln(1);
			    var cmp = mod.cmp(half);

			    // Round down
			    if (cmp < 0 || (r2 === 1 && cmp === 0)) return dm.div;

			    // Round up
			    return dm.div.negative !== 0 ? dm.div.isubn(1) : dm.div.iaddn(1);
			  };

			  BN.prototype.modrn = function modrn (num) {
			    var isNegNum = num < 0;
			    if (isNegNum) num = -num;

			    assert(num <= 0x3ffffff);
			    var p = (1 << 26) % num;

			    var acc = 0;
			    for (var i = this.length - 1; i >= 0; i--) {
			      acc = (p * acc + (this.words[i] | 0)) % num;
			    }

			    return isNegNum ? -acc : acc;
			  };

			  // WARNING: DEPRECATED
			  BN.prototype.modn = function modn (num) {
			    return this.modrn(num);
			  };

			  // In-place division by number
			  BN.prototype.idivn = function idivn (num) {
			    var isNegNum = num < 0;
			    if (isNegNum) num = -num;

			    assert(num <= 0x3ffffff);

			    var carry = 0;
			    for (var i = this.length - 1; i >= 0; i--) {
			      var w = (this.words[i] | 0) + carry * 0x4000000;
			      this.words[i] = (w / num) | 0;
			      carry = w % num;
			    }

			    this._strip();
			    return isNegNum ? this.ineg() : this;
			  };

			  BN.prototype.divn = function divn (num) {
			    return this.clone().idivn(num);
			  };

			  BN.prototype.egcd = function egcd (p) {
			    assert(p.negative === 0);
			    assert(!p.isZero());

			    var x = this;
			    var y = p.clone();

			    if (x.negative !== 0) {
			      x = x.umod(p);
			    } else {
			      x = x.clone();
			    }

			    // A * x + B * y = x
			    var A = new BN(1);
			    var B = new BN(0);

			    // C * x + D * y = y
			    var C = new BN(0);
			    var D = new BN(1);

			    var g = 0;

			    while (x.isEven() && y.isEven()) {
			      x.iushrn(1);
			      y.iushrn(1);
			      ++g;
			    }

			    var yp = y.clone();
			    var xp = x.clone();

			    while (!x.isZero()) {
			      for (var i = 0, im = 1; (x.words[0] & im) === 0 && i < 26; ++i, im <<= 1);
			      if (i > 0) {
			        x.iushrn(i);
			        while (i-- > 0) {
			          if (A.isOdd() || B.isOdd()) {
			            A.iadd(yp);
			            B.isub(xp);
			          }

			          A.iushrn(1);
			          B.iushrn(1);
			        }
			      }

			      for (var j = 0, jm = 1; (y.words[0] & jm) === 0 && j < 26; ++j, jm <<= 1);
			      if (j > 0) {
			        y.iushrn(j);
			        while (j-- > 0) {
			          if (C.isOdd() || D.isOdd()) {
			            C.iadd(yp);
			            D.isub(xp);
			          }

			          C.iushrn(1);
			          D.iushrn(1);
			        }
			      }

			      if (x.cmp(y) >= 0) {
			        x.isub(y);
			        A.isub(C);
			        B.isub(D);
			      } else {
			        y.isub(x);
			        C.isub(A);
			        D.isub(B);
			      }
			    }

			    return {
			      a: C,
			      b: D,
			      gcd: y.iushln(g)
			    };
			  };

			  // This is reduced incarnation of the binary EEA
			  // above, designated to invert members of the
			  // _prime_ fields F(p) at a maximal speed
			  BN.prototype._invmp = function _invmp (p) {
			    assert(p.negative === 0);
			    assert(!p.isZero());

			    var a = this;
			    var b = p.clone();

			    if (a.negative !== 0) {
			      a = a.umod(p);
			    } else {
			      a = a.clone();
			    }

			    var x1 = new BN(1);
			    var x2 = new BN(0);

			    var delta = b.clone();

			    while (a.cmpn(1) > 0 && b.cmpn(1) > 0) {
			      for (var i = 0, im = 1; (a.words[0] & im) === 0 && i < 26; ++i, im <<= 1);
			      if (i > 0) {
			        a.iushrn(i);
			        while (i-- > 0) {
			          if (x1.isOdd()) {
			            x1.iadd(delta);
			          }

			          x1.iushrn(1);
			        }
			      }

			      for (var j = 0, jm = 1; (b.words[0] & jm) === 0 && j < 26; ++j, jm <<= 1);
			      if (j > 0) {
			        b.iushrn(j);
			        while (j-- > 0) {
			          if (x2.isOdd()) {
			            x2.iadd(delta);
			          }

			          x2.iushrn(1);
			        }
			      }

			      if (a.cmp(b) >= 0) {
			        a.isub(b);
			        x1.isub(x2);
			      } else {
			        b.isub(a);
			        x2.isub(x1);
			      }
			    }

			    var res;
			    if (a.cmpn(1) === 0) {
			      res = x1;
			    } else {
			      res = x2;
			    }

			    if (res.cmpn(0) < 0) {
			      res.iadd(p);
			    }

			    return res;
			  };

			  BN.prototype.gcd = function gcd (num) {
			    if (this.isZero()) return num.abs();
			    if (num.isZero()) return this.abs();

			    var a = this.clone();
			    var b = num.clone();
			    a.negative = 0;
			    b.negative = 0;

			    // Remove common factor of two
			    for (var shift = 0; a.isEven() && b.isEven(); shift++) {
			      a.iushrn(1);
			      b.iushrn(1);
			    }

			    do {
			      while (a.isEven()) {
			        a.iushrn(1);
			      }
			      while (b.isEven()) {
			        b.iushrn(1);
			      }

			      var r = a.cmp(b);
			      if (r < 0) {
			        // Swap `a` and `b` to make `a` always bigger than `b`
			        var t = a;
			        a = b;
			        b = t;
			      } else if (r === 0 || b.cmpn(1) === 0) {
			        break;
			      }

			      a.isub(b);
			    } while (true);

			    return b.iushln(shift);
			  };

			  // Invert number in the field F(num)
			  BN.prototype.invm = function invm (num) {
			    return this.egcd(num).a.umod(num);
			  };

			  BN.prototype.isEven = function isEven () {
			    return (this.words[0] & 1) === 0;
			  };

			  BN.prototype.isOdd = function isOdd () {
			    return (this.words[0] & 1) === 1;
			  };

			  // And first word and num
			  BN.prototype.andln = function andln (num) {
			    return this.words[0] & num;
			  };

			  // Increment at the bit position in-line
			  BN.prototype.bincn = function bincn (bit) {
			    assert(typeof bit === 'number');
			    var r = bit % 26;
			    var s = (bit - r) / 26;
			    var q = 1 << r;

			    // Fast case: bit is much higher than all existing words
			    if (this.length <= s) {
			      this._expand(s + 1);
			      this.words[s] |= q;
			      return this;
			    }

			    // Add bit and propagate, if needed
			    var carry = q;
			    for (var i = s; carry !== 0 && i < this.length; i++) {
			      var w = this.words[i] | 0;
			      w += carry;
			      carry = w >>> 26;
			      w &= 0x3ffffff;
			      this.words[i] = w;
			    }
			    if (carry !== 0) {
			      this.words[i] = carry;
			      this.length++;
			    }
			    return this;
			  };

			  BN.prototype.isZero = function isZero () {
			    return this.length === 1 && this.words[0] === 0;
			  };

			  BN.prototype.cmpn = function cmpn (num) {
			    var negative = num < 0;

			    if (this.negative !== 0 && !negative) return -1;
			    if (this.negative === 0 && negative) return 1;

			    this._strip();

			    var res;
			    if (this.length > 1) {
			      res = 1;
			    } else {
			      if (negative) {
			        num = -num;
			      }

			      assert(num <= 0x3ffffff, 'Number is too big');

			      var w = this.words[0] | 0;
			      res = w === num ? 0 : w < num ? -1 : 1;
			    }
			    if (this.negative !== 0) return -res | 0;
			    return res;
			  };

			  // Compare two numbers and return:
			  // 1 - if `this` > `num`
			  // 0 - if `this` == `num`
			  // -1 - if `this` < `num`
			  BN.prototype.cmp = function cmp (num) {
			    if (this.negative !== 0 && num.negative === 0) return -1;
			    if (this.negative === 0 && num.negative !== 0) return 1;

			    var res = this.ucmp(num);
			    if (this.negative !== 0) return -res | 0;
			    return res;
			  };

			  // Unsigned comparison
			  BN.prototype.ucmp = function ucmp (num) {
			    // At this point both numbers have the same sign
			    if (this.length > num.length) return 1;
			    if (this.length < num.length) return -1;

			    var res = 0;
			    for (var i = this.length - 1; i >= 0; i--) {
			      var a = this.words[i] | 0;
			      var b = num.words[i] | 0;

			      if (a === b) continue;
			      if (a < b) {
			        res = -1;
			      } else if (a > b) {
			        res = 1;
			      }
			      break;
			    }
			    return res;
			  };

			  BN.prototype.gtn = function gtn (num) {
			    return this.cmpn(num) === 1;
			  };

			  BN.prototype.gt = function gt (num) {
			    return this.cmp(num) === 1;
			  };

			  BN.prototype.gten = function gten (num) {
			    return this.cmpn(num) >= 0;
			  };

			  BN.prototype.gte = function gte (num) {
			    return this.cmp(num) >= 0;
			  };

			  BN.prototype.ltn = function ltn (num) {
			    return this.cmpn(num) === -1;
			  };

			  BN.prototype.lt = function lt (num) {
			    return this.cmp(num) === -1;
			  };

			  BN.prototype.lten = function lten (num) {
			    return this.cmpn(num) <= 0;
			  };

			  BN.prototype.lte = function lte (num) {
			    return this.cmp(num) <= 0;
			  };

			  BN.prototype.eqn = function eqn (num) {
			    return this.cmpn(num) === 0;
			  };

			  BN.prototype.eq = function eq (num) {
			    return this.cmp(num) === 0;
			  };

			  //
			  // A reduce context, could be using montgomery or something better, depending
			  // on the `m` itself.
			  //
			  BN.red = function red (num) {
			    return new Red(num);
			  };

			  BN.prototype.toRed = function toRed (ctx) {
			    assert(!this.red, 'Already a number in reduction context');
			    assert(this.negative === 0, 'red works only with positives');
			    return ctx.convertTo(this)._forceRed(ctx);
			  };

			  BN.prototype.fromRed = function fromRed () {
			    assert(this.red, 'fromRed works only with numbers in reduction context');
			    return this.red.convertFrom(this);
			  };

			  BN.prototype._forceRed = function _forceRed (ctx) {
			    this.red = ctx;
			    return this;
			  };

			  BN.prototype.forceRed = function forceRed (ctx) {
			    assert(!this.red, 'Already a number in reduction context');
			    return this._forceRed(ctx);
			  };

			  BN.prototype.redAdd = function redAdd (num) {
			    assert(this.red, 'redAdd works only with red numbers');
			    return this.red.add(this, num);
			  };

			  BN.prototype.redIAdd = function redIAdd (num) {
			    assert(this.red, 'redIAdd works only with red numbers');
			    return this.red.iadd(this, num);
			  };

			  BN.prototype.redSub = function redSub (num) {
			    assert(this.red, 'redSub works only with red numbers');
			    return this.red.sub(this, num);
			  };

			  BN.prototype.redISub = function redISub (num) {
			    assert(this.red, 'redISub works only with red numbers');
			    return this.red.isub(this, num);
			  };

			  BN.prototype.redShl = function redShl (num) {
			    assert(this.red, 'redShl works only with red numbers');
			    return this.red.shl(this, num);
			  };

			  BN.prototype.redMul = function redMul (num) {
			    assert(this.red, 'redMul works only with red numbers');
			    this.red._verify2(this, num);
			    return this.red.mul(this, num);
			  };

			  BN.prototype.redIMul = function redIMul (num) {
			    assert(this.red, 'redMul works only with red numbers');
			    this.red._verify2(this, num);
			    return this.red.imul(this, num);
			  };

			  BN.prototype.redSqr = function redSqr () {
			    assert(this.red, 'redSqr works only with red numbers');
			    this.red._verify1(this);
			    return this.red.sqr(this);
			  };

			  BN.prototype.redISqr = function redISqr () {
			    assert(this.red, 'redISqr works only with red numbers');
			    this.red._verify1(this);
			    return this.red.isqr(this);
			  };

			  // Square root over p
			  BN.prototype.redSqrt = function redSqrt () {
			    assert(this.red, 'redSqrt works only with red numbers');
			    this.red._verify1(this);
			    return this.red.sqrt(this);
			  };

			  BN.prototype.redInvm = function redInvm () {
			    assert(this.red, 'redInvm works only with red numbers');
			    this.red._verify1(this);
			    return this.red.invm(this);
			  };

			  // Return negative clone of `this` % `red modulo`
			  BN.prototype.redNeg = function redNeg () {
			    assert(this.red, 'redNeg works only with red numbers');
			    this.red._verify1(this);
			    return this.red.neg(this);
			  };

			  BN.prototype.redPow = function redPow (num) {
			    assert(this.red && !num.red, 'redPow(normalNum)');
			    this.red._verify1(this);
			    return this.red.pow(this, num);
			  };

			  // Prime numbers with efficient reduction
			  var primes = {
			    k256: null,
			    p224: null,
			    p192: null,
			    p25519: null
			  };

			  // Pseudo-Mersenne prime
			  function MPrime (name, p) {
			    // P = 2 ^ N - K
			    this.name = name;
			    this.p = new BN(p, 16);
			    this.n = this.p.bitLength();
			    this.k = new BN(1).iushln(this.n).isub(this.p);

			    this.tmp = this._tmp();
			  }

			  MPrime.prototype._tmp = function _tmp () {
			    var tmp = new BN(null);
			    tmp.words = new Array(Math.ceil(this.n / 13));
			    return tmp;
			  };

			  MPrime.prototype.ireduce = function ireduce (num) {
			    // Assumes that `num` is less than `P^2`
			    // num = HI * (2 ^ N - K) + HI * K + LO = HI * K + LO (mod P)
			    var r = num;
			    var rlen;

			    do {
			      this.split(r, this.tmp);
			      r = this.imulK(r);
			      r = r.iadd(this.tmp);
			      rlen = r.bitLength();
			    } while (rlen > this.n);

			    var cmp = rlen < this.n ? -1 : r.ucmp(this.p);
			    if (cmp === 0) {
			      r.words[0] = 0;
			      r.length = 1;
			    } else if (cmp > 0) {
			      r.isub(this.p);
			    } else {
			      if (r.strip !== undefined) {
			        // r is a BN v4 instance
			        r.strip();
			      } else {
			        // r is a BN v5 instance
			        r._strip();
			      }
			    }

			    return r;
			  };

			  MPrime.prototype.split = function split (input, out) {
			    input.iushrn(this.n, 0, out);
			  };

			  MPrime.prototype.imulK = function imulK (num) {
			    return num.imul(this.k);
			  };

			  function K256 () {
			    MPrime.call(
			      this,
			      'k256',
			      'ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fffffffe fffffc2f');
			  }
			  inherits(K256, MPrime);

			  K256.prototype.split = function split (input, output) {
			    // 256 = 9 * 26 + 22
			    var mask = 0x3fffff;

			    var outLen = Math.min(input.length, 9);
			    for (var i = 0; i < outLen; i++) {
			      output.words[i] = input.words[i];
			    }
			    output.length = outLen;

			    if (input.length <= 9) {
			      input.words[0] = 0;
			      input.length = 1;
			      return;
			    }

			    // Shift by 9 limbs
			    var prev = input.words[9];
			    output.words[output.length++] = prev & mask;

			    for (i = 10; i < input.length; i++) {
			      var next = input.words[i] | 0;
			      input.words[i - 10] = ((next & mask) << 4) | (prev >>> 22);
			      prev = next;
			    }
			    prev >>>= 22;
			    input.words[i - 10] = prev;
			    if (prev === 0 && input.length > 10) {
			      input.length -= 10;
			    } else {
			      input.length -= 9;
			    }
			  };

			  K256.prototype.imulK = function imulK (num) {
			    // K = 0x1000003d1 = [ 0x40, 0x3d1 ]
			    num.words[num.length] = 0;
			    num.words[num.length + 1] = 0;
			    num.length += 2;

			    // bounded at: 0x40 * 0x3ffffff + 0x3d0 = 0x100000390
			    var lo = 0;
			    for (var i = 0; i < num.length; i++) {
			      var w = num.words[i] | 0;
			      lo += w * 0x3d1;
			      num.words[i] = lo & 0x3ffffff;
			      lo = w * 0x40 + ((lo / 0x4000000) | 0);
			    }

			    // Fast length reduction
			    if (num.words[num.length - 1] === 0) {
			      num.length--;
			      if (num.words[num.length - 1] === 0) {
			        num.length--;
			      }
			    }
			    return num;
			  };

			  function P224 () {
			    MPrime.call(
			      this,
			      'p224',
			      'ffffffff ffffffff ffffffff ffffffff 00000000 00000000 00000001');
			  }
			  inherits(P224, MPrime);

			  function P192 () {
			    MPrime.call(
			      this,
			      'p192',
			      'ffffffff ffffffff ffffffff fffffffe ffffffff ffffffff');
			  }
			  inherits(P192, MPrime);

			  function P25519 () {
			    // 2 ^ 255 - 19
			    MPrime.call(
			      this,
			      '25519',
			      '7fffffffffffffff ffffffffffffffff ffffffffffffffff ffffffffffffffed');
			  }
			  inherits(P25519, MPrime);

			  P25519.prototype.imulK = function imulK (num) {
			    // K = 0x13
			    var carry = 0;
			    for (var i = 0; i < num.length; i++) {
			      var hi = (num.words[i] | 0) * 0x13 + carry;
			      var lo = hi & 0x3ffffff;
			      hi >>>= 26;

			      num.words[i] = lo;
			      carry = hi;
			    }
			    if (carry !== 0) {
			      num.words[num.length++] = carry;
			    }
			    return num;
			  };

			  // Exported mostly for testing purposes, use plain name instead
			  BN._prime = function prime (name) {
			    // Cached version of prime
			    if (primes[name]) return primes[name];

			    var prime;
			    if (name === 'k256') {
			      prime = new K256();
			    } else if (name === 'p224') {
			      prime = new P224();
			    } else if (name === 'p192') {
			      prime = new P192();
			    } else if (name === 'p25519') {
			      prime = new P25519();
			    } else {
			      throw new Error('Unknown prime ' + name);
			    }
			    primes[name] = prime;

			    return prime;
			  };

			  //
			  // Base reduction engine
			  //
			  function Red (m) {
			    if (typeof m === 'string') {
			      var prime = BN._prime(m);
			      this.m = prime.p;
			      this.prime = prime;
			    } else {
			      assert(m.gtn(1), 'modulus must be greater than 1');
			      this.m = m;
			      this.prime = null;
			    }
			  }

			  Red.prototype._verify1 = function _verify1 (a) {
			    assert(a.negative === 0, 'red works only with positives');
			    assert(a.red, 'red works only with red numbers');
			  };

			  Red.prototype._verify2 = function _verify2 (a, b) {
			    assert((a.negative | b.negative) === 0, 'red works only with positives');
			    assert(a.red && a.red === b.red,
			      'red works only with red numbers');
			  };

			  Red.prototype.imod = function imod (a) {
			    if (this.prime) return this.prime.ireduce(a)._forceRed(this);

			    move(a, a.umod(this.m)._forceRed(this));
			    return a;
			  };

			  Red.prototype.neg = function neg (a) {
			    if (a.isZero()) {
			      return a.clone();
			    }

			    return this.m.sub(a)._forceRed(this);
			  };

			  Red.prototype.add = function add (a, b) {
			    this._verify2(a, b);

			    var res = a.add(b);
			    if (res.cmp(this.m) >= 0) {
			      res.isub(this.m);
			    }
			    return res._forceRed(this);
			  };

			  Red.prototype.iadd = function iadd (a, b) {
			    this._verify2(a, b);

			    var res = a.iadd(b);
			    if (res.cmp(this.m) >= 0) {
			      res.isub(this.m);
			    }
			    return res;
			  };

			  Red.prototype.sub = function sub (a, b) {
			    this._verify2(a, b);

			    var res = a.sub(b);
			    if (res.cmpn(0) < 0) {
			      res.iadd(this.m);
			    }
			    return res._forceRed(this);
			  };

			  Red.prototype.isub = function isub (a, b) {
			    this._verify2(a, b);

			    var res = a.isub(b);
			    if (res.cmpn(0) < 0) {
			      res.iadd(this.m);
			    }
			    return res;
			  };

			  Red.prototype.shl = function shl (a, num) {
			    this._verify1(a);
			    return this.imod(a.ushln(num));
			  };

			  Red.prototype.imul = function imul (a, b) {
			    this._verify2(a, b);
			    return this.imod(a.imul(b));
			  };

			  Red.prototype.mul = function mul (a, b) {
			    this._verify2(a, b);
			    return this.imod(a.mul(b));
			  };

			  Red.prototype.isqr = function isqr (a) {
			    return this.imul(a, a.clone());
			  };

			  Red.prototype.sqr = function sqr (a) {
			    return this.mul(a, a);
			  };

			  Red.prototype.sqrt = function sqrt (a) {
			    if (a.isZero()) return a.clone();

			    var mod3 = this.m.andln(3);
			    assert(mod3 % 2 === 1);

			    // Fast case
			    if (mod3 === 3) {
			      var pow = this.m.add(new BN(1)).iushrn(2);
			      return this.pow(a, pow);
			    }

			    // Tonelli-Shanks algorithm (Totally unoptimized and slow)
			    //
			    // Find Q and S, that Q * 2 ^ S = (P - 1)
			    var q = this.m.subn(1);
			    var s = 0;
			    while (!q.isZero() && q.andln(1) === 0) {
			      s++;
			      q.iushrn(1);
			    }
			    assert(!q.isZero());

			    var one = new BN(1).toRed(this);
			    var nOne = one.redNeg();

			    // Find quadratic non-residue
			    // NOTE: Max is such because of generalized Riemann hypothesis.
			    var lpow = this.m.subn(1).iushrn(1);
			    var z = this.m.bitLength();
			    z = new BN(2 * z * z).toRed(this);

			    while (this.pow(z, lpow).cmp(nOne) !== 0) {
			      z.redIAdd(nOne);
			    }

			    var c = this.pow(z, q);
			    var r = this.pow(a, q.addn(1).iushrn(1));
			    var t = this.pow(a, q);
			    var m = s;
			    while (t.cmp(one) !== 0) {
			      var tmp = t;
			      for (var i = 0; tmp.cmp(one) !== 0; i++) {
			        tmp = tmp.redSqr();
			      }
			      assert(i < m);
			      var b = this.pow(c, new BN(1).iushln(m - i - 1));

			      r = r.redMul(b);
			      c = b.redSqr();
			      t = t.redMul(c);
			      m = i;
			    }

			    return r;
			  };

			  Red.prototype.invm = function invm (a) {
			    var inv = a._invmp(this.m);
			    if (inv.negative !== 0) {
			      inv.negative = 0;
			      return this.imod(inv).redNeg();
			    } else {
			      return this.imod(inv);
			    }
			  };

			  Red.prototype.pow = function pow (a, num) {
			    if (num.isZero()) return new BN(1).toRed(this);
			    if (num.cmpn(1) === 0) return a.clone();

			    var windowSize = 4;
			    var wnd = new Array(1 << windowSize);
			    wnd[0] = new BN(1).toRed(this);
			    wnd[1] = a;
			    for (var i = 2; i < wnd.length; i++) {
			      wnd[i] = this.mul(wnd[i - 1], a);
			    }

			    var res = wnd[0];
			    var current = 0;
			    var currentLen = 0;
			    var start = num.bitLength() % 26;
			    if (start === 0) {
			      start = 26;
			    }

			    for (i = num.length - 1; i >= 0; i--) {
			      var word = num.words[i];
			      for (var j = start - 1; j >= 0; j--) {
			        var bit = (word >> j) & 1;
			        if (res !== wnd[0]) {
			          res = this.sqr(res);
			        }

			        if (bit === 0 && current === 0) {
			          currentLen = 0;
			          continue;
			        }

			        current <<= 1;
			        current |= bit;
			        currentLen++;
			        if (currentLen !== windowSize && (i !== 0 || j !== 0)) continue;

			        res = this.mul(res, wnd[current]);
			        currentLen = 0;
			        current = 0;
			      }
			      start = 26;
			    }

			    return res;
			  };

			  Red.prototype.convertTo = function convertTo (num) {
			    var r = num.umod(this.m);

			    return r === num ? r.clone() : r;
			  };

			  Red.prototype.convertFrom = function convertFrom (num) {
			    var res = num.clone();
			    res.red = null;
			    return res;
			  };

			  //
			  // Montgomery method engine
			  //

			  BN.mont = function mont (num) {
			    return new Mont(num);
			  };

			  function Mont (m) {
			    Red.call(this, m);

			    this.shift = this.m.bitLength();
			    if (this.shift % 26 !== 0) {
			      this.shift += 26 - (this.shift % 26);
			    }

			    this.r = new BN(1).iushln(this.shift);
			    this.r2 = this.imod(this.r.sqr());
			    this.rinv = this.r._invmp(this.m);

			    this.minv = this.rinv.mul(this.r).isubn(1).div(this.m);
			    this.minv = this.minv.umod(this.r);
			    this.minv = this.r.sub(this.minv);
			  }
			  inherits(Mont, Red);

			  Mont.prototype.convertTo = function convertTo (num) {
			    return this.imod(num.ushln(this.shift));
			  };

			  Mont.prototype.convertFrom = function convertFrom (num) {
			    var r = this.imod(num.mul(this.rinv));
			    r.red = null;
			    return r;
			  };

			  Mont.prototype.imul = function imul (a, b) {
			    if (a.isZero() || b.isZero()) {
			      a.words[0] = 0;
			      a.length = 1;
			      return a;
			    }

			    var t = a.imul(b);
			    var c = t.maskn(this.shift).mul(this.minv).imaskn(this.shift).mul(this.m);
			    var u = t.isub(c).iushrn(this.shift);
			    var res = u;

			    if (u.cmp(this.m) >= 0) {
			      res = u.isub(this.m);
			    } else if (u.cmpn(0) < 0) {
			      res = u.iadd(this.m);
			    }

			    return res._forceRed(this);
			  };

			  Mont.prototype.mul = function mul (a, b) {
			    if (a.isZero() || b.isZero()) return new BN(0)._forceRed(this);

			    var t = a.mul(b);
			    var c = t.maskn(this.shift).mul(this.minv).imaskn(this.shift).mul(this.m);
			    var u = t.isub(c).iushrn(this.shift);
			    var res = u;
			    if (u.cmp(this.m) >= 0) {
			      res = u.isub(this.m);
			    } else if (u.cmpn(0) < 0) {
			      res = u.iadd(this.m);
			    }

			    return res._forceRed(this);
			  };

			  Mont.prototype.invm = function invm (a) {
			    // (AR)^-1 * R^2 = (A^-1 * R^-1) * R^2 = A^-1 * R
			    var res = this.imod(a._invmp(this.m).mul(this.r2));
			    return res._forceRed(this);
			  };
			})(module, bn); 
		} (bn$1));
		return bn$1.exports;
	}

	var bnExports = /*@__PURE__*/ requireBn();
	var BN = /*@__PURE__*/getDefaultExportFromCjs(bnExports);

	var safeBuffer = {exports: {}};

	/*! safe-buffer. MIT License. Feross Aboukhadijeh <https://feross.org/opensource> */

	var hasRequiredSafeBuffer;

	function requireSafeBuffer () {
		if (hasRequiredSafeBuffer) return safeBuffer.exports;
		hasRequiredSafeBuffer = 1;
		(function (module, exports) {
			/* eslint-disable node/no-deprecated-api */
			var buffer = /*@__PURE__*/ requireBuffer();
			var Buffer = buffer.Buffer;

			// alternative to using Object.keys for old browsers
			function copyProps (src, dst) {
			  for (var key in src) {
			    dst[key] = src[key];
			  }
			}
			if (Buffer.from && Buffer.alloc && Buffer.allocUnsafe && Buffer.allocUnsafeSlow) {
			  module.exports = buffer;
			} else {
			  // Copy properties from require('buffer')
			  copyProps(buffer, exports);
			  exports.Buffer = SafeBuffer;
			}

			function SafeBuffer (arg, encodingOrOffset, length) {
			  return Buffer(arg, encodingOrOffset, length)
			}

			SafeBuffer.prototype = Object.create(Buffer.prototype);

			// Copy static methods from Buffer
			copyProps(Buffer, SafeBuffer);

			SafeBuffer.from = function (arg, encodingOrOffset, length) {
			  if (typeof arg === 'number') {
			    throw new TypeError('Argument must not be a number')
			  }
			  return Buffer(arg, encodingOrOffset, length)
			};

			SafeBuffer.alloc = function (size, fill, encoding) {
			  if (typeof size !== 'number') {
			    throw new TypeError('Argument must be a number')
			  }
			  var buf = Buffer(size);
			  if (fill !== undefined) {
			    if (typeof encoding === 'string') {
			      buf.fill(fill, encoding);
			    } else {
			      buf.fill(fill);
			    }
			  } else {
			    buf.fill(0);
			  }
			  return buf
			};

			SafeBuffer.allocUnsafe = function (size) {
			  if (typeof size !== 'number') {
			    throw new TypeError('Argument must be a number')
			  }
			  return Buffer(size)
			};

			SafeBuffer.allocUnsafeSlow = function (size) {
			  if (typeof size !== 'number') {
			    throw new TypeError('Argument must be a number')
			  }
			  return buffer.SlowBuffer(size)
			}; 
		} (safeBuffer, safeBuffer.exports));
		return safeBuffer.exports;
	}

	var src;
	var hasRequiredSrc;

	function requireSrc () {
		if (hasRequiredSrc) return src;
		hasRequiredSrc = 1;
		// base-x encoding / decoding
		// Copyright (c) 2018 base-x contributors
		// Copyright (c) 2014-2018 The Bitcoin Core developers (base58.cpp)
		// Distributed under the MIT software license, see the accompanying
		// file LICENSE or http://www.opensource.org/licenses/mit-license.php.
		// @ts-ignore
		var _Buffer = /*@__PURE__*/ requireSafeBuffer().Buffer;
		function base (ALPHABET) {
		  if (ALPHABET.length >= 255) { throw new TypeError('Alphabet too long') }
		  var BASE_MAP = new Uint8Array(256);
		  for (var j = 0; j < BASE_MAP.length; j++) {
		    BASE_MAP[j] = 255;
		  }
		  for (var i = 0; i < ALPHABET.length; i++) {
		    var x = ALPHABET.charAt(i);
		    var xc = x.charCodeAt(0);
		    if (BASE_MAP[xc] !== 255) { throw new TypeError(x + ' is ambiguous') }
		    BASE_MAP[xc] = i;
		  }
		  var BASE = ALPHABET.length;
		  var LEADER = ALPHABET.charAt(0);
		  var FACTOR = Math.log(BASE) / Math.log(256); // log(BASE) / log(256), rounded up
		  var iFACTOR = Math.log(256) / Math.log(BASE); // log(256) / log(BASE), rounded up
		  function encode (source) {
		    if (Array.isArray(source) || source instanceof Uint8Array) { source = _Buffer.from(source); }
		    if (!_Buffer.isBuffer(source)) { throw new TypeError('Expected Buffer') }
		    if (source.length === 0) { return '' }
		        // Skip & count leading zeroes.
		    var zeroes = 0;
		    var length = 0;
		    var pbegin = 0;
		    var pend = source.length;
		    while (pbegin !== pend && source[pbegin] === 0) {
		      pbegin++;
		      zeroes++;
		    }
		        // Allocate enough space in big-endian base58 representation.
		    var size = ((pend - pbegin) * iFACTOR + 1) >>> 0;
		    var b58 = new Uint8Array(size);
		        // Process the bytes.
		    while (pbegin !== pend) {
		      var carry = source[pbegin];
		            // Apply "b58 = b58 * 256 + ch".
		      var i = 0;
		      for (var it1 = size - 1; (carry !== 0 || i < length) && (it1 !== -1); it1--, i++) {
		        carry += (256 * b58[it1]) >>> 0;
		        b58[it1] = (carry % BASE) >>> 0;
		        carry = (carry / BASE) >>> 0;
		      }
		      if (carry !== 0) { throw new Error('Non-zero carry') }
		      length = i;
		      pbegin++;
		    }
		        // Skip leading zeroes in base58 result.
		    var it2 = size - length;
		    while (it2 !== size && b58[it2] === 0) {
		      it2++;
		    }
		        // Translate the result into a string.
		    var str = LEADER.repeat(zeroes);
		    for (; it2 < size; ++it2) { str += ALPHABET.charAt(b58[it2]); }
		    return str
		  }
		  function decodeUnsafe (source) {
		    if (typeof source !== 'string') { throw new TypeError('Expected String') }
		    if (source.length === 0) { return _Buffer.alloc(0) }
		    var psz = 0;
		        // Skip and count leading '1's.
		    var zeroes = 0;
		    var length = 0;
		    while (source[psz] === LEADER) {
		      zeroes++;
		      psz++;
		    }
		        // Allocate enough space in big-endian base256 representation.
		    var size = (((source.length - psz) * FACTOR) + 1) >>> 0; // log(58) / log(256), rounded up.
		    var b256 = new Uint8Array(size);
		        // Process the characters.
		    while (source[psz]) {
		            // Decode character
		      var carry = BASE_MAP[source.charCodeAt(psz)];
		            // Invalid character
		      if (carry === 255) { return }
		      var i = 0;
		      for (var it3 = size - 1; (carry !== 0 || i < length) && (it3 !== -1); it3--, i++) {
		        carry += (BASE * b256[it3]) >>> 0;
		        b256[it3] = (carry % 256) >>> 0;
		        carry = (carry / 256) >>> 0;
		      }
		      if (carry !== 0) { throw new Error('Non-zero carry') }
		      length = i;
		      psz++;
		    }
		        // Skip leading zeroes in b256.
		    var it4 = size - length;
		    while (it4 !== size && b256[it4] === 0) {
		      it4++;
		    }
		    var vch = _Buffer.allocUnsafe(zeroes + (size - it4));
		    vch.fill(0x00, 0, zeroes);
		    var j = zeroes;
		    while (it4 !== size) {
		      vch[j++] = b256[it4++];
		    }
		    return vch
		  }
		  function decode (string) {
		    var buffer = decodeUnsafe(string);
		    if (buffer) { return buffer }
		    throw new Error('Non-base' + BASE + ' character')
		  }
		  return {
		    encode: encode,
		    decodeUnsafe: decodeUnsafe,
		    decode: decode
		  }
		}
		src = base;
		return src;
	}

	var bs58$1;
	var hasRequiredBs58;

	function requireBs58 () {
		if (hasRequiredBs58) return bs58$1;
		hasRequiredBs58 = 1;
		var basex = /*@__PURE__*/ requireSrc();
		var ALPHABET = '123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz';

		bs58$1 = basex(ALPHABET);
		return bs58$1;
	}

	var bs58Exports = /*@__PURE__*/ requireBs58();
	var bs58 = /*@__PURE__*/getDefaultExportFromCjs(bs58Exports);

	// SHA2-256 need to try 2^128 hashes to execute birthday attack.
	// BTC network is doing 2^67 hashes/sec as per early 2023.
	// Round constants:
	// first 32 bits of the fractional parts of the cube roots of the first 64 primes 2..311)
	// prettier-ignore
	const SHA256_K = /* @__PURE__ */ new Uint32Array([
	    0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
	    0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
	    0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
	    0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
	    0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
	    0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
	    0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
	    0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
	]);
	// Initial state:
	// first 32 bits of the fractional parts of the square roots of the first 8 primes 2..19
	// prettier-ignore
	const SHA256_IV = /* @__PURE__ */ new Uint32Array([
	    0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19
	]);
	// Temporary buffer, not used to store anything between runs
	// Named this way because it matches specification.
	const SHA256_W = /* @__PURE__ */ new Uint32Array(64);
	class SHA256 extends HashMD {
	    constructor() {
	        super(64, 32, 8, false);
	        // We cannot use array here since array allows indexing by variable
	        // which means optimizer/compiler cannot use registers.
	        this.A = SHA256_IV[0] | 0;
	        this.B = SHA256_IV[1] | 0;
	        this.C = SHA256_IV[2] | 0;
	        this.D = SHA256_IV[3] | 0;
	        this.E = SHA256_IV[4] | 0;
	        this.F = SHA256_IV[5] | 0;
	        this.G = SHA256_IV[6] | 0;
	        this.H = SHA256_IV[7] | 0;
	    }
	    get() {
	        const { A, B, C, D, E, F, G, H } = this;
	        return [A, B, C, D, E, F, G, H];
	    }
	    // prettier-ignore
	    set(A, B, C, D, E, F, G, H) {
	        this.A = A | 0;
	        this.B = B | 0;
	        this.C = C | 0;
	        this.D = D | 0;
	        this.E = E | 0;
	        this.F = F | 0;
	        this.G = G | 0;
	        this.H = H | 0;
	    }
	    process(view, offset) {
	        // Extend the first 16 words into the remaining 48 words w[16..63] of the message schedule array
	        for (let i = 0; i < 16; i++, offset += 4)
	            SHA256_W[i] = view.getUint32(offset, false);
	        for (let i = 16; i < 64; i++) {
	            const W15 = SHA256_W[i - 15];
	            const W2 = SHA256_W[i - 2];
	            const s0 = rotr(W15, 7) ^ rotr(W15, 18) ^ (W15 >>> 3);
	            const s1 = rotr(W2, 17) ^ rotr(W2, 19) ^ (W2 >>> 10);
	            SHA256_W[i] = (s1 + SHA256_W[i - 7] + s0 + SHA256_W[i - 16]) | 0;
	        }
	        // Compression function main loop, 64 rounds
	        let { A, B, C, D, E, F, G, H } = this;
	        for (let i = 0; i < 64; i++) {
	            const sigma1 = rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25);
	            const T1 = (H + sigma1 + Chi(E, F, G) + SHA256_K[i] + SHA256_W[i]) | 0;
	            const sigma0 = rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22);
	            const T2 = (sigma0 + Maj(A, B, C)) | 0;
	            H = G;
	            G = F;
	            F = E;
	            E = (D + T1) | 0;
	            D = C;
	            C = B;
	            B = A;
	            A = (T1 + T2) | 0;
	        }
	        // Add the compressed chunk to the current hash value
	        A = (A + this.A) | 0;
	        B = (B + this.B) | 0;
	        C = (C + this.C) | 0;
	        D = (D + this.D) | 0;
	        E = (E + this.E) | 0;
	        F = (F + this.F) | 0;
	        G = (G + this.G) | 0;
	        H = (H + this.H) | 0;
	        this.set(A, B, C, D, E, F, G, H);
	    }
	    roundClean() {
	        SHA256_W.fill(0);
	    }
	    destroy() {
	        this.set(0, 0, 0, 0, 0, 0, 0, 0);
	        this.buffer.fill(0);
	    }
	}
	/**
	 * SHA2-256 hash function
	 * @param message - data that would be hashed
	 */
	const sha256 = /* @__PURE__ */ wrapConstructor(() => new SHA256());

	var lib = {};

	var encoding_lib = {};

	var hasRequiredEncoding_lib;

	function requireEncoding_lib () {
		if (hasRequiredEncoding_lib) return encoding_lib;
		hasRequiredEncoding_lib = 1;

		// This is free and unencumbered software released into the public domain.
		// See LICENSE.md for more information.

		//
		// Utilities
		//

		/**
		 * @param {number} a The number to test.
		 * @param {number} min The minimum value in the range, inclusive.
		 * @param {number} max The maximum value in the range, inclusive.
		 * @return {boolean} True if a >= min and a <= max.
		 */
		function inRange(a, min, max) {
		  return min <= a && a <= max;
		}

		/**
		 * @param {*} o
		 * @return {Object}
		 */
		function ToDictionary(o) {
		  if (o === undefined) return {};
		  if (o === Object(o)) return o;
		  throw TypeError('Could not convert argument to dictionary');
		}

		/**
		 * @param {string} string Input string of UTF-16 code units.
		 * @return {!Array.<number>} Code points.
		 */
		function stringToCodePoints(string) {
		  // https://heycam.github.io/webidl/#dfn-obtain-unicode

		  // 1. Let S be the DOMString value.
		  var s = String(string);

		  // 2. Let n be the length of S.
		  var n = s.length;

		  // 3. Initialize i to 0.
		  var i = 0;

		  // 4. Initialize U to be an empty sequence of Unicode characters.
		  var u = [];

		  // 5. While i < n:
		  while (i < n) {

		    // 1. Let c be the code unit in S at index i.
		    var c = s.charCodeAt(i);

		    // 2. Depending on the value of c:

		    // c < 0xD800 or c > 0xDFFF
		    if (c < 0xD800 || c > 0xDFFF) {
		      // Append to U the Unicode character with code point c.
		      u.push(c);
		    }

		    // 0xDC00 ≤ c ≤ 0xDFFF
		    else if (0xDC00 <= c && c <= 0xDFFF) {
		      // Append to U a U+FFFD REPLACEMENT CHARACTER.
		      u.push(0xFFFD);
		    }

		    // 0xD800 ≤ c ≤ 0xDBFF
		    else if (0xD800 <= c && c <= 0xDBFF) {
		      // 1. If i = n−1, then append to U a U+FFFD REPLACEMENT
		      // CHARACTER.
		      if (i === n - 1) {
		        u.push(0xFFFD);
		      }
		      // 2. Otherwise, i < n−1:
		      else {
		        // 1. Let d be the code unit in S at index i+1.
		        var d = string.charCodeAt(i + 1);

		        // 2. If 0xDC00 ≤ d ≤ 0xDFFF, then:
		        if (0xDC00 <= d && d <= 0xDFFF) {
		          // 1. Let a be c & 0x3FF.
		          var a = c & 0x3FF;

		          // 2. Let b be d & 0x3FF.
		          var b = d & 0x3FF;

		          // 3. Append to U the Unicode character with code point
		          // 2^16+2^10*a+b.
		          u.push(0x10000 + (a << 10) + b);

		          // 4. Set i to i+1.
		          i += 1;
		        }

		        // 3. Otherwise, d < 0xDC00 or d > 0xDFFF. Append to U a
		        // U+FFFD REPLACEMENT CHARACTER.
		        else  {
		          u.push(0xFFFD);
		        }
		      }
		    }

		    // 3. Set i to i+1.
		    i += 1;
		  }

		  // 6. Return U.
		  return u;
		}

		/**
		 * @param {!Array.<number>} code_points Array of code points.
		 * @return {string} string String of UTF-16 code units.
		 */
		function codePointsToString(code_points) {
		  var s = '';
		  for (var i = 0; i < code_points.length; ++i) {
		    var cp = code_points[i];
		    if (cp <= 0xFFFF) {
		      s += String.fromCharCode(cp);
		    } else {
		      cp -= 0x10000;
		      s += String.fromCharCode((cp >> 10) + 0xD800,
		                               (cp & 0x3FF) + 0xDC00);
		    }
		  }
		  return s;
		}


		//
		// Implementation of Encoding specification
		// https://encoding.spec.whatwg.org/
		//

		//
		// 3. Terminology
		//

		/**
		 * End-of-stream is a special token that signifies no more tokens
		 * are in the stream.
		 * @const
		 */ var end_of_stream = -1;

		/**
		 * A stream represents an ordered sequence of tokens.
		 *
		 * @constructor
		 * @param {!(Array.<number>|Uint8Array)} tokens Array of tokens that provide the
		 * stream.
		 */
		function Stream(tokens) {
		  /** @type {!Array.<number>} */
		  this.tokens = [].slice.call(tokens);
		}

		Stream.prototype = {
		  /**
		   * @return {boolean} True if end-of-stream has been hit.
		   */
		  endOfStream: function() {
		    return !this.tokens.length;
		  },

		  /**
		   * When a token is read from a stream, the first token in the
		   * stream must be returned and subsequently removed, and
		   * end-of-stream must be returned otherwise.
		   *
		   * @return {number} Get the next token from the stream, or
		   * end_of_stream.
		   */
		   read: function() {
		    if (!this.tokens.length)
		      return end_of_stream;
		     return this.tokens.shift();
		   },

		  /**
		   * When one or more tokens are prepended to a stream, those tokens
		   * must be inserted, in given order, before the first token in the
		   * stream.
		   *
		   * @param {(number|!Array.<number>)} token The token(s) to prepend to the stream.
		   */
		  prepend: function(token) {
		    if (Array.isArray(token)) {
		      var tokens = /**@type {!Array.<number>}*/(token);
		      while (tokens.length)
		        this.tokens.unshift(tokens.pop());
		    } else {
		      this.tokens.unshift(token);
		    }
		  },

		  /**
		   * When one or more tokens are pushed to a stream, those tokens
		   * must be inserted, in given order, after the last token in the
		   * stream.
		   *
		   * @param {(number|!Array.<number>)} token The tokens(s) to prepend to the stream.
		   */
		  push: function(token) {
		    if (Array.isArray(token)) {
		      var tokens = /**@type {!Array.<number>}*/(token);
		      while (tokens.length)
		        this.tokens.push(tokens.shift());
		    } else {
		      this.tokens.push(token);
		    }
		  }
		};

		//
		// 4. Encodings
		//

		// 4.1 Encoders and decoders

		/** @const */
		var finished = -1;

		/**
		 * @param {boolean} fatal If true, decoding errors raise an exception.
		 * @param {number=} opt_code_point Override the standard fallback code point.
		 * @return {number} The code point to insert on a decoding error.
		 */
		function decoderError(fatal, opt_code_point) {
		  if (fatal)
		    throw TypeError('Decoder error');
		  return opt_code_point || 0xFFFD;
		}

		//
		// 7. API
		//

		/** @const */ var DEFAULT_ENCODING = 'utf-8';

		// 7.1 Interface TextDecoder

		/**
		 * @constructor
		 * @param {string=} encoding The label of the encoding;
		 *     defaults to 'utf-8'.
		 * @param {Object=} options
		 */
		function TextDecoder(encoding, options) {
		  if (!(this instanceof TextDecoder)) {
		    return new TextDecoder(encoding, options);
		  }
		  encoding = encoding !== undefined ? String(encoding).toLowerCase() : DEFAULT_ENCODING;
		  if (encoding !== DEFAULT_ENCODING) {
		    throw new Error('Encoding not supported. Only utf-8 is supported');
		  }
		  options = ToDictionary(options);

		  /** @private @type {boolean} */
		  this._streaming = false;
		  /** @private @type {boolean} */
		  this._BOMseen = false;
		  /** @private @type {?Decoder} */
		  this._decoder = null;
		  /** @private @type {boolean} */
		  this._fatal = Boolean(options['fatal']);
		  /** @private @type {boolean} */
		  this._ignoreBOM = Boolean(options['ignoreBOM']);

		  Object.defineProperty(this, 'encoding', {value: 'utf-8'});
		  Object.defineProperty(this, 'fatal', {value: this._fatal});
		  Object.defineProperty(this, 'ignoreBOM', {value: this._ignoreBOM});
		}

		TextDecoder.prototype = {
		  /**
		   * @param {ArrayBufferView=} input The buffer of bytes to decode.
		   * @param {Object=} options
		   * @return {string} The decoded string.
		   */
		  decode: function decode(input, options) {
		    var bytes;
		    if (typeof input === 'object' && input instanceof ArrayBuffer) {
		      bytes = new Uint8Array(input);
		    } else if (typeof input === 'object' && 'buffer' in input &&
		               input.buffer instanceof ArrayBuffer) {
		      bytes = new Uint8Array(input.buffer,
		                             input.byteOffset,
		                             input.byteLength);
		    } else {
		      bytes = new Uint8Array(0);
		    }

		    options = ToDictionary(options);

		    if (!this._streaming) {
		      this._decoder = new UTF8Decoder({fatal: this._fatal});
		      this._BOMseen = false;
		    }
		    this._streaming = Boolean(options['stream']);

		    var input_stream = new Stream(bytes);

		    var code_points = [];

		    /** @type {?(number|!Array.<number>)} */
		    var result;

		    while (!input_stream.endOfStream()) {
		      result = this._decoder.handler(input_stream, input_stream.read());
		      if (result === finished)
		        break;
		      if (result === null)
		        continue;
		      if (Array.isArray(result))
		        code_points.push.apply(code_points, /**@type {!Array.<number>}*/(result));
		      else
		        code_points.push(result);
		    }
		    if (!this._streaming) {
		      do {
		        result = this._decoder.handler(input_stream, input_stream.read());
		        if (result === finished)
		          break;
		        if (result === null)
		          continue;
		        if (Array.isArray(result))
		          code_points.push.apply(code_points, /**@type {!Array.<number>}*/(result));
		        else
		          code_points.push(result);
		      } while (!input_stream.endOfStream());
		      this._decoder = null;
		    }

		    if (code_points.length) {
		      // If encoding is one of utf-8, utf-16be, and utf-16le, and
		      // ignore BOM flag and BOM seen flag are unset, run these
		      // subsubsteps:
		      if (['utf-8'].indexOf(this.encoding) !== -1 &&
		          !this._ignoreBOM && !this._BOMseen) {
		        // If token is U+FEFF, set BOM seen flag.
		        if (code_points[0] === 0xFEFF) {
		          this._BOMseen = true;
		          code_points.shift();
		        } else {
		          // Otherwise, if token is not end-of-stream, set BOM seen
		          // flag and append token to output.
		          this._BOMseen = true;
		        }
		      }
		    }

		    return codePointsToString(code_points);
		  }
		};

		// 7.2 Interface TextEncoder

		/**
		 * @constructor
		 * @param {string=} encoding The label of the encoding;
		 *     defaults to 'utf-8'.
		 * @param {Object=} options
		 */
		function TextEncoder(encoding, options) {
		  if (!(this instanceof TextEncoder))
		    return new TextEncoder(encoding, options);
		  encoding = encoding !== undefined ? String(encoding).toLowerCase() : DEFAULT_ENCODING;
		  if (encoding !== DEFAULT_ENCODING) {
		    throw new Error('Encoding not supported. Only utf-8 is supported');
		  }
		  options = ToDictionary(options);

		  /** @private @type {boolean} */
		  this._streaming = false;
		  /** @private @type {?Encoder} */
		  this._encoder = null;
		  /** @private @type {{fatal: boolean}} */
		  this._options = {fatal: Boolean(options['fatal'])};

		  Object.defineProperty(this, 'encoding', {value: 'utf-8'});
		}

		TextEncoder.prototype = {
		  /**
		   * @param {string=} opt_string The string to encode.
		   * @param {Object=} options
		   * @return {Uint8Array} Encoded bytes, as a Uint8Array.
		   */
		  encode: function encode(opt_string, options) {
		    opt_string = opt_string ? String(opt_string) : '';
		    options = ToDictionary(options);

		    // NOTE: This option is nonstandard. None of the encodings
		    // permitted for encoding (i.e. UTF-8, UTF-16) are stateful,
		    // so streaming is not necessary.
		    if (!this._streaming)
		      this._encoder = new UTF8Encoder(this._options);
		    this._streaming = Boolean(options['stream']);

		    var bytes = [];
		    var input_stream = new Stream(stringToCodePoints(opt_string));
		    /** @type {?(number|!Array.<number>)} */
		    var result;
		    while (!input_stream.endOfStream()) {
		      result = this._encoder.handler(input_stream, input_stream.read());
		      if (result === finished)
		        break;
		      if (Array.isArray(result))
		        bytes.push.apply(bytes, /**@type {!Array.<number>}*/(result));
		      else
		        bytes.push(result);
		    }
		    if (!this._streaming) {
		      while (true) {
		        result = this._encoder.handler(input_stream, input_stream.read());
		        if (result === finished)
		          break;
		        if (Array.isArray(result))
		          bytes.push.apply(bytes, /**@type {!Array.<number>}*/(result));
		        else
		          bytes.push(result);
		      }
		      this._encoder = null;
		    }
		    return new Uint8Array(bytes);
		  }
		};

		//
		// 8. The encoding
		//

		// 8.1 utf-8

		/**
		 * @constructor
		 * @implements {Decoder}
		 * @param {{fatal: boolean}} options
		 */
		function UTF8Decoder(options) {
		  var fatal = options.fatal;

		  // utf-8's decoder's has an associated utf-8 code point, utf-8
		  // bytes seen, and utf-8 bytes needed (all initially 0), a utf-8
		  // lower boundary (initially 0x80), and a utf-8 upper boundary
		  // (initially 0xBF).
		  var /** @type {number} */ utf8_code_point = 0,
		      /** @type {number} */ utf8_bytes_seen = 0,
		      /** @type {number} */ utf8_bytes_needed = 0,
		      /** @type {number} */ utf8_lower_boundary = 0x80,
		      /** @type {number} */ utf8_upper_boundary = 0xBF;

		  /**
		   * @param {Stream} stream The stream of bytes being decoded.
		   * @param {number} bite The next byte read from the stream.
		   * @return {?(number|!Array.<number>)} The next code point(s)
		   *     decoded, or null if not enough data exists in the input
		   *     stream to decode a complete code point.
		   */
		  this.handler = function(stream, bite) {
		    // 1. If byte is end-of-stream and utf-8 bytes needed is not 0,
		    // set utf-8 bytes needed to 0 and return error.
		    if (bite === end_of_stream && utf8_bytes_needed !== 0) {
		      utf8_bytes_needed = 0;
		      return decoderError(fatal);
		    }

		    // 2. If byte is end-of-stream, return finished.
		    if (bite === end_of_stream)
		      return finished;

		    // 3. If utf-8 bytes needed is 0, based on byte:
		    if (utf8_bytes_needed === 0) {

		      // 0x00 to 0x7F
		      if (inRange(bite, 0x00, 0x7F)) {
		        // Return a code point whose value is byte.
		        return bite;
		      }

		      // 0xC2 to 0xDF
		      if (inRange(bite, 0xC2, 0xDF)) {
		        // Set utf-8 bytes needed to 1 and utf-8 code point to byte
		        // − 0xC0.
		        utf8_bytes_needed = 1;
		        utf8_code_point = bite - 0xC0;
		      }

		      // 0xE0 to 0xEF
		      else if (inRange(bite, 0xE0, 0xEF)) {
		        // 1. If byte is 0xE0, set utf-8 lower boundary to 0xA0.
		        if (bite === 0xE0)
		          utf8_lower_boundary = 0xA0;
		        // 2. If byte is 0xED, set utf-8 upper boundary to 0x9F.
		        if (bite === 0xED)
		          utf8_upper_boundary = 0x9F;
		        // 3. Set utf-8 bytes needed to 2 and utf-8 code point to
		        // byte − 0xE0.
		        utf8_bytes_needed = 2;
		        utf8_code_point = bite - 0xE0;
		      }

		      // 0xF0 to 0xF4
		      else if (inRange(bite, 0xF0, 0xF4)) {
		        // 1. If byte is 0xF0, set utf-8 lower boundary to 0x90.
		        if (bite === 0xF0)
		          utf8_lower_boundary = 0x90;
		        // 2. If byte is 0xF4, set utf-8 upper boundary to 0x8F.
		        if (bite === 0xF4)
		          utf8_upper_boundary = 0x8F;
		        // 3. Set utf-8 bytes needed to 3 and utf-8 code point to
		        // byte − 0xF0.
		        utf8_bytes_needed = 3;
		        utf8_code_point = bite - 0xF0;
		      }

		      // Otherwise
		      else {
		        // Return error.
		        return decoderError(fatal);
		      }

		      // Then (byte is in the range 0xC2 to 0xF4) set utf-8 code
		      // point to utf-8 code point << (6 × utf-8 bytes needed) and
		      // return continue.
		      utf8_code_point = utf8_code_point << (6 * utf8_bytes_needed);
		      return null;
		    }

		    // 4. If byte is not in the range utf-8 lower boundary to utf-8
		    // upper boundary, run these substeps:
		    if (!inRange(bite, utf8_lower_boundary, utf8_upper_boundary)) {

		      // 1. Set utf-8 code point, utf-8 bytes needed, and utf-8
		      // bytes seen to 0, set utf-8 lower boundary to 0x80, and set
		      // utf-8 upper boundary to 0xBF.
		      utf8_code_point = utf8_bytes_needed = utf8_bytes_seen = 0;
		      utf8_lower_boundary = 0x80;
		      utf8_upper_boundary = 0xBF;

		      // 2. Prepend byte to stream.
		      stream.prepend(bite);

		      // 3. Return error.
		      return decoderError(fatal);
		    }

		    // 5. Set utf-8 lower boundary to 0x80 and utf-8 upper boundary
		    // to 0xBF.
		    utf8_lower_boundary = 0x80;
		    utf8_upper_boundary = 0xBF;

		    // 6. Increase utf-8 bytes seen by one and set utf-8 code point
		    // to utf-8 code point + (byte − 0x80) << (6 × (utf-8 bytes
		    // needed − utf-8 bytes seen)).
		    utf8_bytes_seen += 1;
		    utf8_code_point += (bite - 0x80) << (6 * (utf8_bytes_needed - utf8_bytes_seen));

		    // 7. If utf-8 bytes seen is not equal to utf-8 bytes needed,
		    // continue.
		    if (utf8_bytes_seen !== utf8_bytes_needed)
		      return null;

		    // 8. Let code point be utf-8 code point.
		    var code_point = utf8_code_point;

		    // 9. Set utf-8 code point, utf-8 bytes needed, and utf-8 bytes
		    // seen to 0.
		    utf8_code_point = utf8_bytes_needed = utf8_bytes_seen = 0;

		    // 10. Return a code point whose value is code point.
		    return code_point;
		  };
		}

		/**
		 * @constructor
		 * @implements {Encoder}
		 * @param {{fatal: boolean}} options
		 */
		function UTF8Encoder(options) {
		  options.fatal;
		  /**
		   * @param {Stream} stream Input stream.
		   * @param {number} code_point Next code point read from the stream.
		   * @return {(number|!Array.<number>)} Byte(s) to emit.
		   */
		  this.handler = function(stream, code_point) {
		    // 1. If code point is end-of-stream, return finished.
		    if (code_point === end_of_stream)
		      return finished;

		    // 2. If code point is in the range U+0000 to U+007F, return a
		    // byte whose value is code point.
		    if (inRange(code_point, 0x0000, 0x007f))
		      return code_point;

		    // 3. Set count and offset based on the range code point is in:
		    var count, offset;
		    // U+0080 to U+07FF:    1 and 0xC0
		    if (inRange(code_point, 0x0080, 0x07FF)) {
		      count = 1;
		      offset = 0xC0;
		    }
		    // U+0800 to U+FFFF:    2 and 0xE0
		    else if (inRange(code_point, 0x0800, 0xFFFF)) {
		      count = 2;
		      offset = 0xE0;
		    }
		    // U+10000 to U+10FFFF: 3 and 0xF0
		    else if (inRange(code_point, 0x10000, 0x10FFFF)) {
		      count = 3;
		      offset = 0xF0;
		    }

		    // 4.Let bytes be a byte sequence whose first byte is (code
		    // point >> (6 × count)) + offset.
		    var bytes = [(code_point >> (6 * count)) + offset];

		    // 5. Run these substeps while count is greater than 0:
		    while (count > 0) {

		      // 1. Set temp to code point >> (6 × (count − 1)).
		      var temp = code_point >> (6 * (count - 1));

		      // 2. Append to bytes 0x80 | (temp & 0x3F).
		      bytes.push(0x80 | (temp & 0x3F));

		      // 3. Decrease count by one.
		      count -= 1;
		    }

		    // 6. Return bytes bytes, in order.
		    return bytes;
		  };
		}

		encoding_lib.TextEncoder = TextEncoder;
		encoding_lib.TextDecoder = TextDecoder;
		return encoding_lib;
	}

	var hasRequiredLib;

	function requireLib () {
		if (hasRequiredLib) return lib;
		hasRequiredLib = 1;
		var __createBinding = (lib && lib.__createBinding) || (Object.create ? (function(o, m, k, k2) {
		    if (k2 === undefined) k2 = k;
		    Object.defineProperty(o, k2, { enumerable: true, get: function() { return m[k]; } });
		}) : (function(o, m, k, k2) {
		    if (k2 === undefined) k2 = k;
		    o[k2] = m[k];
		}));
		var __setModuleDefault = (lib && lib.__setModuleDefault) || (Object.create ? (function(o, v) {
		    Object.defineProperty(o, "default", { enumerable: true, value: v });
		}) : function(o, v) {
		    o["default"] = v;
		});
		var __decorate = (lib && lib.__decorate) || function (decorators, target, key, desc) {
		    var c = arguments.length, r = c < 3 ? target : desc === null ? desc = Object.getOwnPropertyDescriptor(target, key) : desc, d;
		    if (typeof Reflect === "object" && typeof Reflect.decorate === "function") r = Reflect.decorate(decorators, target, key, desc);
		    else for (var i = decorators.length - 1; i >= 0; i--) if (d = decorators[i]) r = (c < 3 ? d(r) : c > 3 ? d(target, key, r) : d(target, key)) || r;
		    return c > 3 && r && Object.defineProperty(target, key, r), r;
		};
		var __importStar = (lib && lib.__importStar) || function (mod) {
		    if (mod && mod.__esModule) return mod;
		    var result = {};
		    if (mod != null) for (var k in mod) if (k !== "default" && Object.hasOwnProperty.call(mod, k)) __createBinding(result, mod, k);
		    __setModuleDefault(result, mod);
		    return result;
		};
		var __importDefault = (lib && lib.__importDefault) || function (mod) {
		    return (mod && mod.__esModule) ? mod : { "default": mod };
		};
		Object.defineProperty(lib, "__esModule", { value: true });
		lib.deserializeUnchecked = lib.deserialize = lib.serialize = lib.BinaryReader = lib.BinaryWriter = lib.BorshError = lib.baseDecode = lib.baseEncode = void 0;
		const bn_js_1 = __importDefault(/*@__PURE__*/ requireBn());
		const bs58_1 = __importDefault(/*@__PURE__*/ requireBs58());
		// TODO: Make sure this polyfill not included when not required
		const encoding = __importStar(/*@__PURE__*/ requireEncoding_lib());
		const ResolvedTextDecoder = typeof TextDecoder !== "function" ? encoding.TextDecoder : TextDecoder;
		const textDecoder = new ResolvedTextDecoder("utf-8", { fatal: true });
		function baseEncode(value) {
		    if (typeof value === "string") {
		        value = Buffer.from(value, "utf8");
		    }
		    return bs58_1.default.encode(Buffer.from(value));
		}
		lib.baseEncode = baseEncode;
		function baseDecode(value) {
		    return Buffer.from(bs58_1.default.decode(value));
		}
		lib.baseDecode = baseDecode;
		const INITIAL_LENGTH = 1024;
		class BorshError extends Error {
		    constructor(message) {
		        super(message);
		        this.fieldPath = [];
		        this.originalMessage = message;
		    }
		    addToFieldPath(fieldName) {
		        this.fieldPath.splice(0, 0, fieldName);
		        // NOTE: Modifying message directly as jest doesn't use .toString()
		        this.message = this.originalMessage + ": " + this.fieldPath.join(".");
		    }
		}
		lib.BorshError = BorshError;
		/// Binary encoder.
		class BinaryWriter {
		    constructor() {
		        this.buf = Buffer.alloc(INITIAL_LENGTH);
		        this.length = 0;
		    }
		    maybeResize() {
		        if (this.buf.length < 16 + this.length) {
		            this.buf = Buffer.concat([this.buf, Buffer.alloc(INITIAL_LENGTH)]);
		        }
		    }
		    writeU8(value) {
		        this.maybeResize();
		        this.buf.writeUInt8(value, this.length);
		        this.length += 1;
		    }
		    writeU16(value) {
		        this.maybeResize();
		        this.buf.writeUInt16LE(value, this.length);
		        this.length += 2;
		    }
		    writeU32(value) {
		        this.maybeResize();
		        this.buf.writeUInt32LE(value, this.length);
		        this.length += 4;
		    }
		    writeU64(value) {
		        this.maybeResize();
		        this.writeBuffer(Buffer.from(new bn_js_1.default(value).toArray("le", 8)));
		    }
		    writeU128(value) {
		        this.maybeResize();
		        this.writeBuffer(Buffer.from(new bn_js_1.default(value).toArray("le", 16)));
		    }
		    writeU256(value) {
		        this.maybeResize();
		        this.writeBuffer(Buffer.from(new bn_js_1.default(value).toArray("le", 32)));
		    }
		    writeU512(value) {
		        this.maybeResize();
		        this.writeBuffer(Buffer.from(new bn_js_1.default(value).toArray("le", 64)));
		    }
		    writeBuffer(buffer) {
		        // Buffer.from is needed as this.buf.subarray can return plain Uint8Array in browser
		        this.buf = Buffer.concat([
		            Buffer.from(this.buf.subarray(0, this.length)),
		            buffer,
		            Buffer.alloc(INITIAL_LENGTH),
		        ]);
		        this.length += buffer.length;
		    }
		    writeString(str) {
		        this.maybeResize();
		        const b = Buffer.from(str, "utf8");
		        this.writeU32(b.length);
		        this.writeBuffer(b);
		    }
		    writeFixedArray(array) {
		        this.writeBuffer(Buffer.from(array));
		    }
		    writeArray(array, fn) {
		        this.maybeResize();
		        this.writeU32(array.length);
		        for (const elem of array) {
		            this.maybeResize();
		            fn(elem);
		        }
		    }
		    toArray() {
		        return this.buf.subarray(0, this.length);
		    }
		}
		lib.BinaryWriter = BinaryWriter;
		function handlingRangeError(target, propertyKey, propertyDescriptor) {
		    const originalMethod = propertyDescriptor.value;
		    propertyDescriptor.value = function (...args) {
		        try {
		            return originalMethod.apply(this, args);
		        }
		        catch (e) {
		            if (e instanceof RangeError) {
		                const code = e.code;
		                if (["ERR_BUFFER_OUT_OF_BOUNDS", "ERR_OUT_OF_RANGE"].indexOf(code) >= 0) {
		                    throw new BorshError("Reached the end of buffer when deserializing");
		                }
		            }
		            throw e;
		        }
		    };
		}
		class BinaryReader {
		    constructor(buf) {
		        this.buf = buf;
		        this.offset = 0;
		    }
		    readU8() {
		        const value = this.buf.readUInt8(this.offset);
		        this.offset += 1;
		        return value;
		    }
		    readU16() {
		        const value = this.buf.readUInt16LE(this.offset);
		        this.offset += 2;
		        return value;
		    }
		    readU32() {
		        const value = this.buf.readUInt32LE(this.offset);
		        this.offset += 4;
		        return value;
		    }
		    readU64() {
		        const buf = this.readBuffer(8);
		        return new bn_js_1.default(buf, "le");
		    }
		    readU128() {
		        const buf = this.readBuffer(16);
		        return new bn_js_1.default(buf, "le");
		    }
		    readU256() {
		        const buf = this.readBuffer(32);
		        return new bn_js_1.default(buf, "le");
		    }
		    readU512() {
		        const buf = this.readBuffer(64);
		        return new bn_js_1.default(buf, "le");
		    }
		    readBuffer(len) {
		        if (this.offset + len > this.buf.length) {
		            throw new BorshError(`Expected buffer length ${len} isn't within bounds`);
		        }
		        const result = this.buf.slice(this.offset, this.offset + len);
		        this.offset += len;
		        return result;
		    }
		    readString() {
		        const len = this.readU32();
		        const buf = this.readBuffer(len);
		        try {
		            // NOTE: Using TextDecoder to fail on invalid UTF-8
		            return textDecoder.decode(buf);
		        }
		        catch (e) {
		            throw new BorshError(`Error decoding UTF-8 string: ${e}`);
		        }
		    }
		    readFixedArray(len) {
		        return new Uint8Array(this.readBuffer(len));
		    }
		    readArray(fn) {
		        const len = this.readU32();
		        const result = Array();
		        for (let i = 0; i < len; ++i) {
		            result.push(fn());
		        }
		        return result;
		    }
		}
		__decorate([
		    handlingRangeError
		], BinaryReader.prototype, "readU8", null);
		__decorate([
		    handlingRangeError
		], BinaryReader.prototype, "readU16", null);
		__decorate([
		    handlingRangeError
		], BinaryReader.prototype, "readU32", null);
		__decorate([
		    handlingRangeError
		], BinaryReader.prototype, "readU64", null);
		__decorate([
		    handlingRangeError
		], BinaryReader.prototype, "readU128", null);
		__decorate([
		    handlingRangeError
		], BinaryReader.prototype, "readU256", null);
		__decorate([
		    handlingRangeError
		], BinaryReader.prototype, "readU512", null);
		__decorate([
		    handlingRangeError
		], BinaryReader.prototype, "readString", null);
		__decorate([
		    handlingRangeError
		], BinaryReader.prototype, "readFixedArray", null);
		__decorate([
		    handlingRangeError
		], BinaryReader.prototype, "readArray", null);
		lib.BinaryReader = BinaryReader;
		function capitalizeFirstLetter(string) {
		    return string.charAt(0).toUpperCase() + string.slice(1);
		}
		function serializeField(schema, fieldName, value, fieldType, writer) {
		    try {
		        // TODO: Handle missing values properly (make sure they never result in just skipped write)
		        if (typeof fieldType === "string") {
		            writer[`write${capitalizeFirstLetter(fieldType)}`](value);
		        }
		        else if (fieldType instanceof Array) {
		            if (typeof fieldType[0] === "number") {
		                if (value.length !== fieldType[0]) {
		                    throw new BorshError(`Expecting byte array of length ${fieldType[0]}, but got ${value.length} bytes`);
		                }
		                writer.writeFixedArray(value);
		            }
		            else if (fieldType.length === 2 && typeof fieldType[1] === "number") {
		                if (value.length !== fieldType[1]) {
		                    throw new BorshError(`Expecting byte array of length ${fieldType[1]}, but got ${value.length} bytes`);
		                }
		                for (let i = 0; i < fieldType[1]; i++) {
		                    serializeField(schema, null, value[i], fieldType[0], writer);
		                }
		            }
		            else {
		                writer.writeArray(value, (item) => {
		                    serializeField(schema, fieldName, item, fieldType[0], writer);
		                });
		            }
		        }
		        else if (fieldType.kind !== undefined) {
		            switch (fieldType.kind) {
		                case "option": {
		                    if (value === null || value === undefined) {
		                        writer.writeU8(0);
		                    }
		                    else {
		                        writer.writeU8(1);
		                        serializeField(schema, fieldName, value, fieldType.type, writer);
		                    }
		                    break;
		                }
		                case "map": {
		                    writer.writeU32(value.size);
		                    value.forEach((val, key) => {
		                        serializeField(schema, fieldName, key, fieldType.key, writer);
		                        serializeField(schema, fieldName, val, fieldType.value, writer);
		                    });
		                    break;
		                }
		                default:
		                    throw new BorshError(`FieldType ${fieldType} unrecognized`);
		            }
		        }
		        else {
		            serializeStruct(schema, value, writer);
		        }
		    }
		    catch (error) {
		        if (error instanceof BorshError) {
		            error.addToFieldPath(fieldName);
		        }
		        throw error;
		    }
		}
		function serializeStruct(schema, obj, writer) {
		    if (typeof obj.borshSerialize === "function") {
		        obj.borshSerialize(writer);
		        return;
		    }
		    const structSchema = schema.get(obj.constructor);
		    if (!structSchema) {
		        throw new BorshError(`Class ${obj.constructor.name} is missing in schema`);
		    }
		    if (structSchema.kind === "struct") {
		        structSchema.fields.map(([fieldName, fieldType]) => {
		            serializeField(schema, fieldName, obj[fieldName], fieldType, writer);
		        });
		    }
		    else if (structSchema.kind === "enum") {
		        const name = obj[structSchema.field];
		        for (let idx = 0; idx < structSchema.values.length; ++idx) {
		            const [fieldName, fieldType] = structSchema.values[idx];
		            if (fieldName === name) {
		                writer.writeU8(idx);
		                serializeField(schema, fieldName, obj[fieldName], fieldType, writer);
		                break;
		            }
		        }
		    }
		    else {
		        throw new BorshError(`Unexpected schema kind: ${structSchema.kind} for ${obj.constructor.name}`);
		    }
		}
		/// Serialize given object using schema of the form:
		/// { class_name -> [ [field_name, field_type], .. ], .. }
		function serialize(schema, obj, Writer = BinaryWriter) {
		    const writer = new Writer();
		    serializeStruct(schema, obj, writer);
		    return writer.toArray();
		}
		lib.serialize = serialize;
		function deserializeField(schema, fieldName, fieldType, reader) {
		    try {
		        if (typeof fieldType === "string") {
		            return reader[`read${capitalizeFirstLetter(fieldType)}`]();
		        }
		        if (fieldType instanceof Array) {
		            if (typeof fieldType[0] === "number") {
		                return reader.readFixedArray(fieldType[0]);
		            }
		            else if (typeof fieldType[1] === "number") {
		                const arr = [];
		                for (let i = 0; i < fieldType[1]; i++) {
		                    arr.push(deserializeField(schema, null, fieldType[0], reader));
		                }
		                return arr;
		            }
		            else {
		                return reader.readArray(() => deserializeField(schema, fieldName, fieldType[0], reader));
		            }
		        }
		        if (fieldType.kind === "option") {
		            const option = reader.readU8();
		            if (option) {
		                return deserializeField(schema, fieldName, fieldType.type, reader);
		            }
		            return undefined;
		        }
		        if (fieldType.kind === "map") {
		            let map = new Map();
		            const length = reader.readU32();
		            for (let i = 0; i < length; i++) {
		                const key = deserializeField(schema, fieldName, fieldType.key, reader);
		                const val = deserializeField(schema, fieldName, fieldType.value, reader);
		                map.set(key, val);
		            }
		            return map;
		        }
		        return deserializeStruct(schema, fieldType, reader);
		    }
		    catch (error) {
		        if (error instanceof BorshError) {
		            error.addToFieldPath(fieldName);
		        }
		        throw error;
		    }
		}
		function deserializeStruct(schema, classType, reader) {
		    if (typeof classType.borshDeserialize === "function") {
		        return classType.borshDeserialize(reader);
		    }
		    const structSchema = schema.get(classType);
		    if (!structSchema) {
		        throw new BorshError(`Class ${classType.name} is missing in schema`);
		    }
		    if (structSchema.kind === "struct") {
		        const result = {};
		        for (const [fieldName, fieldType] of schema.get(classType).fields) {
		            result[fieldName] = deserializeField(schema, fieldName, fieldType, reader);
		        }
		        return new classType(result);
		    }
		    if (structSchema.kind === "enum") {
		        const idx = reader.readU8();
		        if (idx >= structSchema.values.length) {
		            throw new BorshError(`Enum index: ${idx} is out of range`);
		        }
		        const [fieldName, fieldType] = structSchema.values[idx];
		        const fieldValue = deserializeField(schema, fieldName, fieldType, reader);
		        return new classType({ [fieldName]: fieldValue });
		    }
		    throw new BorshError(`Unexpected schema kind: ${structSchema.kind} for ${classType.constructor.name}`);
		}
		/// Deserializes object from bytes using schema.
		function deserialize(schema, classType, buffer, Reader = BinaryReader) {
		    const reader = new Reader(buffer);
		    const result = deserializeStruct(schema, classType, reader);
		    if (reader.offset < buffer.length) {
		        throw new BorshError(`Unexpected ${buffer.length - reader.offset} bytes after deserialized data`);
		    }
		    return result;
		}
		lib.deserialize = deserialize;
		/// Deserializes object from bytes using schema, without checking the length read
		function deserializeUnchecked(schema, classType, buffer, Reader = BinaryReader) {
		    const reader = new Reader(buffer);
		    return deserializeStruct(schema, classType, reader);
		}
		lib.deserializeUnchecked = deserializeUnchecked;
		return lib;
	}

	var libExports = /*@__PURE__*/ requireLib();

	var Layout$1 = {};

	/* The MIT License (MIT)
	 *
	 * Copyright 2015-2018 Peter A. Bigot
	 *
	 * Permission is hereby granted, free of charge, to any person obtaining a copy
	 * of this software and associated documentation files (the "Software"), to deal
	 * in the Software without restriction, including without limitation the rights
	 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
	 * copies of the Software, and to permit persons to whom the Software is
	 * furnished to do so, subject to the following conditions:
	 *
	 * The above copyright notice and this permission notice shall be included in
	 * all copies or substantial portions of the Software.
	 *
	 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
	 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
	 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
	 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
	 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
	 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
	 * THE SOFTWARE.
	 */

	var hasRequiredLayout$1;

	function requireLayout$1 () {
		if (hasRequiredLayout$1) return Layout$1;
		hasRequiredLayout$1 = 1;
		Object.defineProperty(Layout$1, "__esModule", { value: true });
		Layout$1.s16 = Layout$1.s8 = Layout$1.nu64be = Layout$1.u48be = Layout$1.u40be = Layout$1.u32be = Layout$1.u24be = Layout$1.u16be = Layout$1.nu64 = Layout$1.u48 = Layout$1.u40 = Layout$1.u32 = Layout$1.u24 = Layout$1.u16 = Layout$1.u8 = Layout$1.offset = Layout$1.greedy = Layout$1.Constant = Layout$1.UTF8 = Layout$1.CString = Layout$1.Blob = Layout$1.Boolean = Layout$1.BitField = Layout$1.BitStructure = Layout$1.VariantLayout = Layout$1.Union = Layout$1.UnionLayoutDiscriminator = Layout$1.UnionDiscriminator = Layout$1.Structure = Layout$1.Sequence = Layout$1.DoubleBE = Layout$1.Double = Layout$1.FloatBE = Layout$1.Float = Layout$1.NearInt64BE = Layout$1.NearInt64 = Layout$1.NearUInt64BE = Layout$1.NearUInt64 = Layout$1.IntBE = Layout$1.Int = Layout$1.UIntBE = Layout$1.UInt = Layout$1.OffsetLayout = Layout$1.GreedyCount = Layout$1.ExternalLayout = Layout$1.bindConstructorLayout = Layout$1.nameWithProperty = Layout$1.Layout = Layout$1.uint8ArrayToBuffer = Layout$1.checkUint8Array = void 0;
		Layout$1.constant = Layout$1.utf8 = Layout$1.cstr = Layout$1.blob = Layout$1.unionLayoutDiscriminator = Layout$1.union = Layout$1.seq = Layout$1.bits = Layout$1.struct = Layout$1.f64be = Layout$1.f64 = Layout$1.f32be = Layout$1.f32 = Layout$1.ns64be = Layout$1.s48be = Layout$1.s40be = Layout$1.s32be = Layout$1.s24be = Layout$1.s16be = Layout$1.ns64 = Layout$1.s48 = Layout$1.s40 = Layout$1.s32 = Layout$1.s24 = void 0;
		const buffer_1 = /*@__PURE__*/ requireBuffer();
		/* Check if a value is a Uint8Array.
		 *
		 * @ignore */
		function checkUint8Array(b) {
		    if (!(b instanceof Uint8Array)) {
		        throw new TypeError('b must be a Uint8Array');
		    }
		}
		Layout$1.checkUint8Array = checkUint8Array;
		/* Create a Buffer instance from a Uint8Array.
		 *
		 * @ignore */
		function uint8ArrayToBuffer(b) {
		    checkUint8Array(b);
		    return buffer_1.Buffer.from(b.buffer, b.byteOffset, b.length);
		}
		Layout$1.uint8ArrayToBuffer = uint8ArrayToBuffer;
		/**
		 * Base class for layout objects.
		 *
		 * **NOTE** This is an abstract base class; you can create instances
		 * if it amuses you, but they won't support the {@link
		 * Layout#encode|encode} or {@link Layout#decode|decode} functions.
		 *
		 * @param {Number} span - Initializer for {@link Layout#span|span}.  The
		 * parameter must be an integer; a negative value signifies that the
		 * span is {@link Layout#getSpan|value-specific}.
		 *
		 * @param {string} [property] - Initializer for {@link
		 * Layout#property|property}.
		 *
		 * @abstract
		 */
		class Layout {
		    constructor(span, property) {
		        if (!Number.isInteger(span)) {
		            throw new TypeError('span must be an integer');
		        }
		        /** The span of the layout in bytes.
		         *
		         * Positive values are generally expected.
		         *
		         * Zero will only appear in {@link Constant}s and in {@link
		         * Sequence}s where the {@link Sequence#count|count} is zero.
		         *
		         * A negative value indicates that the span is value-specific, and
		         * must be obtained using {@link Layout#getSpan|getSpan}. */
		        this.span = span;
		        /** The property name used when this layout is represented in an
		         * Object.
		         *
		         * Used only for layouts that {@link Layout#decode|decode} to Object
		         * instances.  If left undefined the span of the unnamed layout will
		         * be treated as padding: it will not be mutated by {@link
		         * Layout#encode|encode} nor represented as a property in the
		         * decoded Object. */
		        this.property = property;
		    }
		    /** Function to create an Object into which decoded properties will
		     * be written.
		     *
		     * Used only for layouts that {@link Layout#decode|decode} to Object
		     * instances, which means:
		     * * {@link Structure}
		     * * {@link Union}
		     * * {@link VariantLayout}
		     * * {@link BitStructure}
		     *
		     * If left undefined the JavaScript representation of these layouts
		     * will be Object instances.
		     *
		     * See {@link bindConstructorLayout}.
		     */
		    makeDestinationObject() {
		        return {};
		    }
		    /**
		     * Calculate the span of a specific instance of a layout.
		     *
		     * @param {Uint8Array} b - the buffer that contains an encoded instance.
		     *
		     * @param {Number} [offset] - the offset at which the encoded instance
		     * starts.  If absent a zero offset is inferred.
		     *
		     * @return {Number} - the number of bytes covered by the layout
		     * instance.  If this method is not overridden in a subclass the
		     * definition-time constant {@link Layout#span|span} will be
		     * returned.
		     *
		     * @throws {RangeError} - if the length of the value cannot be
		     * determined.
		     */
		    getSpan(b, offset) {
		        if (0 > this.span) {
		            throw new RangeError('indeterminate span');
		        }
		        return this.span;
		    }
		    /**
		     * Replicate the layout using a new property.
		     *
		     * This function must be used to get a structurally-equivalent layout
		     * with a different name since all {@link Layout} instances are
		     * immutable.
		     *
		     * **NOTE** This is a shallow copy.  All fields except {@link
		     * Layout#property|property} are strictly equal to the origin layout.
		     *
		     * @param {String} property - the value for {@link
		     * Layout#property|property} in the replica.
		     *
		     * @returns {Layout} - the copy with {@link Layout#property|property}
		     * set to `property`.
		     */
		    replicate(property) {
		        const rv = Object.create(this.constructor.prototype);
		        Object.assign(rv, this);
		        rv.property = property;
		        return rv;
		    }
		    /**
		     * Create an object from layout properties and an array of values.
		     *
		     * **NOTE** This function returns `undefined` if invoked on a layout
		     * that does not return its value as an Object.  Objects are
		     * returned for things that are a {@link Structure}, which includes
		     * {@link VariantLayout|variant layouts} if they are structures, and
		     * excludes {@link Union}s.  If you want this feature for a union
		     * you must use {@link Union.getVariant|getVariant} to select the
		     * desired layout.
		     *
		     * @param {Array} values - an array of values that correspond to the
		     * default order for properties.  As with {@link Layout#decode|decode}
		     * layout elements that have no property name are skipped when
		     * iterating over the array values.  Only the top-level properties are
		     * assigned; arguments are not assigned to properties of contained
		     * layouts.  Any unused values are ignored.
		     *
		     * @return {(Object|undefined)}
		     */
		    fromArray(values) {
		        return undefined;
		    }
		}
		Layout$1.Layout = Layout;
		/* Provide text that carries a name (such as for a function that will
		 * be throwing an error) annotated with the property of a given layout
		 * (such as one for which the value was unacceptable).
		 *
		 * @ignore */
		function nameWithProperty(name, lo) {
		    if (lo.property) {
		        return name + '[' + lo.property + ']';
		    }
		    return name;
		}
		Layout$1.nameWithProperty = nameWithProperty;
		/**
		 * Augment a class so that instances can be encoded/decoded using a
		 * given layout.
		 *
		 * Calling this function couples `Class` with `layout` in several ways:
		 *
		 * * `Class.layout_` becomes a static member property equal to `layout`;
		 * * `layout.boundConstructor_` becomes a static member property equal
		 *    to `Class`;
		 * * The {@link Layout#makeDestinationObject|makeDestinationObject()}
		 *   property of `layout` is set to a function that returns a `new
		 *   Class()`;
		 * * `Class.decode(b, offset)` becomes a static member function that
		 *   delegates to {@link Layout#decode|layout.decode}.  The
		 *   synthesized function may be captured and extended.
		 * * `Class.prototype.encode(b, offset)` provides an instance member
		 *   function that delegates to {@link Layout#encode|layout.encode}
		 *   with `src` set to `this`.  The synthesized function may be
		 *   captured and extended, but when the extension is invoked `this`
		 *   must be explicitly bound to the instance.
		 *
		 * @param {class} Class - a JavaScript class with a nullary
		 * constructor.
		 *
		 * @param {Layout} layout - the {@link Layout} instance used to encode
		 * instances of `Class`.
		 */
		// `Class` must be a constructor Function, but the assignment of a `layout_` property to it makes it difficult to type
		// eslint-disable-next-line @typescript-eslint/explicit-module-boundary-types
		function bindConstructorLayout(Class, layout) {
		    if ('function' !== typeof Class) {
		        throw new TypeError('Class must be constructor');
		    }
		    if (Object.prototype.hasOwnProperty.call(Class, 'layout_')) {
		        throw new Error('Class is already bound to a layout');
		    }
		    if (!(layout && (layout instanceof Layout))) {
		        throw new TypeError('layout must be a Layout');
		    }
		    if (Object.prototype.hasOwnProperty.call(layout, 'boundConstructor_')) {
		        throw new Error('layout is already bound to a constructor');
		    }
		    Class.layout_ = layout;
		    layout.boundConstructor_ = Class;
		    layout.makeDestinationObject = (() => new Class());
		    Object.defineProperty(Class.prototype, 'encode', {
		        value(b, offset) {
		            return layout.encode(this, b, offset);
		        },
		        writable: true,
		    });
		    Object.defineProperty(Class, 'decode', {
		        value(b, offset) {
		            return layout.decode(b, offset);
		        },
		        writable: true,
		    });
		}
		Layout$1.bindConstructorLayout = bindConstructorLayout;
		/**
		 * An object that behaves like a layout but does not consume space
		 * within its containing layout.
		 *
		 * This is primarily used to obtain metadata about a member, such as a
		 * {@link OffsetLayout} that can provide data about a {@link
		 * Layout#getSpan|value-specific span}.
		 *
		 * **NOTE** This is an abstract base class; you can create instances
		 * if it amuses you, but they won't support {@link
		 * ExternalLayout#isCount|isCount} or other {@link Layout} functions.
		 *
		 * @param {Number} span - initializer for {@link Layout#span|span}.
		 * The parameter can range from 1 through 6.
		 *
		 * @param {string} [property] - initializer for {@link
		 * Layout#property|property}.
		 *
		 * @abstract
		 * @augments {Layout}
		 */
		class ExternalLayout extends Layout {
		    /**
		     * Return `true` iff the external layout decodes to an unsigned
		     * integer layout.
		     *
		     * In that case it can be used as the source of {@link
		     * Sequence#count|Sequence counts}, {@link Blob#length|Blob lengths},
		     * or as {@link UnionLayoutDiscriminator#layout|external union
		     * discriminators}.
		     *
		     * @abstract
		     */
		    isCount() {
		        throw new Error('ExternalLayout is abstract');
		    }
		}
		Layout$1.ExternalLayout = ExternalLayout;
		/**
		 * An {@link ExternalLayout} that determines its {@link
		 * Layout#decode|value} based on offset into and length of the buffer
		 * on which it is invoked.
		 *
		 * *Factory*: {@link module:Layout.greedy|greedy}
		 *
		 * @param {Number} [elementSpan] - initializer for {@link
		 * GreedyCount#elementSpan|elementSpan}.
		 *
		 * @param {string} [property] - initializer for {@link
		 * Layout#property|property}.
		 *
		 * @augments {ExternalLayout}
		 */
		class GreedyCount extends ExternalLayout {
		    constructor(elementSpan = 1, property) {
		        if ((!Number.isInteger(elementSpan)) || (0 >= elementSpan)) {
		            throw new TypeError('elementSpan must be a (positive) integer');
		        }
		        super(-1, property);
		        /** The layout for individual elements of the sequence.  The value
		         * must be a positive integer.  If not provided, the value will be
		         * 1. */
		        this.elementSpan = elementSpan;
		    }
		    /** @override */
		    isCount() {
		        return true;
		    }
		    /** @override */
		    decode(b, offset = 0) {
		        checkUint8Array(b);
		        const rem = b.length - offset;
		        return Math.floor(rem / this.elementSpan);
		    }
		    /** @override */
		    encode(src, b, offset) {
		        return 0;
		    }
		}
		Layout$1.GreedyCount = GreedyCount;
		/**
		 * An {@link ExternalLayout} that supports accessing a {@link Layout}
		 * at a fixed offset from the start of another Layout.  The offset may
		 * be before, within, or after the base layout.
		 *
		 * *Factory*: {@link module:Layout.offset|offset}
		 *
		 * @param {Layout} layout - initializer for {@link
		 * OffsetLayout#layout|layout}, modulo `property`.
		 *
		 * @param {Number} [offset] - Initializes {@link
		 * OffsetLayout#offset|offset}.  Defaults to zero.
		 *
		 * @param {string} [property] - Optional new property name for a
		 * {@link Layout#replicate| replica} of `layout` to be used as {@link
		 * OffsetLayout#layout|layout}.  If not provided the `layout` is used
		 * unchanged.
		 *
		 * @augments {Layout}
		 */
		class OffsetLayout extends ExternalLayout {
		    constructor(layout, offset = 0, property) {
		        if (!(layout instanceof Layout)) {
		            throw new TypeError('layout must be a Layout');
		        }
		        if (!Number.isInteger(offset)) {
		            throw new TypeError('offset must be integer or undefined');
		        }
		        super(layout.span, property || layout.property);
		        /** The subordinated layout. */
		        this.layout = layout;
		        /** The location of {@link OffsetLayout#layout} relative to the
		         * start of another layout.
		         *
		         * The value may be positive or negative, but an error will thrown
		         * if at the point of use it goes outside the span of the Uint8Array
		         * being accessed.  */
		        this.offset = offset;
		    }
		    /** @override */
		    isCount() {
		        return ((this.layout instanceof UInt)
		            || (this.layout instanceof UIntBE));
		    }
		    /** @override */
		    decode(b, offset = 0) {
		        return this.layout.decode(b, offset + this.offset);
		    }
		    /** @override */
		    encode(src, b, offset = 0) {
		        return this.layout.encode(src, b, offset + this.offset);
		    }
		}
		Layout$1.OffsetLayout = OffsetLayout;
		/**
		 * Represent an unsigned integer in little-endian format.
		 *
		 * *Factory*: {@link module:Layout.u8|u8}, {@link
		 *  module:Layout.u16|u16}, {@link module:Layout.u24|u24}, {@link
		 *  module:Layout.u32|u32}, {@link module:Layout.u40|u40}, {@link
		 *  module:Layout.u48|u48}
		 *
		 * @param {Number} span - initializer for {@link Layout#span|span}.
		 * The parameter can range from 1 through 6.
		 *
		 * @param {string} [property] - initializer for {@link
		 * Layout#property|property}.
		 *
		 * @augments {Layout}
		 */
		class UInt extends Layout {
		    constructor(span, property) {
		        super(span, property);
		        if (6 < this.span) {
		            throw new RangeError('span must not exceed 6 bytes');
		        }
		    }
		    /** @override */
		    decode(b, offset = 0) {
		        return uint8ArrayToBuffer(b).readUIntLE(offset, this.span);
		    }
		    /** @override */
		    encode(src, b, offset = 0) {
		        uint8ArrayToBuffer(b).writeUIntLE(src, offset, this.span);
		        return this.span;
		    }
		}
		Layout$1.UInt = UInt;
		/**
		 * Represent an unsigned integer in big-endian format.
		 *
		 * *Factory*: {@link module:Layout.u8be|u8be}, {@link
		 * module:Layout.u16be|u16be}, {@link module:Layout.u24be|u24be},
		 * {@link module:Layout.u32be|u32be}, {@link
		 * module:Layout.u40be|u40be}, {@link module:Layout.u48be|u48be}
		 *
		 * @param {Number} span - initializer for {@link Layout#span|span}.
		 * The parameter can range from 1 through 6.
		 *
		 * @param {string} [property] - initializer for {@link
		 * Layout#property|property}.
		 *
		 * @augments {Layout}
		 */
		class UIntBE extends Layout {
		    constructor(span, property) {
		        super(span, property);
		        if (6 < this.span) {
		            throw new RangeError('span must not exceed 6 bytes');
		        }
		    }
		    /** @override */
		    decode(b, offset = 0) {
		        return uint8ArrayToBuffer(b).readUIntBE(offset, this.span);
		    }
		    /** @override */
		    encode(src, b, offset = 0) {
		        uint8ArrayToBuffer(b).writeUIntBE(src, offset, this.span);
		        return this.span;
		    }
		}
		Layout$1.UIntBE = UIntBE;
		/**
		 * Represent a signed integer in little-endian format.
		 *
		 * *Factory*: {@link module:Layout.s8|s8}, {@link
		 *  module:Layout.s16|s16}, {@link module:Layout.s24|s24}, {@link
		 *  module:Layout.s32|s32}, {@link module:Layout.s40|s40}, {@link
		 *  module:Layout.s48|s48}
		 *
		 * @param {Number} span - initializer for {@link Layout#span|span}.
		 * The parameter can range from 1 through 6.
		 *
		 * @param {string} [property] - initializer for {@link
		 * Layout#property|property}.
		 *
		 * @augments {Layout}
		 */
		class Int extends Layout {
		    constructor(span, property) {
		        super(span, property);
		        if (6 < this.span) {
		            throw new RangeError('span must not exceed 6 bytes');
		        }
		    }
		    /** @override */
		    decode(b, offset = 0) {
		        return uint8ArrayToBuffer(b).readIntLE(offset, this.span);
		    }
		    /** @override */
		    encode(src, b, offset = 0) {
		        uint8ArrayToBuffer(b).writeIntLE(src, offset, this.span);
		        return this.span;
		    }
		}
		Layout$1.Int = Int;
		/**
		 * Represent a signed integer in big-endian format.
		 *
		 * *Factory*: {@link module:Layout.s8be|s8be}, {@link
		 * module:Layout.s16be|s16be}, {@link module:Layout.s24be|s24be},
		 * {@link module:Layout.s32be|s32be}, {@link
		 * module:Layout.s40be|s40be}, {@link module:Layout.s48be|s48be}
		 *
		 * @param {Number} span - initializer for {@link Layout#span|span}.
		 * The parameter can range from 1 through 6.
		 *
		 * @param {string} [property] - initializer for {@link
		 * Layout#property|property}.
		 *
		 * @augments {Layout}
		 */
		class IntBE extends Layout {
		    constructor(span, property) {
		        super(span, property);
		        if (6 < this.span) {
		            throw new RangeError('span must not exceed 6 bytes');
		        }
		    }
		    /** @override */
		    decode(b, offset = 0) {
		        return uint8ArrayToBuffer(b).readIntBE(offset, this.span);
		    }
		    /** @override */
		    encode(src, b, offset = 0) {
		        uint8ArrayToBuffer(b).writeIntBE(src, offset, this.span);
		        return this.span;
		    }
		}
		Layout$1.IntBE = IntBE;
		const V2E32 = Math.pow(2, 32);
		/* True modulus high and low 32-bit words, where low word is always
		 * non-negative. */
		function divmodInt64(src) {
		    const hi32 = Math.floor(src / V2E32);
		    const lo32 = src - (hi32 * V2E32);
		    return { hi32, lo32 };
		}
		/* Reconstruct Number from quotient and non-negative remainder */
		function roundedInt64(hi32, lo32) {
		    return hi32 * V2E32 + lo32;
		}
		/**
		 * Represent an unsigned 64-bit integer in little-endian format when
		 * encoded and as a near integral JavaScript Number when decoded.
		 *
		 * *Factory*: {@link module:Layout.nu64|nu64}
		 *
		 * **NOTE** Values with magnitude greater than 2^52 may not decode to
		 * the exact value of the encoded representation.
		 *
		 * @augments {Layout}
		 */
		class NearUInt64 extends Layout {
		    constructor(property) {
		        super(8, property);
		    }
		    /** @override */
		    decode(b, offset = 0) {
		        const buffer = uint8ArrayToBuffer(b);
		        const lo32 = buffer.readUInt32LE(offset);
		        const hi32 = buffer.readUInt32LE(offset + 4);
		        return roundedInt64(hi32, lo32);
		    }
		    /** @override */
		    encode(src, b, offset = 0) {
		        const split = divmodInt64(src);
		        const buffer = uint8ArrayToBuffer(b);
		        buffer.writeUInt32LE(split.lo32, offset);
		        buffer.writeUInt32LE(split.hi32, offset + 4);
		        return 8;
		    }
		}
		Layout$1.NearUInt64 = NearUInt64;
		/**
		 * Represent an unsigned 64-bit integer in big-endian format when
		 * encoded and as a near integral JavaScript Number when decoded.
		 *
		 * *Factory*: {@link module:Layout.nu64be|nu64be}
		 *
		 * **NOTE** Values with magnitude greater than 2^52 may not decode to
		 * the exact value of the encoded representation.
		 *
		 * @augments {Layout}
		 */
		class NearUInt64BE extends Layout {
		    constructor(property) {
		        super(8, property);
		    }
		    /** @override */
		    decode(b, offset = 0) {
		        const buffer = uint8ArrayToBuffer(b);
		        const hi32 = buffer.readUInt32BE(offset);
		        const lo32 = buffer.readUInt32BE(offset + 4);
		        return roundedInt64(hi32, lo32);
		    }
		    /** @override */
		    encode(src, b, offset = 0) {
		        const split = divmodInt64(src);
		        const buffer = uint8ArrayToBuffer(b);
		        buffer.writeUInt32BE(split.hi32, offset);
		        buffer.writeUInt32BE(split.lo32, offset + 4);
		        return 8;
		    }
		}
		Layout$1.NearUInt64BE = NearUInt64BE;
		/**
		 * Represent a signed 64-bit integer in little-endian format when
		 * encoded and as a near integral JavaScript Number when decoded.
		 *
		 * *Factory*: {@link module:Layout.ns64|ns64}
		 *
		 * **NOTE** Values with magnitude greater than 2^52 may not decode to
		 * the exact value of the encoded representation.
		 *
		 * @augments {Layout}
		 */
		class NearInt64 extends Layout {
		    constructor(property) {
		        super(8, property);
		    }
		    /** @override */
		    decode(b, offset = 0) {
		        const buffer = uint8ArrayToBuffer(b);
		        const lo32 = buffer.readUInt32LE(offset);
		        const hi32 = buffer.readInt32LE(offset + 4);
		        return roundedInt64(hi32, lo32);
		    }
		    /** @override */
		    encode(src, b, offset = 0) {
		        const split = divmodInt64(src);
		        const buffer = uint8ArrayToBuffer(b);
		        buffer.writeUInt32LE(split.lo32, offset);
		        buffer.writeInt32LE(split.hi32, offset + 4);
		        return 8;
		    }
		}
		Layout$1.NearInt64 = NearInt64;
		/**
		 * Represent a signed 64-bit integer in big-endian format when
		 * encoded and as a near integral JavaScript Number when decoded.
		 *
		 * *Factory*: {@link module:Layout.ns64be|ns64be}
		 *
		 * **NOTE** Values with magnitude greater than 2^52 may not decode to
		 * the exact value of the encoded representation.
		 *
		 * @augments {Layout}
		 */
		class NearInt64BE extends Layout {
		    constructor(property) {
		        super(8, property);
		    }
		    /** @override */
		    decode(b, offset = 0) {
		        const buffer = uint8ArrayToBuffer(b);
		        const hi32 = buffer.readInt32BE(offset);
		        const lo32 = buffer.readUInt32BE(offset + 4);
		        return roundedInt64(hi32, lo32);
		    }
		    /** @override */
		    encode(src, b, offset = 0) {
		        const split = divmodInt64(src);
		        const buffer = uint8ArrayToBuffer(b);
		        buffer.writeInt32BE(split.hi32, offset);
		        buffer.writeUInt32BE(split.lo32, offset + 4);
		        return 8;
		    }
		}
		Layout$1.NearInt64BE = NearInt64BE;
		/**
		 * Represent a 32-bit floating point number in little-endian format.
		 *
		 * *Factory*: {@link module:Layout.f32|f32}
		 *
		 * @param {string} [property] - initializer for {@link
		 * Layout#property|property}.
		 *
		 * @augments {Layout}
		 */
		class Float extends Layout {
		    constructor(property) {
		        super(4, property);
		    }
		    /** @override */
		    decode(b, offset = 0) {
		        return uint8ArrayToBuffer(b).readFloatLE(offset);
		    }
		    /** @override */
		    encode(src, b, offset = 0) {
		        uint8ArrayToBuffer(b).writeFloatLE(src, offset);
		        return 4;
		    }
		}
		Layout$1.Float = Float;
		/**
		 * Represent a 32-bit floating point number in big-endian format.
		 *
		 * *Factory*: {@link module:Layout.f32be|f32be}
		 *
		 * @param {string} [property] - initializer for {@link
		 * Layout#property|property}.
		 *
		 * @augments {Layout}
		 */
		class FloatBE extends Layout {
		    constructor(property) {
		        super(4, property);
		    }
		    /** @override */
		    decode(b, offset = 0) {
		        return uint8ArrayToBuffer(b).readFloatBE(offset);
		    }
		    /** @override */
		    encode(src, b, offset = 0) {
		        uint8ArrayToBuffer(b).writeFloatBE(src, offset);
		        return 4;
		    }
		}
		Layout$1.FloatBE = FloatBE;
		/**
		 * Represent a 64-bit floating point number in little-endian format.
		 *
		 * *Factory*: {@link module:Layout.f64|f64}
		 *
		 * @param {string} [property] - initializer for {@link
		 * Layout#property|property}.
		 *
		 * @augments {Layout}
		 */
		class Double extends Layout {
		    constructor(property) {
		        super(8, property);
		    }
		    /** @override */
		    decode(b, offset = 0) {
		        return uint8ArrayToBuffer(b).readDoubleLE(offset);
		    }
		    /** @override */
		    encode(src, b, offset = 0) {
		        uint8ArrayToBuffer(b).writeDoubleLE(src, offset);
		        return 8;
		    }
		}
		Layout$1.Double = Double;
		/**
		 * Represent a 64-bit floating point number in big-endian format.
		 *
		 * *Factory*: {@link module:Layout.f64be|f64be}
		 *
		 * @param {string} [property] - initializer for {@link
		 * Layout#property|property}.
		 *
		 * @augments {Layout}
		 */
		class DoubleBE extends Layout {
		    constructor(property) {
		        super(8, property);
		    }
		    /** @override */
		    decode(b, offset = 0) {
		        return uint8ArrayToBuffer(b).readDoubleBE(offset);
		    }
		    /** @override */
		    encode(src, b, offset = 0) {
		        uint8ArrayToBuffer(b).writeDoubleBE(src, offset);
		        return 8;
		    }
		}
		Layout$1.DoubleBE = DoubleBE;
		/**
		 * Represent a contiguous sequence of a specific layout as an Array.
		 *
		 * *Factory*: {@link module:Layout.seq|seq}
		 *
		 * @param {Layout} elementLayout - initializer for {@link
		 * Sequence#elementLayout|elementLayout}.
		 *
		 * @param {(Number|ExternalLayout)} count - initializer for {@link
		 * Sequence#count|count}.  The parameter must be either a positive
		 * integer or an instance of {@link ExternalLayout}.
		 *
		 * @param {string} [property] - initializer for {@link
		 * Layout#property|property}.
		 *
		 * @augments {Layout}
		 */
		class Sequence extends Layout {
		    constructor(elementLayout, count, property) {
		        if (!(elementLayout instanceof Layout)) {
		            throw new TypeError('elementLayout must be a Layout');
		        }
		        if (!(((count instanceof ExternalLayout) && count.isCount())
		            || (Number.isInteger(count) && (0 <= count)))) {
		            throw new TypeError('count must be non-negative integer '
		                + 'or an unsigned integer ExternalLayout');
		        }
		        let span = -1;
		        if ((!(count instanceof ExternalLayout))
		            && (0 < elementLayout.span)) {
		            span = count * elementLayout.span;
		        }
		        super(span, property);
		        /** The layout for individual elements of the sequence. */
		        this.elementLayout = elementLayout;
		        /** The number of elements in the sequence.
		         *
		         * This will be either a non-negative integer or an instance of
		         * {@link ExternalLayout} for which {@link
		         * ExternalLayout#isCount|isCount()} is `true`. */
		        this.count = count;
		    }
		    /** @override */
		    getSpan(b, offset = 0) {
		        if (0 <= this.span) {
		            return this.span;
		        }
		        let span = 0;
		        let count = this.count;
		        if (count instanceof ExternalLayout) {
		            count = count.decode(b, offset);
		        }
		        if (0 < this.elementLayout.span) {
		            span = count * this.elementLayout.span;
		        }
		        else {
		            let idx = 0;
		            while (idx < count) {
		                span += this.elementLayout.getSpan(b, offset + span);
		                ++idx;
		            }
		        }
		        return span;
		    }
		    /** @override */
		    decode(b, offset = 0) {
		        const rv = [];
		        let i = 0;
		        let count = this.count;
		        if (count instanceof ExternalLayout) {
		            count = count.decode(b, offset);
		        }
		        while (i < count) {
		            rv.push(this.elementLayout.decode(b, offset));
		            offset += this.elementLayout.getSpan(b, offset);
		            i += 1;
		        }
		        return rv;
		    }
		    /** Implement {@link Layout#encode|encode} for {@link Sequence}.
		     *
		     * **NOTE** If `src` is shorter than {@link Sequence#count|count} then
		     * the unused space in the buffer is left unchanged.  If `src` is
		     * longer than {@link Sequence#count|count} the unneeded elements are
		     * ignored.
		     *
		     * **NOTE** If {@link Layout#count|count} is an instance of {@link
		     * ExternalLayout} then the length of `src` will be encoded as the
		     * count after `src` is encoded. */
		    encode(src, b, offset = 0) {
		        const elo = this.elementLayout;
		        const span = src.reduce((span, v) => {
		            return span + elo.encode(v, b, offset + span);
		        }, 0);
		        if (this.count instanceof ExternalLayout) {
		            this.count.encode(src.length, b, offset);
		        }
		        return span;
		    }
		}
		Layout$1.Sequence = Sequence;
		/**
		 * Represent a contiguous sequence of arbitrary layout elements as an
		 * Object.
		 *
		 * *Factory*: {@link module:Layout.struct|struct}
		 *
		 * **NOTE** The {@link Layout#span|span} of the structure is variable
		 * if any layout in {@link Structure#fields|fields} has a variable
		 * span.  When {@link Layout#encode|encoding} we must have a value for
		 * all variable-length fields, or we wouldn't be able to figure out
		 * how much space to use for storage.  We can only identify the value
		 * for a field when it has a {@link Layout#property|property}.  As
		 * such, although a structure may contain both unnamed fields and
		 * variable-length fields, it cannot contain an unnamed
		 * variable-length field.
		 *
		 * @param {Layout[]} fields - initializer for {@link
		 * Structure#fields|fields}.  An error is raised if this contains a
		 * variable-length field for which a {@link Layout#property|property}
		 * is not defined.
		 *
		 * @param {string} [property] - initializer for {@link
		 * Layout#property|property}.
		 *
		 * @param {Boolean} [decodePrefixes] - initializer for {@link
		 * Structure#decodePrefixes|property}.
		 *
		 * @throws {Error} - if `fields` contains an unnamed variable-length
		 * layout.
		 *
		 * @augments {Layout}
		 */
		class Structure extends Layout {
		    constructor(fields, property, decodePrefixes) {
		        if (!(Array.isArray(fields)
		            && fields.reduce((acc, v) => acc && (v instanceof Layout), true))) {
		            throw new TypeError('fields must be array of Layout instances');
		        }
		        if (('boolean' === typeof property)
		            && (undefined === decodePrefixes)) {
		            decodePrefixes = property;
		            property = undefined;
		        }
		        /* Verify absence of unnamed variable-length fields. */
		        for (const fd of fields) {
		            if ((0 > fd.span)
		                && (undefined === fd.property)) {
		                throw new Error('fields cannot contain unnamed variable-length layout');
		            }
		        }
		        let span = -1;
		        try {
		            span = fields.reduce((span, fd) => span + fd.getSpan(), 0);
		        }
		        catch (e) {
		            // ignore error
		        }
		        super(span, property);
		        /** The sequence of {@link Layout} values that comprise the
		         * structure.
		         *
		         * The individual elements need not be the same type, and may be
		         * either scalar or aggregate layouts.  If a member layout leaves
		         * its {@link Layout#property|property} undefined the
		         * corresponding region of the buffer associated with the element
		         * will not be mutated.
		         *
		         * @type {Layout[]} */
		        this.fields = fields;
		        /** Control behavior of {@link Layout#decode|decode()} given short
		         * buffers.
		         *
		         * In some situations a structure many be extended with additional
		         * fields over time, with older installations providing only a
		         * prefix of the full structure.  If this property is `true`
		         * decoding will accept those buffers and leave subsequent fields
		         * undefined, as long as the buffer ends at a field boundary.
		         * Defaults to `false`. */
		        this.decodePrefixes = !!decodePrefixes;
		    }
		    /** @override */
		    getSpan(b, offset = 0) {
		        if (0 <= this.span) {
		            return this.span;
		        }
		        let span = 0;
		        try {
		            span = this.fields.reduce((span, fd) => {
		                const fsp = fd.getSpan(b, offset);
		                offset += fsp;
		                return span + fsp;
		            }, 0);
		        }
		        catch (e) {
		            throw new RangeError('indeterminate span');
		        }
		        return span;
		    }
		    /** @override */
		    decode(b, offset = 0) {
		        checkUint8Array(b);
		        const dest = this.makeDestinationObject();
		        for (const fd of this.fields) {
		            if (undefined !== fd.property) {
		                dest[fd.property] = fd.decode(b, offset);
		            }
		            offset += fd.getSpan(b, offset);
		            if (this.decodePrefixes
		                && (b.length === offset)) {
		                break;
		            }
		        }
		        return dest;
		    }
		    /** Implement {@link Layout#encode|encode} for {@link Structure}.
		     *
		     * If `src` is missing a property for a member with a defined {@link
		     * Layout#property|property} the corresponding region of the buffer is
		     * left unmodified. */
		    encode(src, b, offset = 0) {
		        const firstOffset = offset;
		        let lastOffset = 0;
		        let lastWrote = 0;
		        for (const fd of this.fields) {
		            let span = fd.span;
		            lastWrote = (0 < span) ? span : 0;
		            if (undefined !== fd.property) {
		                const fv = src[fd.property];
		                if (undefined !== fv) {
		                    lastWrote = fd.encode(fv, b, offset);
		                    if (0 > span) {
		                        /* Read the as-encoded span, which is not necessarily the
		                         * same as what we wrote. */
		                        span = fd.getSpan(b, offset);
		                    }
		                }
		            }
		            lastOffset = offset;
		            offset += span;
		        }
		        /* Use (lastOffset + lastWrote) instead of offset because the last
		         * item may have had a dynamic length and we don't want to include
		         * the padding between it and the end of the space reserved for
		         * it. */
		        return (lastOffset + lastWrote) - firstOffset;
		    }
		    /** @override */
		    fromArray(values) {
		        const dest = this.makeDestinationObject();
		        for (const fd of this.fields) {
		            if ((undefined !== fd.property)
		                && (0 < values.length)) {
		                dest[fd.property] = values.shift();
		            }
		        }
		        return dest;
		    }
		    /**
		     * Get access to the layout of a given property.
		     *
		     * @param {String} property - the structure member of interest.
		     *
		     * @return {Layout} - the layout associated with `property`, or
		     * undefined if there is no such property.
		     */
		    layoutFor(property) {
		        if ('string' !== typeof property) {
		            throw new TypeError('property must be string');
		        }
		        for (const fd of this.fields) {
		            if (fd.property === property) {
		                return fd;
		            }
		        }
		        return undefined;
		    }
		    /**
		     * Get the offset of a structure member.
		     *
		     * @param {String} property - the structure member of interest.
		     *
		     * @return {Number} - the offset in bytes to the start of `property`
		     * within the structure, or undefined if `property` is not a field
		     * within the structure.  If the property is a member but follows a
		     * variable-length structure member a negative number will be
		     * returned.
		     */
		    offsetOf(property) {
		        if ('string' !== typeof property) {
		            throw new TypeError('property must be string');
		        }
		        let offset = 0;
		        for (const fd of this.fields) {
		            if (fd.property === property) {
		                return offset;
		            }
		            if (0 > fd.span) {
		                offset = -1;
		            }
		            else if (0 <= offset) {
		                offset += fd.span;
		            }
		        }
		        return undefined;
		    }
		}
		Layout$1.Structure = Structure;
		/**
		 * An object that can provide a {@link
		 * Union#discriminator|discriminator} API for {@link Union}.
		 *
		 * **NOTE** This is an abstract base class; you can create instances
		 * if it amuses you, but they won't support the {@link
		 * UnionDiscriminator#encode|encode} or {@link
		 * UnionDiscriminator#decode|decode} functions.
		 *
		 * @param {string} [property] - Default for {@link
		 * UnionDiscriminator#property|property}.
		 *
		 * @abstract
		 */
		class UnionDiscriminator {
		    constructor(property) {
		        /** The {@link Layout#property|property} to be used when the
		         * discriminator is referenced in isolation (generally when {@link
		         * Union#decode|Union decode} cannot delegate to a specific
		         * variant). */
		        this.property = property;
		    }
		    /** Analog to {@link Layout#decode|Layout decode} for union discriminators.
		     *
		     * The implementation of this method need not reference the buffer if
		     * variant information is available through other means. */
		    decode(b, offset) {
		        throw new Error('UnionDiscriminator is abstract');
		    }
		    /** Analog to {@link Layout#decode|Layout encode} for union discriminators.
		     *
		     * The implementation of this method need not store the value if
		     * variant information is maintained through other means. */
		    encode(src, b, offset) {
		        throw new Error('UnionDiscriminator is abstract');
		    }
		}
		Layout$1.UnionDiscriminator = UnionDiscriminator;
		/**
		 * An object that can provide a {@link
		 * UnionDiscriminator|discriminator API} for {@link Union} using an
		 * unsigned integral {@link Layout} instance located either inside or
		 * outside the union.
		 *
		 * @param {ExternalLayout} layout - initializes {@link
		 * UnionLayoutDiscriminator#layout|layout}.  Must satisfy {@link
		 * ExternalLayout#isCount|isCount()}.
		 *
		 * @param {string} [property] - Default for {@link
		 * UnionDiscriminator#property|property}, superseding the property
		 * from `layout`, but defaulting to `variant` if neither `property`
		 * nor layout provide a property name.
		 *
		 * @augments {UnionDiscriminator}
		 */
		class UnionLayoutDiscriminator extends UnionDiscriminator {
		    constructor(layout, property) {
		        if (!((layout instanceof ExternalLayout)
		            && layout.isCount())) {
		            throw new TypeError('layout must be an unsigned integer ExternalLayout');
		        }
		        super(property || layout.property || 'variant');
		        /** The {@link ExternalLayout} used to access the discriminator
		         * value. */
		        this.layout = layout;
		    }
		    /** Delegate decoding to {@link UnionLayoutDiscriminator#layout|layout}. */
		    decode(b, offset) {
		        return this.layout.decode(b, offset);
		    }
		    /** Delegate encoding to {@link UnionLayoutDiscriminator#layout|layout}. */
		    encode(src, b, offset) {
		        return this.layout.encode(src, b, offset);
		    }
		}
		Layout$1.UnionLayoutDiscriminator = UnionLayoutDiscriminator;
		/**
		 * Represent any number of span-compatible layouts.
		 *
		 * *Factory*: {@link module:Layout.union|union}
		 *
		 * If the union has a {@link Union#defaultLayout|default layout} that
		 * layout must have a non-negative {@link Layout#span|span}.  The span
		 * of a fixed-span union includes its {@link
		 * Union#discriminator|discriminator} if the variant is a {@link
		 * Union#usesPrefixDiscriminator|prefix of the union}, plus the span
		 * of its {@link Union#defaultLayout|default layout}.
		 *
		 * If the union does not have a default layout then the encoded span
		 * of the union depends on the encoded span of its variant (which may
		 * be fixed or variable).
		 *
		 * {@link VariantLayout#layout|Variant layout}s are added through
		 * {@link Union#addVariant|addVariant}.  If the union has a default
		 * layout, the span of the {@link VariantLayout#layout|layout
		 * contained by the variant} must not exceed the span of the {@link
		 * Union#defaultLayout|default layout} (minus the span of a {@link
		 * Union#usesPrefixDiscriminator|prefix disriminator}, if used).  The
		 * span of the variant will equal the span of the union itself.
		 *
		 * The variant for a buffer can only be identified from the {@link
		 * Union#discriminator|discriminator} {@link
		 * UnionDiscriminator#property|property} (in the case of the {@link
		 * Union#defaultLayout|default layout}), or by using {@link
		 * Union#getVariant|getVariant} and examining the resulting {@link
		 * VariantLayout} instance.
		 *
		 * A variant compatible with a JavaScript object can be identified
		 * using {@link Union#getSourceVariant|getSourceVariant}.
		 *
		 * @param {(UnionDiscriminator|ExternalLayout|Layout)} discr - How to
		 * identify the layout used to interpret the union contents.  The
		 * parameter must be an instance of {@link UnionDiscriminator}, an
		 * {@link ExternalLayout} that satisfies {@link
		 * ExternalLayout#isCount|isCount()}, or {@link UInt} (or {@link
		 * UIntBE}).  When a non-external layout element is passed the layout
		 * appears at the start of the union.  In all cases the (synthesized)
		 * {@link UnionDiscriminator} instance is recorded as {@link
		 * Union#discriminator|discriminator}.
		 *
		 * @param {(Layout|null)} defaultLayout - initializer for {@link
		 * Union#defaultLayout|defaultLayout}.  If absent defaults to `null`.
		 * If `null` there is no default layout: the union has data-dependent
		 * length and attempts to decode or encode unrecognized variants will
		 * throw an exception.  A {@link Layout} instance must have a
		 * non-negative {@link Layout#span|span}, and if it lacks a {@link
		 * Layout#property|property} the {@link
		 * Union#defaultLayout|defaultLayout} will be a {@link
		 * Layout#replicate|replica} with property `content`.
		 *
		 * @param {string} [property] - initializer for {@link
		 * Layout#property|property}.
		 *
		 * @augments {Layout}
		 */
		class Union extends Layout {
		    constructor(discr, defaultLayout, property) {
		        let discriminator;
		        if ((discr instanceof UInt)
		            || (discr instanceof UIntBE)) {
		            discriminator = new UnionLayoutDiscriminator(new OffsetLayout(discr));
		        }
		        else if ((discr instanceof ExternalLayout)
		            && discr.isCount()) {
		            discriminator = new UnionLayoutDiscriminator(discr);
		        }
		        else if (!(discr instanceof UnionDiscriminator)) {
		            throw new TypeError('discr must be a UnionDiscriminator '
		                + 'or an unsigned integer layout');
		        }
		        else {
		            discriminator = discr;
		        }
		        if (undefined === defaultLayout) {
		            defaultLayout = null;
		        }
		        if (!((null === defaultLayout)
		            || (defaultLayout instanceof Layout))) {
		            throw new TypeError('defaultLayout must be null or a Layout');
		        }
		        if (null !== defaultLayout) {
		            if (0 > defaultLayout.span) {
		                throw new Error('defaultLayout must have constant span');
		            }
		            if (undefined === defaultLayout.property) {
		                defaultLayout = defaultLayout.replicate('content');
		            }
		        }
		        /* The union span can be estimated only if there's a default
		         * layout.  The union spans its default layout, plus any prefix
		         * variant layout.  By construction both layouts, if present, have
		         * non-negative span. */
		        let span = -1;
		        if (defaultLayout) {
		            span = defaultLayout.span;
		            if ((0 <= span) && ((discr instanceof UInt)
		                || (discr instanceof UIntBE))) {
		                span += discriminator.layout.span;
		            }
		        }
		        super(span, property);
		        /** The interface for the discriminator value in isolation.
		         *
		         * This a {@link UnionDiscriminator} either passed to the
		         * constructor or synthesized from the `discr` constructor
		         * argument.  {@link
		         * Union#usesPrefixDiscriminator|usesPrefixDiscriminator} will be
		         * `true` iff the `discr` parameter was a non-offset {@link
		         * Layout} instance. */
		        this.discriminator = discriminator;
		        /** `true` if the {@link Union#discriminator|discriminator} is the
		         * first field in the union.
		         *
		         * If `false` the discriminator is obtained from somewhere
		         * else. */
		        this.usesPrefixDiscriminator = (discr instanceof UInt)
		            || (discr instanceof UIntBE);
		        /** The layout for non-discriminator content when the value of the
		         * discriminator is not recognized.
		         *
		         * This is the value passed to the constructor.  It is
		         * structurally equivalent to the second component of {@link
		         * Union#layout|layout} but may have a different property
		         * name. */
		        this.defaultLayout = defaultLayout;
		        /** A registry of allowed variants.
		         *
		         * The keys are unsigned integers which should be compatible with
		         * {@link Union.discriminator|discriminator}.  The property value
		         * is the corresponding {@link VariantLayout} instances assigned
		         * to this union by {@link Union#addVariant|addVariant}.
		         *
		         * **NOTE** The registry remains mutable so that variants can be
		         * {@link Union#addVariant|added} at any time.  Users should not
		         * manipulate the content of this property. */
		        this.registry = {};
		        /* Private variable used when invoking getSourceVariant */
		        let boundGetSourceVariant = this.defaultGetSourceVariant.bind(this);
		        /** Function to infer the variant selected by a source object.
		         *
		         * Defaults to {@link
		         * Union#defaultGetSourceVariant|defaultGetSourceVariant} but may
		         * be overridden using {@link
		         * Union#configGetSourceVariant|configGetSourceVariant}.
		         *
		         * @param {Object} src - as with {@link
		         * Union#defaultGetSourceVariant|defaultGetSourceVariant}.
		         *
		         * @returns {(undefined|VariantLayout)} The default variant
		         * (`undefined`) or first registered variant that uses a property
		         * available in `src`. */
		        this.getSourceVariant = function (src) {
		            return boundGetSourceVariant(src);
		        };
		        /** Function to override the implementation of {@link
		         * Union#getSourceVariant|getSourceVariant}.
		         *
		         * Use this if the desired variant cannot be identified using the
		         * algorithm of {@link
		         * Union#defaultGetSourceVariant|defaultGetSourceVariant}.
		         *
		         * **NOTE** The provided function will be invoked bound to this
		         * Union instance, providing local access to {@link
		         * Union#registry|registry}.
		         *
		         * @param {Function} gsv - a function that follows the API of
		         * {@link Union#defaultGetSourceVariant|defaultGetSourceVariant}. */
		        this.configGetSourceVariant = function (gsv) {
		            boundGetSourceVariant = gsv.bind(this);
		        };
		    }
		    /** @override */
		    getSpan(b, offset = 0) {
		        if (0 <= this.span) {
		            return this.span;
		        }
		        /* Default layouts always have non-negative span, so we don't have
		         * one and we have to recognize the variant which will in turn
		         * determine the span. */
		        const vlo = this.getVariant(b, offset);
		        if (!vlo) {
		            throw new Error('unable to determine span for unrecognized variant');
		        }
		        return vlo.getSpan(b, offset);
		    }
		    /**
		     * Method to infer a registered Union variant compatible with `src`.
		     *
		     * The first satisfied rule in the following sequence defines the
		     * return value:
		     * * If `src` has properties matching the Union discriminator and
		     *   the default layout, `undefined` is returned regardless of the
		     *   value of the discriminator property (this ensures the default
		     *   layout will be used);
		     * * If `src` has a property matching the Union discriminator, the
		     *   value of the discriminator identifies a registered variant, and
		     *   either (a) the variant has no layout, or (b) `src` has the
		     *   variant's property, then the variant is returned (because the
		     *   source satisfies the constraints of the variant it identifies);
		     * * If `src` does not have a property matching the Union
		     *   discriminator, but does have a property matching a registered
		     *   variant, then the variant is returned (because the source
		     *   matches a variant without an explicit conflict);
		     * * An error is thrown (because we either can't identify a variant,
		     *   or we were explicitly told the variant but can't satisfy it).
		     *
		     * @param {Object} src - an object presumed to be compatible with
		     * the content of the Union.
		     *
		     * @return {(undefined|VariantLayout)} - as described above.
		     *
		     * @throws {Error} - if `src` cannot be associated with a default or
		     * registered variant.
		     */
		    defaultGetSourceVariant(src) {
		        if (Object.prototype.hasOwnProperty.call(src, this.discriminator.property)) {
		            if (this.defaultLayout && this.defaultLayout.property
		                && Object.prototype.hasOwnProperty.call(src, this.defaultLayout.property)) {
		                return undefined;
		            }
		            const vlo = this.registry[src[this.discriminator.property]];
		            if (vlo
		                && ((!vlo.layout)
		                    || (vlo.property && Object.prototype.hasOwnProperty.call(src, vlo.property)))) {
		                return vlo;
		            }
		        }
		        else {
		            for (const tag in this.registry) {
		                const vlo = this.registry[tag];
		                if (vlo.property && Object.prototype.hasOwnProperty.call(src, vlo.property)) {
		                    return vlo;
		                }
		            }
		        }
		        throw new Error('unable to infer src variant');
		    }
		    /** Implement {@link Layout#decode|decode} for {@link Union}.
		     *
		     * If the variant is {@link Union#addVariant|registered} the return
		     * value is an instance of that variant, with no explicit
		     * discriminator.  Otherwise the {@link Union#defaultLayout|default
		     * layout} is used to decode the content. */
		    decode(b, offset = 0) {
		        let dest;
		        const dlo = this.discriminator;
		        const discr = dlo.decode(b, offset);
		        const clo = this.registry[discr];
		        if (undefined === clo) {
		            const defaultLayout = this.defaultLayout;
		            let contentOffset = 0;
		            if (this.usesPrefixDiscriminator) {
		                contentOffset = dlo.layout.span;
		            }
		            dest = this.makeDestinationObject();
		            dest[dlo.property] = discr;
		            // defaultLayout.property can be undefined, but this is allowed by buffer-layout
		            // eslint-disable-next-line @typescript-eslint/no-non-null-assertion
		            dest[defaultLayout.property] = defaultLayout.decode(b, offset + contentOffset);
		        }
		        else {
		            dest = clo.decode(b, offset);
		        }
		        return dest;
		    }
		    /** Implement {@link Layout#encode|encode} for {@link Union}.
		     *
		     * This API assumes the `src` object is consistent with the union's
		     * {@link Union#defaultLayout|default layout}.  To encode variants
		     * use the appropriate variant-specific {@link VariantLayout#encode}
		     * method. */
		    encode(src, b, offset = 0) {
		        const vlo = this.getSourceVariant(src);
		        if (undefined === vlo) {
		            const dlo = this.discriminator;
		            // this.defaultLayout is not undefined when vlo is undefined
		            // eslint-disable-next-line @typescript-eslint/no-non-null-assertion
		            const clo = this.defaultLayout;
		            let contentOffset = 0;
		            if (this.usesPrefixDiscriminator) {
		                contentOffset = dlo.layout.span;
		            }
		            dlo.encode(src[dlo.property], b, offset);
		            // clo.property is not undefined when vlo is undefined
		            // eslint-disable-next-line @typescript-eslint/no-non-null-assertion
		            return contentOffset + clo.encode(src[clo.property], b, offset + contentOffset);
		        }
		        return vlo.encode(src, b, offset);
		    }
		    /** Register a new variant structure within a union.  The newly
		     * created variant is returned.
		     *
		     * @param {Number} variant - initializer for {@link
		     * VariantLayout#variant|variant}.
		     *
		     * @param {Layout} layout - initializer for {@link
		     * VariantLayout#layout|layout}.
		     *
		     * @param {String} property - initializer for {@link
		     * Layout#property|property}.
		     *
		     * @return {VariantLayout} */
		    addVariant(variant, layout, property) {
		        const rv = new VariantLayout(this, variant, layout, property);
		        this.registry[variant] = rv;
		        return rv;
		    }
		    /**
		     * Get the layout associated with a registered variant.
		     *
		     * If `vb` does not produce a registered variant the function returns
		     * `undefined`.
		     *
		     * @param {(Number|Uint8Array)} vb - either the variant number, or a
		     * buffer from which the discriminator is to be read.
		     *
		     * @param {Number} offset - offset into `vb` for the start of the
		     * union.  Used only when `vb` is an instance of {Uint8Array}.
		     *
		     * @return {({VariantLayout}|undefined)}
		     */
		    getVariant(vb, offset = 0) {
		        let variant;
		        if (vb instanceof Uint8Array) {
		            variant = this.discriminator.decode(vb, offset);
		        }
		        else {
		            variant = vb;
		        }
		        return this.registry[variant];
		    }
		}
		Layout$1.Union = Union;
		/**
		 * Represent a specific variant within a containing union.
		 *
		 * **NOTE** The {@link Layout#span|span} of the variant may include
		 * the span of the {@link Union#discriminator|discriminator} used to
		 * identify it, but values read and written using the variant strictly
		 * conform to the content of {@link VariantLayout#layout|layout}.
		 *
		 * **NOTE** User code should not invoke this constructor directly.  Use
		 * the union {@link Union#addVariant|addVariant} helper method.
		 *
		 * @param {Union} union - initializer for {@link
		 * VariantLayout#union|union}.
		 *
		 * @param {Number} variant - initializer for {@link
		 * VariantLayout#variant|variant}.
		 *
		 * @param {Layout} [layout] - initializer for {@link
		 * VariantLayout#layout|layout}.  If absent the variant carries no
		 * data.
		 *
		 * @param {String} [property] - initializer for {@link
		 * Layout#property|property}.  Unlike many other layouts, variant
		 * layouts normally include a property name so they can be identified
		 * within their containing {@link Union}.  The property identifier may
		 * be absent only if `layout` is is absent.
		 *
		 * @augments {Layout}
		 */
		class VariantLayout extends Layout {
		    constructor(union, variant, layout, property) {
		        if (!(union instanceof Union)) {
		            throw new TypeError('union must be a Union');
		        }
		        if ((!Number.isInteger(variant)) || (0 > variant)) {
		            throw new TypeError('variant must be a (non-negative) integer');
		        }
		        if (('string' === typeof layout)
		            && (undefined === property)) {
		            property = layout;
		            layout = null;
		        }
		        if (layout) {
		            if (!(layout instanceof Layout)) {
		                throw new TypeError('layout must be a Layout');
		            }
		            if ((null !== union.defaultLayout)
		                && (0 <= layout.span)
		                && (layout.span > union.defaultLayout.span)) {
		                throw new Error('variant span exceeds span of containing union');
		            }
		            if ('string' !== typeof property) {
		                throw new TypeError('variant must have a String property');
		            }
		        }
		        let span = union.span;
		        if (0 > union.span) {
		            span = layout ? layout.span : 0;
		            if ((0 <= span) && union.usesPrefixDiscriminator) {
		                span += union.discriminator.layout.span;
		            }
		        }
		        super(span, property);
		        /** The {@link Union} to which this variant belongs. */
		        this.union = union;
		        /** The unsigned integral value identifying this variant within
		         * the {@link Union#discriminator|discriminator} of the containing
		         * union. */
		        this.variant = variant;
		        /** The {@link Layout} to be used when reading/writing the
		         * non-discriminator part of the {@link
		         * VariantLayout#union|union}.  If `null` the variant carries no
		         * data. */
		        this.layout = layout || null;
		    }
		    /** @override */
		    getSpan(b, offset = 0) {
		        if (0 <= this.span) {
		            /* Will be equal to the containing union span if that is not
		             * variable. */
		            return this.span;
		        }
		        let contentOffset = 0;
		        if (this.union.usesPrefixDiscriminator) {
		            contentOffset = this.union.discriminator.layout.span;
		        }
		        /* Span is defined solely by the variant (and prefix discriminator) */
		        let span = 0;
		        if (this.layout) {
		            span = this.layout.getSpan(b, offset + contentOffset);
		        }
		        return contentOffset + span;
		    }
		    /** @override */
		    decode(b, offset = 0) {
		        const dest = this.makeDestinationObject();
		        if (this !== this.union.getVariant(b, offset)) {
		            throw new Error('variant mismatch');
		        }
		        let contentOffset = 0;
		        if (this.union.usesPrefixDiscriminator) {
		            contentOffset = this.union.discriminator.layout.span;
		        }
		        if (this.layout) {
		            dest[this.property] = this.layout.decode(b, offset + contentOffset);
		        }
		        else if (this.property) {
		            dest[this.property] = true;
		        }
		        else if (this.union.usesPrefixDiscriminator) {
		            dest[this.union.discriminator.property] = this.variant;
		        }
		        return dest;
		    }
		    /** @override */
		    encode(src, b, offset = 0) {
		        let contentOffset = 0;
		        if (this.union.usesPrefixDiscriminator) {
		            contentOffset = this.union.discriminator.layout.span;
		        }
		        if (this.layout
		            && (!Object.prototype.hasOwnProperty.call(src, this.property))) {
		            throw new TypeError('variant lacks property ' + this.property);
		        }
		        this.union.discriminator.encode(this.variant, b, offset);
		        let span = contentOffset;
		        if (this.layout) {
		            this.layout.encode(src[this.property], b, offset + contentOffset);
		            span += this.layout.getSpan(b, offset + contentOffset);
		            if ((0 <= this.union.span)
		                && (span > this.union.span)) {
		                throw new Error('encoded variant overruns containing union');
		            }
		        }
		        return span;
		    }
		    /** Delegate {@link Layout#fromArray|fromArray} to {@link
		     * VariantLayout#layout|layout}. */
		    fromArray(values) {
		        if (this.layout) {
		            return this.layout.fromArray(values);
		        }
		        return undefined;
		    }
		}
		Layout$1.VariantLayout = VariantLayout;
		/** JavaScript chose to define bitwise operations as operating on
		 * signed 32-bit values in 2's complement form, meaning any integer
		 * with bit 31 set is going to look negative.  For right shifts that's
		 * not a problem, because `>>>` is a logical shift, but for every
		 * other bitwise operator we have to compensate for possible negative
		 * results. */
		function fixBitwiseResult(v) {
		    if (0 > v) {
		        v += 0x100000000;
		    }
		    return v;
		}
		/**
		 * Contain a sequence of bit fields as an unsigned integer.
		 *
		 * *Factory*: {@link module:Layout.bits|bits}
		 *
		 * This is a container element; within it there are {@link BitField}
		 * instances that provide the extracted properties.  The container
		 * simply defines the aggregate representation and its bit ordering.
		 * The representation is an object containing properties with numeric
		 * or {@link Boolean} values.
		 *
		 * {@link BitField}s are added with the {@link
		 * BitStructure#addField|addField} and {@link
		 * BitStructure#addBoolean|addBoolean} methods.

		 * @param {Layout} word - initializer for {@link
		 * BitStructure#word|word}.  The parameter must be an instance of
		 * {@link UInt} (or {@link UIntBE}) that is no more than 4 bytes wide.
		 *
		 * @param {bool} [msb] - `true` if the bit numbering starts at the
		 * most significant bit of the containing word; `false` (default) if
		 * it starts at the least significant bit of the containing word.  If
		 * the parameter at this position is a string and `property` is
		 * `undefined` the value of this argument will instead be used as the
		 * value of `property`.
		 *
		 * @param {string} [property] - initializer for {@link
		 * Layout#property|property}.
		 *
		 * @augments {Layout}
		 */
		class BitStructure extends Layout {
		    constructor(word, msb, property) {
		        if (!((word instanceof UInt)
		            || (word instanceof UIntBE))) {
		            throw new TypeError('word must be a UInt or UIntBE layout');
		        }
		        if (('string' === typeof msb)
		            && (undefined === property)) {
		            property = msb;
		            msb = false;
		        }
		        if (4 < word.span) {
		            throw new RangeError('word cannot exceed 32 bits');
		        }
		        super(word.span, property);
		        /** The layout used for the packed value.  {@link BitField}
		         * instances are packed sequentially depending on {@link
		         * BitStructure#msb|msb}. */
		        this.word = word;
		        /** Whether the bit sequences are packed starting at the most
		         * significant bit growing down (`true`), or the least significant
		         * bit growing up (`false`).
		         *
		         * **NOTE** Regardless of this value, the least significant bit of
		         * any {@link BitField} value is the least significant bit of the
		         * corresponding section of the packed value. */
		        this.msb = !!msb;
		        /** The sequence of {@link BitField} layouts that comprise the
		         * packed structure.
		         *
		         * **NOTE** The array remains mutable to allow fields to be {@link
		         * BitStructure#addField|added} after construction.  Users should
		         * not manipulate the content of this property.*/
		        this.fields = [];
		        /* Storage for the value.  Capture a variable instead of using an
		         * instance property because we don't want anything to change the
		         * value without going through the mutator. */
		        let value = 0;
		        this._packedSetValue = function (v) {
		            value = fixBitwiseResult(v);
		            return this;
		        };
		        this._packedGetValue = function () {
		            return value;
		        };
		    }
		    /** @override */
		    decode(b, offset = 0) {
		        const dest = this.makeDestinationObject();
		        const value = this.word.decode(b, offset);
		        this._packedSetValue(value);
		        for (const fd of this.fields) {
		            if (undefined !== fd.property) {
		                dest[fd.property] = fd.decode(b);
		            }
		        }
		        return dest;
		    }
		    /** Implement {@link Layout#encode|encode} for {@link BitStructure}.
		     *
		     * If `src` is missing a property for a member with a defined {@link
		     * Layout#property|property} the corresponding region of the packed
		     * value is left unmodified.  Unused bits are also left unmodified. */
		    encode(src, b, offset = 0) {
		        const value = this.word.decode(b, offset);
		        this._packedSetValue(value);
		        for (const fd of this.fields) {
		            if (undefined !== fd.property) {
		                const fv = src[fd.property];
		                if (undefined !== fv) {
		                    fd.encode(fv);
		                }
		            }
		        }
		        return this.word.encode(this._packedGetValue(), b, offset);
		    }
		    /** Register a new bitfield with a containing bit structure.  The
		     * resulting bitfield is returned.
		     *
		     * @param {Number} bits - initializer for {@link BitField#bits|bits}.
		     *
		     * @param {string} property - initializer for {@link
		     * Layout#property|property}.
		     *
		     * @return {BitField} */
		    addField(bits, property) {
		        const bf = new BitField(this, bits, property);
		        this.fields.push(bf);
		        return bf;
		    }
		    /** As with {@link BitStructure#addField|addField} for single-bit
		     * fields with `boolean` value representation.
		     *
		     * @param {string} property - initializer for {@link
		     * Layout#property|property}.
		     *
		     * @return {Boolean} */
		    // `Boolean` conflicts with the native primitive type
		    // eslint-disable-next-line @typescript-eslint/ban-types
		    addBoolean(property) {
		        // This is my Boolean, not the Javascript one.
		        const bf = new Boolean(this, property);
		        this.fields.push(bf);
		        return bf;
		    }
		    /**
		     * Get access to the bit field for a given property.
		     *
		     * @param {String} property - the bit field of interest.
		     *
		     * @return {BitField} - the field associated with `property`, or
		     * undefined if there is no such property.
		     */
		    fieldFor(property) {
		        if ('string' !== typeof property) {
		            throw new TypeError('property must be string');
		        }
		        for (const fd of this.fields) {
		            if (fd.property === property) {
		                return fd;
		            }
		        }
		        return undefined;
		    }
		}
		Layout$1.BitStructure = BitStructure;
		/**
		 * Represent a sequence of bits within a {@link BitStructure}.
		 *
		 * All bit field values are represented as unsigned integers.
		 *
		 * **NOTE** User code should not invoke this constructor directly.
		 * Use the container {@link BitStructure#addField|addField} helper
		 * method.
		 *
		 * **NOTE** BitField instances are not instances of {@link Layout}
		 * since {@link Layout#span|span} measures 8-bit units.
		 *
		 * @param {BitStructure} container - initializer for {@link
		 * BitField#container|container}.
		 *
		 * @param {Number} bits - initializer for {@link BitField#bits|bits}.
		 *
		 * @param {string} [property] - initializer for {@link
		 * Layout#property|property}.
		 */
		class BitField {
		    constructor(container, bits, property) {
		        if (!(container instanceof BitStructure)) {
		            throw new TypeError('container must be a BitStructure');
		        }
		        if ((!Number.isInteger(bits)) || (0 >= bits)) {
		            throw new TypeError('bits must be positive integer');
		        }
		        const totalBits = 8 * container.span;
		        const usedBits = container.fields.reduce((sum, fd) => sum + fd.bits, 0);
		        if ((bits + usedBits) > totalBits) {
		            throw new Error('bits too long for span remainder ('
		                + (totalBits - usedBits) + ' of '
		                + totalBits + ' remain)');
		        }
		        /** The {@link BitStructure} instance to which this bit field
		         * belongs. */
		        this.container = container;
		        /** The span of this value in bits. */
		        this.bits = bits;
		        /** A mask of {@link BitField#bits|bits} bits isolating value bits
		         * that fit within the field.
		         *
		         * That is, it masks a value that has not yet been shifted into
		         * position within its containing packed integer. */
		        this.valueMask = (1 << bits) - 1;
		        if (32 === bits) { // shifted value out of range
		            this.valueMask = 0xFFFFFFFF;
		        }
		        /** The offset of the value within the containing packed unsigned
		         * integer.  The least significant bit of the packed value is at
		         * offset zero, regardless of bit ordering used. */
		        this.start = usedBits;
		        if (this.container.msb) {
		            this.start = totalBits - usedBits - bits;
		        }
		        /** A mask of {@link BitField#bits|bits} isolating the field value
		         * within the containing packed unsigned integer. */
		        this.wordMask = fixBitwiseResult(this.valueMask << this.start);
		        /** The property name used when this bitfield is represented in an
		         * Object.
		         *
		         * Intended to be functionally equivalent to {@link
		         * Layout#property}.
		         *
		         * If left undefined the corresponding span of bits will be
		         * treated as padding: it will not be mutated by {@link
		         * Layout#encode|encode} nor represented as a property in the
		         * decoded Object. */
		        this.property = property;
		    }
		    /** Store a value into the corresponding subsequence of the containing
		     * bit field. */
		    decode(b, offset) {
		        const word = this.container._packedGetValue();
		        const wordValue = fixBitwiseResult(word & this.wordMask);
		        const value = wordValue >>> this.start;
		        return value;
		    }
		    /** Store a value into the corresponding subsequence of the containing
		     * bit field.
		     *
		     * **NOTE** This is not a specialization of {@link
		     * Layout#encode|Layout.encode} and there is no return value. */
		    encode(value) {
		        if ('number' !== typeof value
		            || !Number.isInteger(value)
		            || (value !== fixBitwiseResult(value & this.valueMask))) {
		            throw new TypeError(nameWithProperty('BitField.encode', this)
		                + ' value must be integer not exceeding ' + this.valueMask);
		        }
		        const word = this.container._packedGetValue();
		        const wordValue = fixBitwiseResult(value << this.start);
		        this.container._packedSetValue(fixBitwiseResult(word & ~this.wordMask)
		            | wordValue);
		    }
		}
		Layout$1.BitField = BitField;
		/**
		 * Represent a single bit within a {@link BitStructure} as a
		 * JavaScript boolean.
		 *
		 * **NOTE** User code should not invoke this constructor directly.
		 * Use the container {@link BitStructure#addBoolean|addBoolean} helper
		 * method.
		 *
		 * @param {BitStructure} container - initializer for {@link
		 * BitField#container|container}.
		 *
		 * @param {string} [property] - initializer for {@link
		 * Layout#property|property}.
		 *
		 * @augments {BitField}
		 */
		/* eslint-disable no-extend-native */
		class Boolean extends BitField {
		    constructor(container, property) {
		        super(container, 1, property);
		    }
		    /** Override {@link BitField#decode|decode} for {@link Boolean|Boolean}.
		     *
		     * @returns {boolean} */
		    decode(b, offset) {
		        return !!super.decode(b, offset);
		    }
		    /** @override */
		    encode(value) {
		        if ('boolean' === typeof value) {
		            // BitField requires integer values
		            value = +value;
		        }
		        super.encode(value);
		    }
		}
		Layout$1.Boolean = Boolean;
		/* eslint-enable no-extend-native */
		/**
		 * Contain a fixed-length block of arbitrary data, represented as a
		 * Uint8Array.
		 *
		 * *Factory*: {@link module:Layout.blob|blob}
		 *
		 * @param {(Number|ExternalLayout)} length - initializes {@link
		 * Blob#length|length}.
		 *
		 * @param {String} [property] - initializer for {@link
		 * Layout#property|property}.
		 *
		 * @augments {Layout}
		 */
		class Blob extends Layout {
		    constructor(length, property) {
		        if (!(((length instanceof ExternalLayout) && length.isCount())
		            || (Number.isInteger(length) && (0 <= length)))) {
		            throw new TypeError('length must be positive integer '
		                + 'or an unsigned integer ExternalLayout');
		        }
		        let span = -1;
		        if (!(length instanceof ExternalLayout)) {
		            span = length;
		        }
		        super(span, property);
		        /** The number of bytes in the blob.
		         *
		         * This may be a non-negative integer, or an instance of {@link
		         * ExternalLayout} that satisfies {@link
		         * ExternalLayout#isCount|isCount()}. */
		        this.length = length;
		    }
		    /** @override */
		    getSpan(b, offset) {
		        let span = this.span;
		        if (0 > span) {
		            span = this.length.decode(b, offset);
		        }
		        return span;
		    }
		    /** @override */
		    decode(b, offset = 0) {
		        let span = this.span;
		        if (0 > span) {
		            span = this.length.decode(b, offset);
		        }
		        return uint8ArrayToBuffer(b).slice(offset, offset + span);
		    }
		    /** Implement {@link Layout#encode|encode} for {@link Blob}.
		     *
		     * **NOTE** If {@link Layout#count|count} is an instance of {@link
		     * ExternalLayout} then the length of `src` will be encoded as the
		     * count after `src` is encoded. */
		    encode(src, b, offset) {
		        let span = this.length;
		        if (this.length instanceof ExternalLayout) {
		            span = src.length;
		        }
		        if (!(src instanceof Uint8Array && span === src.length)) {
		            throw new TypeError(nameWithProperty('Blob.encode', this)
		                + ' requires (length ' + span + ') Uint8Array as src');
		        }
		        if ((offset + span) > b.length) {
		            throw new RangeError('encoding overruns Uint8Array');
		        }
		        const srcBuffer = uint8ArrayToBuffer(src);
		        uint8ArrayToBuffer(b).write(srcBuffer.toString('hex'), offset, span, 'hex');
		        if (this.length instanceof ExternalLayout) {
		            this.length.encode(span, b, offset);
		        }
		        return span;
		    }
		}
		Layout$1.Blob = Blob;
		/**
		 * Contain a `NUL`-terminated UTF8 string.
		 *
		 * *Factory*: {@link module:Layout.cstr|cstr}
		 *
		 * **NOTE** Any UTF8 string that incorporates a zero-valued byte will
		 * not be correctly decoded by this layout.
		 *
		 * @param {String} [property] - initializer for {@link
		 * Layout#property|property}.
		 *
		 * @augments {Layout}
		 */
		class CString extends Layout {
		    constructor(property) {
		        super(-1, property);
		    }
		    /** @override */
		    getSpan(b, offset = 0) {
		        checkUint8Array(b);
		        let idx = offset;
		        while ((idx < b.length) && (0 !== b[idx])) {
		            idx += 1;
		        }
		        return 1 + idx - offset;
		    }
		    /** @override */
		    decode(b, offset = 0) {
		        const span = this.getSpan(b, offset);
		        return uint8ArrayToBuffer(b).slice(offset, offset + span - 1).toString('utf-8');
		    }
		    /** @override */
		    encode(src, b, offset = 0) {
		        /* Must force this to a string, lest it be a number and the
		         * "utf8-encoding" below actually allocate a buffer of length
		         * src */
		        if ('string' !== typeof src) {
		            src = String(src);
		        }
		        const srcb = buffer_1.Buffer.from(src, 'utf8');
		        const span = srcb.length;
		        if ((offset + span) > b.length) {
		            throw new RangeError('encoding overruns Buffer');
		        }
		        const buffer = uint8ArrayToBuffer(b);
		        srcb.copy(buffer, offset);
		        buffer[offset + span] = 0;
		        return span + 1;
		    }
		}
		Layout$1.CString = CString;
		/**
		 * Contain a UTF8 string with implicit length.
		 *
		 * *Factory*: {@link module:Layout.utf8|utf8}
		 *
		 * **NOTE** Because the length is implicit in the size of the buffer
		 * this layout should be used only in isolation, or in a situation
		 * where the length can be expressed by operating on a slice of the
		 * containing buffer.
		 *
		 * @param {Number} [maxSpan] - the maximum length allowed for encoded
		 * string content.  If not provided there is no bound on the allowed
		 * content.
		 *
		 * @param {String} [property] - initializer for {@link
		 * Layout#property|property}.
		 *
		 * @augments {Layout}
		 */
		class UTF8 extends Layout {
		    constructor(maxSpan, property) {
		        if (('string' === typeof maxSpan) && (undefined === property)) {
		            property = maxSpan;
		            maxSpan = undefined;
		        }
		        if (undefined === maxSpan) {
		            maxSpan = -1;
		        }
		        else if (!Number.isInteger(maxSpan)) {
		            throw new TypeError('maxSpan must be an integer');
		        }
		        super(-1, property);
		        /** The maximum span of the layout in bytes.
		         *
		         * Positive values are generally expected.  Zero is abnormal.
		         * Attempts to encode or decode a value that exceeds this length
		         * will throw a `RangeError`.
		         *
		         * A negative value indicates that there is no bound on the length
		         * of the content. */
		        this.maxSpan = maxSpan;
		    }
		    /** @override */
		    getSpan(b, offset = 0) {
		        checkUint8Array(b);
		        return b.length - offset;
		    }
		    /** @override */
		    decode(b, offset = 0) {
		        const span = this.getSpan(b, offset);
		        if ((0 <= this.maxSpan)
		            && (this.maxSpan < span)) {
		            throw new RangeError('text length exceeds maxSpan');
		        }
		        return uint8ArrayToBuffer(b).slice(offset, offset + span).toString('utf-8');
		    }
		    /** @override */
		    encode(src, b, offset = 0) {
		        /* Must force this to a string, lest it be a number and the
		         * "utf8-encoding" below actually allocate a buffer of length
		         * src */
		        if ('string' !== typeof src) {
		            src = String(src);
		        }
		        const srcb = buffer_1.Buffer.from(src, 'utf8');
		        const span = srcb.length;
		        if ((0 <= this.maxSpan)
		            && (this.maxSpan < span)) {
		            throw new RangeError('text length exceeds maxSpan');
		        }
		        if ((offset + span) > b.length) {
		            throw new RangeError('encoding overruns Buffer');
		        }
		        srcb.copy(uint8ArrayToBuffer(b), offset);
		        return span;
		    }
		}
		Layout$1.UTF8 = UTF8;
		/**
		 * Contain a constant value.
		 *
		 * This layout may be used in cases where a JavaScript value can be
		 * inferred without an expression in the binary encoding.  An example
		 * would be a {@link VariantLayout|variant layout} where the content
		 * is implied by the union {@link Union#discriminator|discriminator}.
		 *
		 * @param {Object|Number|String} value - initializer for {@link
		 * Constant#value|value}.  If the value is an object (or array) and
		 * the application intends the object to remain unchanged regardless
		 * of what is done to values decoded by this layout, the value should
		 * be frozen prior passing it to this constructor.
		 *
		 * @param {String} [property] - initializer for {@link
		 * Layout#property|property}.
		 *
		 * @augments {Layout}
		 */
		class Constant extends Layout {
		    constructor(value, property) {
		        super(0, property);
		        /** The value produced by this constant when the layout is {@link
		         * Constant#decode|decoded}.
		         *
		         * Any JavaScript value including `null` and `undefined` is
		         * permitted.
		         *
		         * **WARNING** If `value` passed in the constructor was not
		         * frozen, it is possible for users of decoded values to change
		         * the content of the value. */
		        this.value = value;
		    }
		    /** @override */
		    decode(b, offset) {
		        return this.value;
		    }
		    /** @override */
		    encode(src, b, offset) {
		        /* Constants take no space */
		        return 0;
		    }
		}
		Layout$1.Constant = Constant;
		/** Factory for {@link GreedyCount}. */
		Layout$1.greedy = ((elementSpan, property) => new GreedyCount(elementSpan, property));
		/** Factory for {@link OffsetLayout}. */
		Layout$1.offset = ((layout, offset, property) => new OffsetLayout(layout, offset, property));
		/** Factory for {@link UInt|unsigned int layouts} spanning one
		 * byte. */
		Layout$1.u8 = ((property) => new UInt(1, property));
		/** Factory for {@link UInt|little-endian unsigned int layouts}
		 * spanning two bytes. */
		Layout$1.u16 = ((property) => new UInt(2, property));
		/** Factory for {@link UInt|little-endian unsigned int layouts}
		 * spanning three bytes. */
		Layout$1.u24 = ((property) => new UInt(3, property));
		/** Factory for {@link UInt|little-endian unsigned int layouts}
		 * spanning four bytes. */
		Layout$1.u32 = ((property) => new UInt(4, property));
		/** Factory for {@link UInt|little-endian unsigned int layouts}
		 * spanning five bytes. */
		Layout$1.u40 = ((property) => new UInt(5, property));
		/** Factory for {@link UInt|little-endian unsigned int layouts}
		 * spanning six bytes. */
		Layout$1.u48 = ((property) => new UInt(6, property));
		/** Factory for {@link NearUInt64|little-endian unsigned int
		 * layouts} interpreted as Numbers. */
		Layout$1.nu64 = ((property) => new NearUInt64(property));
		/** Factory for {@link UInt|big-endian unsigned int layouts}
		 * spanning two bytes. */
		Layout$1.u16be = ((property) => new UIntBE(2, property));
		/** Factory for {@link UInt|big-endian unsigned int layouts}
		 * spanning three bytes. */
		Layout$1.u24be = ((property) => new UIntBE(3, property));
		/** Factory for {@link UInt|big-endian unsigned int layouts}
		 * spanning four bytes. */
		Layout$1.u32be = ((property) => new UIntBE(4, property));
		/** Factory for {@link UInt|big-endian unsigned int layouts}
		 * spanning five bytes. */
		Layout$1.u40be = ((property) => new UIntBE(5, property));
		/** Factory for {@link UInt|big-endian unsigned int layouts}
		 * spanning six bytes. */
		Layout$1.u48be = ((property) => new UIntBE(6, property));
		/** Factory for {@link NearUInt64BE|big-endian unsigned int
		 * layouts} interpreted as Numbers. */
		Layout$1.nu64be = ((property) => new NearUInt64BE(property));
		/** Factory for {@link Int|signed int layouts} spanning one
		 * byte. */
		Layout$1.s8 = ((property) => new Int(1, property));
		/** Factory for {@link Int|little-endian signed int layouts}
		 * spanning two bytes. */
		Layout$1.s16 = ((property) => new Int(2, property));
		/** Factory for {@link Int|little-endian signed int layouts}
		 * spanning three bytes. */
		Layout$1.s24 = ((property) => new Int(3, property));
		/** Factory for {@link Int|little-endian signed int layouts}
		 * spanning four bytes. */
		Layout$1.s32 = ((property) => new Int(4, property));
		/** Factory for {@link Int|little-endian signed int layouts}
		 * spanning five bytes. */
		Layout$1.s40 = ((property) => new Int(5, property));
		/** Factory for {@link Int|little-endian signed int layouts}
		 * spanning six bytes. */
		Layout$1.s48 = ((property) => new Int(6, property));
		/** Factory for {@link NearInt64|little-endian signed int layouts}
		 * interpreted as Numbers. */
		Layout$1.ns64 = ((property) => new NearInt64(property));
		/** Factory for {@link Int|big-endian signed int layouts}
		 * spanning two bytes. */
		Layout$1.s16be = ((property) => new IntBE(2, property));
		/** Factory for {@link Int|big-endian signed int layouts}
		 * spanning three bytes. */
		Layout$1.s24be = ((property) => new IntBE(3, property));
		/** Factory for {@link Int|big-endian signed int layouts}
		 * spanning four bytes. */
		Layout$1.s32be = ((property) => new IntBE(4, property));
		/** Factory for {@link Int|big-endian signed int layouts}
		 * spanning five bytes. */
		Layout$1.s40be = ((property) => new IntBE(5, property));
		/** Factory for {@link Int|big-endian signed int layouts}
		 * spanning six bytes. */
		Layout$1.s48be = ((property) => new IntBE(6, property));
		/** Factory for {@link NearInt64BE|big-endian signed int layouts}
		 * interpreted as Numbers. */
		Layout$1.ns64be = ((property) => new NearInt64BE(property));
		/** Factory for {@link Float|little-endian 32-bit floating point} values. */
		Layout$1.f32 = ((property) => new Float(property));
		/** Factory for {@link FloatBE|big-endian 32-bit floating point} values. */
		Layout$1.f32be = ((property) => new FloatBE(property));
		/** Factory for {@link Double|little-endian 64-bit floating point} values. */
		Layout$1.f64 = ((property) => new Double(property));
		/** Factory for {@link DoubleBE|big-endian 64-bit floating point} values. */
		Layout$1.f64be = ((property) => new DoubleBE(property));
		/** Factory for {@link Structure} values. */
		Layout$1.struct = ((fields, property, decodePrefixes) => new Structure(fields, property, decodePrefixes));
		/** Factory for {@link BitStructure} values. */
		Layout$1.bits = ((word, msb, property) => new BitStructure(word, msb, property));
		/** Factory for {@link Sequence} values. */
		Layout$1.seq = ((elementLayout, count, property) => new Sequence(elementLayout, count, property));
		/** Factory for {@link Union} values. */
		Layout$1.union = ((discr, defaultLayout, property) => new Union(discr, defaultLayout, property));
		/** Factory for {@link UnionLayoutDiscriminator} values. */
		Layout$1.unionLayoutDiscriminator = ((layout, property) => new UnionLayoutDiscriminator(layout, property));
		/** Factory for {@link Blob} values. */
		Layout$1.blob = ((length, property) => new Blob(length, property));
		/** Factory for {@link CString} values. */
		Layout$1.cstr = ((property) => new CString(property));
		/** Factory for {@link UTF8} values. */
		Layout$1.utf8 = ((maxSpan, property) => new UTF8(maxSpan, property));
		/** Factory for {@link Constant} values. */
		Layout$1.constant = ((value, property) => new Constant(value, property));
		
		return Layout$1;
	}

	var LayoutExports$1 = /*@__PURE__*/ requireLayout$1();

	var browser = {};

	var hasRequiredBrowser;

	function requireBrowser () {
		if (hasRequiredBrowser) return browser;
		hasRequiredBrowser = 1;

		Object.defineProperty(browser, "__esModule", { value: true });
		/**
		 * Convert a little-endian buffer into a BigInt.
		 * @param buf The little-endian buffer to convert
		 * @returns A BigInt with the little-endian representation of buf.
		 */
		function toBigIntLE(buf) {
		    {
		        const reversed = Buffer.from(buf);
		        reversed.reverse();
		        const hex = reversed.toString('hex');
		        if (hex.length === 0) {
		            return BigInt(0);
		        }
		        return BigInt(`0x${hex}`);
		    }
		}
		browser.toBigIntLE = toBigIntLE;
		/**
		 * Convert a big-endian buffer into a BigInt
		 * @param buf The big-endian buffer to convert.
		 * @returns A BigInt with the big-endian representation of buf.
		 */
		function toBigIntBE(buf) {
		    {
		        const hex = buf.toString('hex');
		        if (hex.length === 0) {
		            return BigInt(0);
		        }
		        return BigInt(`0x${hex}`);
		    }
		}
		browser.toBigIntBE = toBigIntBE;
		/**
		 * Convert a BigInt to a little-endian buffer.
		 * @param num   The BigInt to convert.
		 * @param width The number of bytes that the resulting buffer should be.
		 * @returns A little-endian buffer representation of num.
		 */
		function toBufferLE(num, width) {
		    {
		        const hex = num.toString(16);
		        const buffer = Buffer.from(hex.padStart(width * 2, '0').slice(0, width * 2), 'hex');
		        buffer.reverse();
		        return buffer;
		    }
		}
		browser.toBufferLE = toBufferLE;
		/**
		 * Convert a BigInt to a big-endian buffer.
		 * @param num   The BigInt to convert.
		 * @param width The number of bytes that the resulting buffer should be.
		 * @returns A big-endian buffer representation of num.
		 */
		function toBufferBE(num, width) {
		    {
		        const hex = num.toString(16);
		        return Buffer.from(hex.padStart(width * 2, '0').slice(0, width * 2), 'hex');
		    }
		}
		browser.toBufferBE = toBufferBE;
		return browser;
	}

	var browserExports = /*@__PURE__*/ requireBrowser();

	/**
	 * A `StructFailure` represents a single specific failure in validation.
	 */
	/**
	 * `StructError` objects are thrown (or returned) when validation fails.
	 *
	 * Validation logic is design to exit early for maximum performance. The error
	 * represents the first error encountered during validation. For more detail,
	 * the `error.failures` property is a generator function that can be run to
	 * continue validation and receive all the failures in the data.
	 */
	class StructError extends TypeError {
	    constructor(failure, failures) {
	        let cached;
	        const { message, explanation, ...rest } = failure;
	        const { path } = failure;
	        const msg = path.length === 0 ? message : `At path: ${path.join('.')} -- ${message}`;
	        super(explanation ?? msg);
	        if (explanation != null)
	            this.cause = msg;
	        Object.assign(this, rest);
	        this.name = this.constructor.name;
	        this.failures = () => {
	            return (cached ?? (cached = [failure, ...failures()]));
	        };
	    }
	}

	/**
	 * Check if a value is an iterator.
	 */
	function isIterable(x) {
	    return isObject(x) && typeof x[Symbol.iterator] === 'function';
	}
	/**
	 * Check if a value is a plain object.
	 */
	function isObject(x) {
	    return typeof x === 'object' && x != null;
	}
	/**
	 * Check if a value is a non-array object.
	 */
	function isNonArrayObject(x) {
	    return isObject(x) && !Array.isArray(x);
	}
	/**
	 * Return a value as a printable string.
	 */
	function print(value) {
	    if (typeof value === 'symbol') {
	        return value.toString();
	    }
	    return typeof value === 'string' ? JSON.stringify(value) : `${value}`;
	}
	/**
	 * Shifts (removes and returns) the first value from the `input` iterator.
	 * Like `Array.prototype.shift()` but for an `Iterator`.
	 */
	function shiftIterator(input) {
	    const { done, value } = input.next();
	    return done ? undefined : value;
	}
	/**
	 * Convert a single validation result to a failure.
	 */
	function toFailure(result, context, struct, value) {
	    if (result === true) {
	        return;
	    }
	    else if (result === false) {
	        result = {};
	    }
	    else if (typeof result === 'string') {
	        result = { message: result };
	    }
	    const { path, branch } = context;
	    const { type } = struct;
	    const { refinement, message = `Expected a value of type \`${type}\`${refinement ? ` with refinement \`${refinement}\`` : ''}, but received: \`${print(value)}\``, } = result;
	    return {
	        value,
	        type,
	        refinement,
	        key: path[path.length - 1],
	        path,
	        branch,
	        ...result,
	        message,
	    };
	}
	/**
	 * Convert a validation result to an iterable of failures.
	 */
	function* toFailures(result, context, struct, value) {
	    if (!isIterable(result)) {
	        result = [result];
	    }
	    for (const r of result) {
	        const failure = toFailure(r, context, struct, value);
	        if (failure) {
	            yield failure;
	        }
	    }
	}
	/**
	 * Check a value against a struct, traversing deeply into nested values, and
	 * returning an iterator of failures or success.
	 */
	function* run(value, struct, options = {}) {
	    const { path = [], branch = [value], coerce = false, mask = false } = options;
	    const ctx = { path, branch, mask };
	    if (coerce) {
	        value = struct.coercer(value, ctx);
	    }
	    let status = 'valid';
	    for (const failure of struct.validator(value, ctx)) {
	        failure.explanation = options.message;
	        status = 'not_valid';
	        yield [failure, undefined];
	    }
	    for (let [k, v, s] of struct.entries(value, ctx)) {
	        const ts = run(v, s, {
	            path: k === undefined ? path : [...path, k],
	            branch: k === undefined ? branch : [...branch, v],
	            coerce,
	            mask,
	            message: options.message,
	        });
	        for (const t of ts) {
	            if (t[0]) {
	                status = t[0].refinement != null ? 'not_refined' : 'not_valid';
	                yield [t[0], undefined];
	            }
	            else if (coerce) {
	                v = t[1];
	                if (k === undefined) {
	                    value = v;
	                }
	                else if (value instanceof Map) {
	                    value.set(k, v);
	                }
	                else if (value instanceof Set) {
	                    value.add(v);
	                }
	                else if (isObject(value)) {
	                    if (v !== undefined || k in value)
	                        value[k] = v;
	                }
	            }
	        }
	    }
	    if (status !== 'not_valid') {
	        for (const failure of struct.refiner(value, ctx)) {
	            failure.explanation = options.message;
	            status = 'not_refined';
	            yield [failure, undefined];
	        }
	    }
	    if (status === 'valid') {
	        yield [undefined, value];
	    }
	}

	/**
	 * `Struct` objects encapsulate the validation logic for a specific type of
	 * values. Once constructed, you use the `assert`, `is` or `validate` helpers to
	 * validate unknown input data against the struct.
	 */
	let Struct$1 = class Struct {
	    constructor(props) {
	        const { type, schema, validator, refiner, coercer = (value) => value, entries = function* () { }, } = props;
	        this.type = type;
	        this.schema = schema;
	        this.entries = entries;
	        this.coercer = coercer;
	        if (validator) {
	            this.validator = (value, context) => {
	                const result = validator(value, context);
	                return toFailures(result, context, this, value);
	            };
	        }
	        else {
	            this.validator = () => [];
	        }
	        if (refiner) {
	            this.refiner = (value, context) => {
	                const result = refiner(value, context);
	                return toFailures(result, context, this, value);
	            };
	        }
	        else {
	            this.refiner = () => [];
	        }
	    }
	    /**
	     * Assert that a value passes the struct's validation, throwing if it doesn't.
	     */
	    assert(value, message) {
	        return assert$1(value, this, message);
	    }
	    /**
	     * Create a value with the struct's coercion logic, then validate it.
	     */
	    create(value, message) {
	        return create(value, this, message);
	    }
	    /**
	     * Check if a value passes the struct's validation.
	     */
	    is(value) {
	        return is(value, this);
	    }
	    /**
	     * Mask a value, coercing and validating it, but returning only the subset of
	     * properties defined by the struct's schema. Masking applies recursively to
	     * props of `object` structs only.
	     */
	    mask(value, message) {
	        return mask(value, this, message);
	    }
	    /**
	     * Validate a value with the struct's validation logic, returning a tuple
	     * representing the result.
	     *
	     * You may optionally pass `true` for the `coerce` argument to coerce
	     * the value before attempting to validate it. If you do, the result will
	     * contain the coerced result when successful. Also, `mask` will turn on
	     * masking of the unknown `object` props recursively if passed.
	     */
	    validate(value, options = {}) {
	        return validate(value, this, options);
	    }
	};
	/**
	 * Assert that a value passes a struct, throwing if it doesn't.
	 */
	function assert$1(value, struct, message) {
	    const result = validate(value, struct, { message });
	    if (result[0]) {
	        throw result[0];
	    }
	}
	/**
	 * Create a value with the coercion logic of struct and validate it.
	 */
	function create(value, struct, message) {
	    const result = validate(value, struct, { coerce: true, message });
	    if (result[0]) {
	        throw result[0];
	    }
	    else {
	        return result[1];
	    }
	}
	/**
	 * Mask a value, returning only the subset of properties defined by a struct.
	 */
	function mask(value, struct, message) {
	    const result = validate(value, struct, { coerce: true, mask: true, message });
	    if (result[0]) {
	        throw result[0];
	    }
	    else {
	        return result[1];
	    }
	}
	/**
	 * Check if a value passes a struct.
	 */
	function is(value, struct) {
	    const result = validate(value, struct);
	    return !result[0];
	}
	/**
	 * Validate a value against a struct, returning an error if invalid, or the
	 * value (with potential coercion) if valid.
	 */
	function validate(value, struct, options = {}) {
	    const tuples = run(value, struct, options);
	    const tuple = shiftIterator(tuples);
	    if (tuple[0]) {
	        const error = new StructError(tuple[0], function* () {
	            for (const t of tuples) {
	                if (t[0]) {
	                    yield t[0];
	                }
	            }
	        });
	        return [error, undefined];
	    }
	    else {
	        const v = tuple[1];
	        return [undefined, v];
	    }
	}
	/**
	 * Define a new struct type with a custom validation function.
	 */
	function define(name, validator) {
	    return new Struct$1({ type: name, schema: null, validator });
	}

	/**
	 * Ensure that any value passes validation.
	 */
	function any() {
	    return define('any', () => true);
	}
	function array(Element) {
	    return new Struct$1({
	        type: 'array',
	        schema: Element,
	        *entries(value) {
	            if (Element && Array.isArray(value)) {
	                for (const [i, v] of value.entries()) {
	                    yield [i, v, Element];
	                }
	            }
	        },
	        coercer(value) {
	            return Array.isArray(value) ? value.slice() : value;
	        },
	        validator(value) {
	            return (Array.isArray(value) ||
	                `Expected an array value, but received: ${print(value)}`);
	        },
	    });
	}
	/**
	 * Ensure that a value is a boolean.
	 */
	function boolean() {
	    return define('boolean', (value) => {
	        return typeof value === 'boolean';
	    });
	}
	function enums(values) {
	    const schema = {};
	    const description = values.map((v) => print(v)).join();
	    for (const key of values) {
	        schema[key] = key;
	    }
	    return new Struct$1({
	        type: 'enums',
	        schema,
	        validator(value) {
	            return (values.includes(value) ||
	                `Expected one of \`${description}\`, but received: ${print(value)}`);
	        },
	    });
	}
	/**
	 * Ensure that a value is an instance of a specific class.
	 */
	function instance(Class) {
	    return define('instance', (value) => {
	        return (value instanceof Class ||
	            `Expected a \`${Class.name}\` instance, but received: ${print(value)}`);
	    });
	}
	function literal(constant) {
	    const description = print(constant);
	    const t = typeof constant;
	    return new Struct$1({
	        type: 'literal',
	        schema: t === 'string' || t === 'number' || t === 'boolean' ? constant : null,
	        validator(value) {
	            return (value === constant ||
	                `Expected the literal \`${description}\`, but received: ${print(value)}`);
	        },
	    });
	}
	/**
	 * Ensure that no value ever passes validation.
	 */
	function never() {
	    return define('never', () => false);
	}
	/**
	 * Augment an existing struct to allow `null` values.
	 */
	function nullable(struct) {
	    return new Struct$1({
	        ...struct,
	        validator: (value, ctx) => value === null || struct.validator(value, ctx),
	        refiner: (value, ctx) => value === null || struct.refiner(value, ctx),
	    });
	}
	/**
	 * Ensure that a value is a number.
	 */
	function number() {
	    return define('number', (value) => {
	        return ((typeof value === 'number' && !isNaN(value)) ||
	            `Expected a number, but received: ${print(value)}`);
	    });
	}
	/**
	 * Augment a struct to allow `undefined` values.
	 */
	function optional(struct) {
	    return new Struct$1({
	        ...struct,
	        validator: (value, ctx) => value === undefined || struct.validator(value, ctx),
	        refiner: (value, ctx) => value === undefined || struct.refiner(value, ctx),
	    });
	}
	/**
	 * Ensure that a value is an object with keys and values of specific types, but
	 * without ensuring any specific shape of properties.
	 *
	 * Like TypeScript's `Record` utility.
	 */
	function record(Key, Value) {
	    return new Struct$1({
	        type: 'record',
	        schema: null,
	        *entries(value) {
	            if (isObject(value)) {
	                for (const k in value) {
	                    const v = value[k];
	                    yield [k, k, Key];
	                    yield [k, v, Value];
	                }
	            }
	        },
	        validator(value) {
	            return (isNonArrayObject(value) ||
	                `Expected an object, but received: ${print(value)}`);
	        },
	        coercer(value) {
	            return isNonArrayObject(value) ? { ...value } : value;
	        },
	    });
	}
	/**
	 * Ensure that a value is a string.
	 */
	function string() {
	    return define('string', (value) => {
	        return (typeof value === 'string' ||
	            `Expected a string, but received: ${print(value)}`);
	    });
	}
	/**
	 * Ensure that a value is a tuple of a specific length, and that each of its
	 * elements is of a specific type.
	 */
	function tuple(Structs) {
	    const Never = never();
	    return new Struct$1({
	        type: 'tuple',
	        schema: null,
	        *entries(value) {
	            if (Array.isArray(value)) {
	                const length = Math.max(Structs.length, value.length);
	                for (let i = 0; i < length; i++) {
	                    yield [i, value[i], Structs[i] || Never];
	                }
	            }
	        },
	        validator(value) {
	            return (Array.isArray(value) ||
	                `Expected an array, but received: ${print(value)}`);
	        },
	        coercer(value) {
	            return Array.isArray(value) ? value.slice() : value;
	        },
	    });
	}
	/**
	 * Ensure that a value has a set of known properties of specific types.
	 *
	 * Note: Unrecognized properties are allowed and untouched. This is similar to
	 * how TypeScript's structural typing works.
	 */
	function type(schema) {
	    const keys = Object.keys(schema);
	    return new Struct$1({
	        type: 'type',
	        schema,
	        *entries(value) {
	            if (isObject(value)) {
	                for (const k of keys) {
	                    yield [k, value[k], schema[k]];
	                }
	            }
	        },
	        validator(value) {
	            return (isNonArrayObject(value) ||
	                `Expected an object, but received: ${print(value)}`);
	        },
	        coercer(value) {
	            return isNonArrayObject(value) ? { ...value } : value;
	        },
	    });
	}
	/**
	 * Ensure that a value matches one of a set of types.
	 */
	function union(Structs) {
	    const description = Structs.map((s) => s.type).join(' | ');
	    return new Struct$1({
	        type: 'union',
	        schema: null,
	        coercer(value, ctx) {
	            for (const S of Structs) {
	                const [error, coerced] = S.validate(value, {
	                    coerce: true,
	                    mask: ctx.mask,
	                });
	                if (!error) {
	                    return coerced;
	                }
	            }
	            return value;
	        },
	        validator(value, ctx) {
	            const failures = [];
	            for (const S of Structs) {
	                const [...tuples] = run(value, S, ctx);
	                const [first] = tuples;
	                if (!first[0]) {
	                    return [];
	                }
	                else {
	                    for (const [failure] of tuples) {
	                        if (failure) {
	                            failures.push(failure);
	                        }
	                    }
	                }
	            }
	            return [
	                `Expected the value to satisfy a union of \`${description}\`, but received: ${print(value)}`,
	                ...failures,
	            ];
	        },
	    });
	}
	/**
	 * Ensure that any value passes validation, without widening its type to `any`.
	 */
	function unknown() {
	    return define('unknown', () => true);
	}

	/**
	 * Augment a `Struct` to add an additional coercion step to its input.
	 *
	 * This allows you to transform input data before validating it, to increase the
	 * likelihood that it passes validation—for example for default values, parsing
	 * different formats, etc.
	 *
	 * Note: You must use `create(value, Struct)` on the value to have the coercion
	 * take effect! Using simply `assert()` or `is()` will not use coercion.
	 */
	function coerce(struct, condition, coercer) {
	    return new Struct$1({
	        ...struct,
	        coercer: (value, ctx) => {
	            return is(value, condition)
	                ? struct.coercer(coercer(value, ctx), ctx)
	                : struct.coercer(value, ctx);
	        },
	    });
	}

	// HMAC (RFC 2104)
	class HMAC extends Hash {
	    constructor(hash$1, _key) {
	        super();
	        this.finished = false;
	        this.destroyed = false;
	        hash(hash$1);
	        const key = toBytes(_key);
	        this.iHash = hash$1.create();
	        if (typeof this.iHash.update !== 'function')
	            throw new Error('Expected instance of class which extends utils.Hash');
	        this.blockLen = this.iHash.blockLen;
	        this.outputLen = this.iHash.outputLen;
	        const blockLen = this.blockLen;
	        const pad = new Uint8Array(blockLen);
	        // blockLen can be bigger than outputLen
	        pad.set(key.length > blockLen ? hash$1.create().update(key).digest() : key);
	        for (let i = 0; i < pad.length; i++)
	            pad[i] ^= 0x36;
	        this.iHash.update(pad);
	        // By doing update (processing of first block) of outer hash here we can re-use it between multiple calls via clone
	        this.oHash = hash$1.create();
	        // Undo internal XOR && apply outer XOR
	        for (let i = 0; i < pad.length; i++)
	            pad[i] ^= 0x36 ^ 0x5c;
	        this.oHash.update(pad);
	        pad.fill(0);
	    }
	    update(buf) {
	        exists(this);
	        this.iHash.update(buf);
	        return this;
	    }
	    digestInto(out) {
	        exists(this);
	        bytes(out, this.outputLen);
	        this.finished = true;
	        this.iHash.digestInto(out);
	        this.oHash.update(out);
	        this.oHash.digestInto(out);
	        this.destroy();
	    }
	    digest() {
	        const out = new Uint8Array(this.oHash.outputLen);
	        this.digestInto(out);
	        return out;
	    }
	    _cloneInto(to) {
	        // Create new instance without calling constructor since key already in state and we don't know it.
	        to || (to = Object.create(Object.getPrototypeOf(this), {}));
	        const { oHash, iHash, finished, destroyed, blockLen, outputLen } = this;
	        to = to;
	        to.finished = finished;
	        to.destroyed = destroyed;
	        to.blockLen = blockLen;
	        to.outputLen = outputLen;
	        to.oHash = oHash._cloneInto(to.oHash);
	        to.iHash = iHash._cloneInto(to.iHash);
	        return to;
	    }
	    destroy() {
	        this.destroyed = true;
	        this.oHash.destroy();
	        this.iHash.destroy();
	    }
	}
	/**
	 * HMAC: RFC2104 message authentication code.
	 * @param hash - function that would be used e.g. sha256
	 * @param key - message key
	 * @param message - message data
	 */
	const hmac = (hash, key, message) => new HMAC(hash, key).update(message).digest();
	hmac.create = (hash, key) => new HMAC(hash, key);

	/*! noble-curves - MIT License (c) 2022 Paul Miller (paulmillr.com) */
	// Short Weierstrass curve. The formula is: y² = x³ + ax + b
	function validatePointOpts(curve) {
	    const opts = validateBasic(curve);
	    validateObject(opts, {
	        a: 'field',
	        b: 'field',
	    }, {
	        allowedPrivateKeyLengths: 'array',
	        wrapPrivateKey: 'boolean',
	        isTorsionFree: 'function',
	        clearCofactor: 'function',
	        allowInfinityPoint: 'boolean',
	        fromBytes: 'function',
	        toBytes: 'function',
	    });
	    const { endo, Fp, a } = opts;
	    if (endo) {
	        if (!Fp.eql(a, Fp.ZERO)) {
	            throw new Error('Endomorphism can only be defined for Koblitz curves that have a=0');
	        }
	        if (typeof endo !== 'object' ||
	            typeof endo.beta !== 'bigint' ||
	            typeof endo.splitScalar !== 'function') {
	            throw new Error('Expected endomorphism with beta: bigint and splitScalar: function');
	        }
	    }
	    return Object.freeze({ ...opts });
	}
	// ASN.1 DER encoding utilities
	const { bytesToNumberBE: b2n, hexToBytes: h2b } = ut;
	const DER = {
	    // asn.1 DER encoding utils
	    Err: class DERErr extends Error {
	        constructor(m = '') {
	            super(m);
	        }
	    },
	    _parseInt(data) {
	        const { Err: E } = DER;
	        if (data.length < 2 || data[0] !== 0x02)
	            throw new E('Invalid signature integer tag');
	        const len = data[1];
	        const res = data.subarray(2, len + 2);
	        if (!len || res.length !== len)
	            throw new E('Invalid signature integer: wrong length');
	        // https://crypto.stackexchange.com/a/57734 Leftmost bit of first byte is 'negative' flag,
	        // since we always use positive integers here. It must always be empty:
	        // - add zero byte if exists
	        // - if next byte doesn't have a flag, leading zero is not allowed (minimal encoding)
	        if (res[0] & 0b10000000)
	            throw new E('Invalid signature integer: negative');
	        if (res[0] === 0x00 && !(res[1] & 0b10000000))
	            throw new E('Invalid signature integer: unnecessary leading zero');
	        return { d: b2n(res), l: data.subarray(len + 2) }; // d is data, l is left
	    },
	    toSig(hex) {
	        // parse DER signature
	        const { Err: E } = DER;
	        const data = typeof hex === 'string' ? h2b(hex) : hex;
	        abytes(data);
	        let l = data.length;
	        if (l < 2 || data[0] != 0x30)
	            throw new E('Invalid signature tag');
	        if (data[1] !== l - 2)
	            throw new E('Invalid signature: incorrect length');
	        const { d: r, l: sBytes } = DER._parseInt(data.subarray(2));
	        const { d: s, l: rBytesLeft } = DER._parseInt(sBytes);
	        if (rBytesLeft.length)
	            throw new E('Invalid signature: left bytes after parsing');
	        return { r, s };
	    },
	    hexFromSig(sig) {
	        // Add leading zero if first byte has negative bit enabled. More details in '_parseInt'
	        const slice = (s) => (Number.parseInt(s[0], 16) & 0b1000 ? '00' + s : s);
	        const h = (num) => {
	            const hex = num.toString(16);
	            return hex.length & 1 ? `0${hex}` : hex;
	        };
	        const s = slice(h(sig.s));
	        const r = slice(h(sig.r));
	        const shl = s.length / 2;
	        const rhl = r.length / 2;
	        const sl = h(shl);
	        const rl = h(rhl);
	        return `30${h(rhl + shl + 4)}02${rl}${r}02${sl}${s}`;
	    },
	};
	// Be friendly to bad ECMAScript parsers by not using bigint literals
	// prettier-ignore
	const _0n = BigInt(0), _1n$1 = BigInt(1); BigInt(2); const _3n = BigInt(3); BigInt(4);
	function weierstrassPoints(opts) {
	    const CURVE = validatePointOpts(opts);
	    const { Fp } = CURVE; // All curves has same field / group length as for now, but they can differ
	    const toBytes = CURVE.toBytes ||
	        ((_c, point, _isCompressed) => {
	            const a = point.toAffine();
	            return concatBytes(Uint8Array.from([0x04]), Fp.toBytes(a.x), Fp.toBytes(a.y));
	        });
	    const fromBytes = CURVE.fromBytes ||
	        ((bytes) => {
	            // const head = bytes[0];
	            const tail = bytes.subarray(1);
	            // if (head !== 0x04) throw new Error('Only non-compressed encoding is supported');
	            const x = Fp.fromBytes(tail.subarray(0, Fp.BYTES));
	            const y = Fp.fromBytes(tail.subarray(Fp.BYTES, 2 * Fp.BYTES));
	            return { x, y };
	        });
	    /**
	     * y² = x³ + ax + b: Short weierstrass curve formula
	     * @returns y²
	     */
	    function weierstrassEquation(x) {
	        const { a, b } = CURVE;
	        const x2 = Fp.sqr(x); // x * x
	        const x3 = Fp.mul(x2, x); // x2 * x
	        return Fp.add(Fp.add(x3, Fp.mul(x, a)), b); // x3 + a * x + b
	    }
	    // Validate whether the passed curve params are valid.
	    // We check if curve equation works for generator point.
	    // `assertValidity()` won't work: `isTorsionFree()` is not available at this point in bls12-381.
	    // ProjectivePoint class has not been initialized yet.
	    if (!Fp.eql(Fp.sqr(CURVE.Gy), weierstrassEquation(CURVE.Gx)))
	        throw new Error('bad generator point: equation left != right');
	    // Valid group elements reside in range 1..n-1
	    function isWithinCurveOrder(num) {
	        return typeof num === 'bigint' && _0n < num && num < CURVE.n;
	    }
	    function assertGE(num) {
	        if (!isWithinCurveOrder(num))
	            throw new Error('Expected valid bigint: 0 < bigint < curve.n');
	    }
	    // Validates if priv key is valid and converts it to bigint.
	    // Supports options allowedPrivateKeyLengths and wrapPrivateKey.
	    function normPrivateKeyToScalar(key) {
	        const { allowedPrivateKeyLengths: lengths, nByteLength, wrapPrivateKey, n } = CURVE;
	        if (lengths && typeof key !== 'bigint') {
	            if (isBytes(key))
	                key = bytesToHex(key);
	            // Normalize to hex string, pad. E.g. P521 would norm 130-132 char hex to 132-char bytes
	            if (typeof key !== 'string' || !lengths.includes(key.length))
	                throw new Error('Invalid key');
	            key = key.padStart(nByteLength * 2, '0');
	        }
	        let num;
	        try {
	            num =
	                typeof key === 'bigint'
	                    ? key
	                    : bytesToNumberBE(ensureBytes('private key', key, nByteLength));
	        }
	        catch (error) {
	            throw new Error(`private key must be ${nByteLength} bytes, hex or bigint, not ${typeof key}`);
	        }
	        if (wrapPrivateKey)
	            num = mod(num, n); // disabled by default, enabled for BLS
	        assertGE(num); // num in range [1..N-1]
	        return num;
	    }
	    const pointPrecomputes = new Map();
	    function assertPrjPoint(other) {
	        if (!(other instanceof Point))
	            throw new Error('ProjectivePoint expected');
	    }
	    /**
	     * Projective Point works in 3d / projective (homogeneous) coordinates: (x, y, z) ∋ (x=x/z, y=y/z)
	     * Default Point works in 2d / affine coordinates: (x, y)
	     * We're doing calculations in projective, because its operations don't require costly inversion.
	     */
	    class Point {
	        constructor(px, py, pz) {
	            this.px = px;
	            this.py = py;
	            this.pz = pz;
	            if (px == null || !Fp.isValid(px))
	                throw new Error('x required');
	            if (py == null || !Fp.isValid(py))
	                throw new Error('y required');
	            if (pz == null || !Fp.isValid(pz))
	                throw new Error('z required');
	        }
	        // Does not validate if the point is on-curve.
	        // Use fromHex instead, or call assertValidity() later.
	        static fromAffine(p) {
	            const { x, y } = p || {};
	            if (!p || !Fp.isValid(x) || !Fp.isValid(y))
	                throw new Error('invalid affine point');
	            if (p instanceof Point)
	                throw new Error('projective point not allowed');
	            const is0 = (i) => Fp.eql(i, Fp.ZERO);
	            // fromAffine(x:0, y:0) would produce (x:0, y:0, z:1), but we need (x:0, y:1, z:0)
	            if (is0(x) && is0(y))
	                return Point.ZERO;
	            return new Point(x, y, Fp.ONE);
	        }
	        get x() {
	            return this.toAffine().x;
	        }
	        get y() {
	            return this.toAffine().y;
	        }
	        /**
	         * Takes a bunch of Projective Points but executes only one
	         * inversion on all of them. Inversion is very slow operation,
	         * so this improves performance massively.
	         * Optimization: converts a list of projective points to a list of identical points with Z=1.
	         */
	        static normalizeZ(points) {
	            const toInv = Fp.invertBatch(points.map((p) => p.pz));
	            return points.map((p, i) => p.toAffine(toInv[i])).map(Point.fromAffine);
	        }
	        /**
	         * Converts hash string or Uint8Array to Point.
	         * @param hex short/long ECDSA hex
	         */
	        static fromHex(hex) {
	            const P = Point.fromAffine(fromBytes(ensureBytes('pointHex', hex)));
	            P.assertValidity();
	            return P;
	        }
	        // Multiplies generator point by privateKey.
	        static fromPrivateKey(privateKey) {
	            return Point.BASE.multiply(normPrivateKeyToScalar(privateKey));
	        }
	        // "Private method", don't use it directly
	        _setWindowSize(windowSize) {
	            this._WINDOW_SIZE = windowSize;
	            pointPrecomputes.delete(this);
	        }
	        // A point on curve is valid if it conforms to equation.
	        assertValidity() {
	            if (this.is0()) {
	                // (0, 1, 0) aka ZERO is invalid in most contexts.
	                // In BLS, ZERO can be serialized, so we allow it.
	                // (0, 0, 0) is wrong representation of ZERO and is always invalid.
	                if (CURVE.allowInfinityPoint && !Fp.is0(this.py))
	                    return;
	                throw new Error('bad point: ZERO');
	            }
	            // Some 3rd-party test vectors require different wording between here & `fromCompressedHex`
	            const { x, y } = this.toAffine();
	            // Check if x, y are valid field elements
	            if (!Fp.isValid(x) || !Fp.isValid(y))
	                throw new Error('bad point: x or y not FE');
	            const left = Fp.sqr(y); // y²
	            const right = weierstrassEquation(x); // x³ + ax + b
	            if (!Fp.eql(left, right))
	                throw new Error('bad point: equation left != right');
	            if (!this.isTorsionFree())
	                throw new Error('bad point: not in prime-order subgroup');
	        }
	        hasEvenY() {
	            const { y } = this.toAffine();
	            if (Fp.isOdd)
	                return !Fp.isOdd(y);
	            throw new Error("Field doesn't support isOdd");
	        }
	        /**
	         * Compare one point to another.
	         */
	        equals(other) {
	            assertPrjPoint(other);
	            const { px: X1, py: Y1, pz: Z1 } = this;
	            const { px: X2, py: Y2, pz: Z2 } = other;
	            const U1 = Fp.eql(Fp.mul(X1, Z2), Fp.mul(X2, Z1));
	            const U2 = Fp.eql(Fp.mul(Y1, Z2), Fp.mul(Y2, Z1));
	            return U1 && U2;
	        }
	        /**
	         * Flips point to one corresponding to (x, -y) in Affine coordinates.
	         */
	        negate() {
	            return new Point(this.px, Fp.neg(this.py), this.pz);
	        }
	        // Renes-Costello-Batina exception-free doubling formula.
	        // There is 30% faster Jacobian formula, but it is not complete.
	        // https://eprint.iacr.org/2015/1060, algorithm 3
	        // Cost: 8M + 3S + 3*a + 2*b3 + 15add.
	        double() {
	            const { a, b } = CURVE;
	            const b3 = Fp.mul(b, _3n);
	            const { px: X1, py: Y1, pz: Z1 } = this;
	            let X3 = Fp.ZERO, Y3 = Fp.ZERO, Z3 = Fp.ZERO; // prettier-ignore
	            let t0 = Fp.mul(X1, X1); // step 1
	            let t1 = Fp.mul(Y1, Y1);
	            let t2 = Fp.mul(Z1, Z1);
	            let t3 = Fp.mul(X1, Y1);
	            t3 = Fp.add(t3, t3); // step 5
	            Z3 = Fp.mul(X1, Z1);
	            Z3 = Fp.add(Z3, Z3);
	            X3 = Fp.mul(a, Z3);
	            Y3 = Fp.mul(b3, t2);
	            Y3 = Fp.add(X3, Y3); // step 10
	            X3 = Fp.sub(t1, Y3);
	            Y3 = Fp.add(t1, Y3);
	            Y3 = Fp.mul(X3, Y3);
	            X3 = Fp.mul(t3, X3);
	            Z3 = Fp.mul(b3, Z3); // step 15
	            t2 = Fp.mul(a, t2);
	            t3 = Fp.sub(t0, t2);
	            t3 = Fp.mul(a, t3);
	            t3 = Fp.add(t3, Z3);
	            Z3 = Fp.add(t0, t0); // step 20
	            t0 = Fp.add(Z3, t0);
	            t0 = Fp.add(t0, t2);
	            t0 = Fp.mul(t0, t3);
	            Y3 = Fp.add(Y3, t0);
	            t2 = Fp.mul(Y1, Z1); // step 25
	            t2 = Fp.add(t2, t2);
	            t0 = Fp.mul(t2, t3);
	            X3 = Fp.sub(X3, t0);
	            Z3 = Fp.mul(t2, t1);
	            Z3 = Fp.add(Z3, Z3); // step 30
	            Z3 = Fp.add(Z3, Z3);
	            return new Point(X3, Y3, Z3);
	        }
	        // Renes-Costello-Batina exception-free addition formula.
	        // There is 30% faster Jacobian formula, but it is not complete.
	        // https://eprint.iacr.org/2015/1060, algorithm 1
	        // Cost: 12M + 0S + 3*a + 3*b3 + 23add.
	        add(other) {
	            assertPrjPoint(other);
	            const { px: X1, py: Y1, pz: Z1 } = this;
	            const { px: X2, py: Y2, pz: Z2 } = other;
	            let X3 = Fp.ZERO, Y3 = Fp.ZERO, Z3 = Fp.ZERO; // prettier-ignore
	            const a = CURVE.a;
	            const b3 = Fp.mul(CURVE.b, _3n);
	            let t0 = Fp.mul(X1, X2); // step 1
	            let t1 = Fp.mul(Y1, Y2);
	            let t2 = Fp.mul(Z1, Z2);
	            let t3 = Fp.add(X1, Y1);
	            let t4 = Fp.add(X2, Y2); // step 5
	            t3 = Fp.mul(t3, t4);
	            t4 = Fp.add(t0, t1);
	            t3 = Fp.sub(t3, t4);
	            t4 = Fp.add(X1, Z1);
	            let t5 = Fp.add(X2, Z2); // step 10
	            t4 = Fp.mul(t4, t5);
	            t5 = Fp.add(t0, t2);
	            t4 = Fp.sub(t4, t5);
	            t5 = Fp.add(Y1, Z1);
	            X3 = Fp.add(Y2, Z2); // step 15
	            t5 = Fp.mul(t5, X3);
	            X3 = Fp.add(t1, t2);
	            t5 = Fp.sub(t5, X3);
	            Z3 = Fp.mul(a, t4);
	            X3 = Fp.mul(b3, t2); // step 20
	            Z3 = Fp.add(X3, Z3);
	            X3 = Fp.sub(t1, Z3);
	            Z3 = Fp.add(t1, Z3);
	            Y3 = Fp.mul(X3, Z3);
	            t1 = Fp.add(t0, t0); // step 25
	            t1 = Fp.add(t1, t0);
	            t2 = Fp.mul(a, t2);
	            t4 = Fp.mul(b3, t4);
	            t1 = Fp.add(t1, t2);
	            t2 = Fp.sub(t0, t2); // step 30
	            t2 = Fp.mul(a, t2);
	            t4 = Fp.add(t4, t2);
	            t0 = Fp.mul(t1, t4);
	            Y3 = Fp.add(Y3, t0);
	            t0 = Fp.mul(t5, t4); // step 35
	            X3 = Fp.mul(t3, X3);
	            X3 = Fp.sub(X3, t0);
	            t0 = Fp.mul(t3, t1);
	            Z3 = Fp.mul(t5, Z3);
	            Z3 = Fp.add(Z3, t0); // step 40
	            return new Point(X3, Y3, Z3);
	        }
	        subtract(other) {
	            return this.add(other.negate());
	        }
	        is0() {
	            return this.equals(Point.ZERO);
	        }
	        wNAF(n) {
	            return wnaf.wNAFCached(this, pointPrecomputes, n, (comp) => {
	                const toInv = Fp.invertBatch(comp.map((p) => p.pz));
	                return comp.map((p, i) => p.toAffine(toInv[i])).map(Point.fromAffine);
	            });
	        }
	        /**
	         * Non-constant-time multiplication. Uses double-and-add algorithm.
	         * It's faster, but should only be used when you don't care about
	         * an exposed private key e.g. sig verification, which works over *public* keys.
	         */
	        multiplyUnsafe(n) {
	            const I = Point.ZERO;
	            if (n === _0n)
	                return I;
	            assertGE(n); // Will throw on 0
	            if (n === _1n$1)
	                return this;
	            const { endo } = CURVE;
	            if (!endo)
	                return wnaf.unsafeLadder(this, n);
	            // Apply endomorphism
	            let { k1neg, k1, k2neg, k2 } = endo.splitScalar(n);
	            let k1p = I;
	            let k2p = I;
	            let d = this;
	            while (k1 > _0n || k2 > _0n) {
	                if (k1 & _1n$1)
	                    k1p = k1p.add(d);
	                if (k2 & _1n$1)
	                    k2p = k2p.add(d);
	                d = d.double();
	                k1 >>= _1n$1;
	                k2 >>= _1n$1;
	            }
	            if (k1neg)
	                k1p = k1p.negate();
	            if (k2neg)
	                k2p = k2p.negate();
	            k2p = new Point(Fp.mul(k2p.px, endo.beta), k2p.py, k2p.pz);
	            return k1p.add(k2p);
	        }
	        /**
	         * Constant time multiplication.
	         * Uses wNAF method. Windowed method may be 10% faster,
	         * but takes 2x longer to generate and consumes 2x memory.
	         * Uses precomputes when available.
	         * Uses endomorphism for Koblitz curves.
	         * @param scalar by which the point would be multiplied
	         * @returns New point
	         */
	        multiply(scalar) {
	            assertGE(scalar);
	            let n = scalar;
	            let point, fake; // Fake point is used to const-time mult
	            const { endo } = CURVE;
	            if (endo) {
	                const { k1neg, k1, k2neg, k2 } = endo.splitScalar(n);
	                let { p: k1p, f: f1p } = this.wNAF(k1);
	                let { p: k2p, f: f2p } = this.wNAF(k2);
	                k1p = wnaf.constTimeNegate(k1neg, k1p);
	                k2p = wnaf.constTimeNegate(k2neg, k2p);
	                k2p = new Point(Fp.mul(k2p.px, endo.beta), k2p.py, k2p.pz);
	                point = k1p.add(k2p);
	                fake = f1p.add(f2p);
	            }
	            else {
	                const { p, f } = this.wNAF(n);
	                point = p;
	                fake = f;
	            }
	            // Normalize `z` for both points, but return only real one
	            return Point.normalizeZ([point, fake])[0];
	        }
	        /**
	         * Efficiently calculate `aP + bQ`. Unsafe, can expose private key, if used incorrectly.
	         * Not using Strauss-Shamir trick: precomputation tables are faster.
	         * The trick could be useful if both P and Q are not G (not in our case).
	         * @returns non-zero affine point
	         */
	        multiplyAndAddUnsafe(Q, a, b) {
	            const G = Point.BASE; // No Strauss-Shamir trick: we have 10% faster G precomputes
	            const mul = (P, a // Select faster multiply() method
	            ) => (a === _0n || a === _1n$1 || !P.equals(G) ? P.multiplyUnsafe(a) : P.multiply(a));
	            const sum = mul(this, a).add(mul(Q, b));
	            return sum.is0() ? undefined : sum;
	        }
	        // Converts Projective point to affine (x, y) coordinates.
	        // Can accept precomputed Z^-1 - for example, from invertBatch.
	        // (x, y, z) ∋ (x=x/z, y=y/z)
	        toAffine(iz) {
	            const { px: x, py: y, pz: z } = this;
	            const is0 = this.is0();
	            // If invZ was 0, we return zero point. However we still want to execute
	            // all operations, so we replace invZ with a random number, 1.
	            if (iz == null)
	                iz = is0 ? Fp.ONE : Fp.inv(z);
	            const ax = Fp.mul(x, iz);
	            const ay = Fp.mul(y, iz);
	            const zz = Fp.mul(z, iz);
	            if (is0)
	                return { x: Fp.ZERO, y: Fp.ZERO };
	            if (!Fp.eql(zz, Fp.ONE))
	                throw new Error('invZ was invalid');
	            return { x: ax, y: ay };
	        }
	        isTorsionFree() {
	            const { h: cofactor, isTorsionFree } = CURVE;
	            if (cofactor === _1n$1)
	                return true; // No subgroups, always torsion-free
	            if (isTorsionFree)
	                return isTorsionFree(Point, this);
	            throw new Error('isTorsionFree() has not been declared for the elliptic curve');
	        }
	        clearCofactor() {
	            const { h: cofactor, clearCofactor } = CURVE;
	            if (cofactor === _1n$1)
	                return this; // Fast-path
	            if (clearCofactor)
	                return clearCofactor(Point, this);
	            return this.multiplyUnsafe(CURVE.h);
	        }
	        toRawBytes(isCompressed = true) {
	            this.assertValidity();
	            return toBytes(Point, this, isCompressed);
	        }
	        toHex(isCompressed = true) {
	            return bytesToHex(this.toRawBytes(isCompressed));
	        }
	    }
	    Point.BASE = new Point(CURVE.Gx, CURVE.Gy, Fp.ONE);
	    Point.ZERO = new Point(Fp.ZERO, Fp.ONE, Fp.ZERO);
	    const _bits = CURVE.nBitLength;
	    const wnaf = wNAF(Point, CURVE.endo ? Math.ceil(_bits / 2) : _bits);
	    // Validate if generator point is on curve
	    return {
	        CURVE,
	        ProjectivePoint: Point,
	        normPrivateKeyToScalar,
	        weierstrassEquation,
	        isWithinCurveOrder,
	    };
	}
	function validateOpts(curve) {
	    const opts = validateBasic(curve);
	    validateObject(opts, {
	        hash: 'hash',
	        hmac: 'function',
	        randomBytes: 'function',
	    }, {
	        bits2int: 'function',
	        bits2int_modN: 'function',
	        lowS: 'boolean',
	    });
	    return Object.freeze({ lowS: true, ...opts });
	}
	function weierstrass(curveDef) {
	    const CURVE = validateOpts(curveDef);
	    const { Fp, n: CURVE_ORDER } = CURVE;
	    const compressedLen = Fp.BYTES + 1; // e.g. 33 for 32
	    const uncompressedLen = 2 * Fp.BYTES + 1; // e.g. 65 for 32
	    function isValidFieldElement(num) {
	        return _0n < num && num < Fp.ORDER; // 0 is banned since it's not invertible FE
	    }
	    function modN(a) {
	        return mod(a, CURVE_ORDER);
	    }
	    function invN(a) {
	        return invert(a, CURVE_ORDER);
	    }
	    const { ProjectivePoint: Point, normPrivateKeyToScalar, weierstrassEquation, isWithinCurveOrder, } = weierstrassPoints({
	        ...CURVE,
	        toBytes(_c, point, isCompressed) {
	            const a = point.toAffine();
	            const x = Fp.toBytes(a.x);
	            const cat = concatBytes;
	            if (isCompressed) {
	                return cat(Uint8Array.from([point.hasEvenY() ? 0x02 : 0x03]), x);
	            }
	            else {
	                return cat(Uint8Array.from([0x04]), x, Fp.toBytes(a.y));
	            }
	        },
	        fromBytes(bytes) {
	            const len = bytes.length;
	            const head = bytes[0];
	            const tail = bytes.subarray(1);
	            // this.assertValidity() is done inside of fromHex
	            if (len === compressedLen && (head === 0x02 || head === 0x03)) {
	                const x = bytesToNumberBE(tail);
	                if (!isValidFieldElement(x))
	                    throw new Error('Point is not on curve');
	                const y2 = weierstrassEquation(x); // y² = x³ + ax + b
	                let y;
	                try {
	                    y = Fp.sqrt(y2); // y = y² ^ (p+1)/4
	                }
	                catch (sqrtError) {
	                    const suffix = sqrtError instanceof Error ? ': ' + sqrtError.message : '';
	                    throw new Error('Point is not on curve' + suffix);
	                }
	                const isYOdd = (y & _1n$1) === _1n$1;
	                // ECDSA
	                const isHeadOdd = (head & 1) === 1;
	                if (isHeadOdd !== isYOdd)
	                    y = Fp.neg(y);
	                return { x, y };
	            }
	            else if (len === uncompressedLen && head === 0x04) {
	                const x = Fp.fromBytes(tail.subarray(0, Fp.BYTES));
	                const y = Fp.fromBytes(tail.subarray(Fp.BYTES, 2 * Fp.BYTES));
	                return { x, y };
	            }
	            else {
	                throw new Error(`Point of length ${len} was invalid. Expected ${compressedLen} compressed bytes or ${uncompressedLen} uncompressed bytes`);
	            }
	        },
	    });
	    const numToNByteStr = (num) => bytesToHex(numberToBytesBE(num, CURVE.nByteLength));
	    function isBiggerThanHalfOrder(number) {
	        const HALF = CURVE_ORDER >> _1n$1;
	        return number > HALF;
	    }
	    function normalizeS(s) {
	        return isBiggerThanHalfOrder(s) ? modN(-s) : s;
	    }
	    // slice bytes num
	    const slcNum = (b, from, to) => bytesToNumberBE(b.slice(from, to));
	    /**
	     * ECDSA signature with its (r, s) properties. Supports DER & compact representations.
	     */
	    class Signature {
	        constructor(r, s, recovery) {
	            this.r = r;
	            this.s = s;
	            this.recovery = recovery;
	            this.assertValidity();
	        }
	        // pair (bytes of r, bytes of s)
	        static fromCompact(hex) {
	            const l = CURVE.nByteLength;
	            hex = ensureBytes('compactSignature', hex, l * 2);
	            return new Signature(slcNum(hex, 0, l), slcNum(hex, l, 2 * l));
	        }
	        // DER encoded ECDSA signature
	        // https://bitcoin.stackexchange.com/questions/57644/what-are-the-parts-of-a-bitcoin-transaction-input-script
	        static fromDER(hex) {
	            const { r, s } = DER.toSig(ensureBytes('DER', hex));
	            return new Signature(r, s);
	        }
	        assertValidity() {
	            // can use assertGE here
	            if (!isWithinCurveOrder(this.r))
	                throw new Error('r must be 0 < r < CURVE.n');
	            if (!isWithinCurveOrder(this.s))
	                throw new Error('s must be 0 < s < CURVE.n');
	        }
	        addRecoveryBit(recovery) {
	            return new Signature(this.r, this.s, recovery);
	        }
	        recoverPublicKey(msgHash) {
	            const { r, s, recovery: rec } = this;
	            const h = bits2int_modN(ensureBytes('msgHash', msgHash)); // Truncate hash
	            if (rec == null || ![0, 1, 2, 3].includes(rec))
	                throw new Error('recovery id invalid');
	            const radj = rec === 2 || rec === 3 ? r + CURVE.n : r;
	            if (radj >= Fp.ORDER)
	                throw new Error('recovery id 2 or 3 invalid');
	            const prefix = (rec & 1) === 0 ? '02' : '03';
	            const R = Point.fromHex(prefix + numToNByteStr(radj));
	            const ir = invN(radj); // r^-1
	            const u1 = modN(-h * ir); // -hr^-1
	            const u2 = modN(s * ir); // sr^-1
	            const Q = Point.BASE.multiplyAndAddUnsafe(R, u1, u2); // (sr^-1)R-(hr^-1)G = -(hr^-1)G + (sr^-1)
	            if (!Q)
	                throw new Error('point at infinify'); // unsafe is fine: no priv data leaked
	            Q.assertValidity();
	            return Q;
	        }
	        // Signatures should be low-s, to prevent malleability.
	        hasHighS() {
	            return isBiggerThanHalfOrder(this.s);
	        }
	        normalizeS() {
	            return this.hasHighS() ? new Signature(this.r, modN(-this.s), this.recovery) : this;
	        }
	        // DER-encoded
	        toDERRawBytes() {
	            return hexToBytes(this.toDERHex());
	        }
	        toDERHex() {
	            return DER.hexFromSig({ r: this.r, s: this.s });
	        }
	        // padded bytes of r, then padded bytes of s
	        toCompactRawBytes() {
	            return hexToBytes(this.toCompactHex());
	        }
	        toCompactHex() {
	            return numToNByteStr(this.r) + numToNByteStr(this.s);
	        }
	    }
	    const utils = {
	        isValidPrivateKey(privateKey) {
	            try {
	                normPrivateKeyToScalar(privateKey);
	                return true;
	            }
	            catch (error) {
	                return false;
	            }
	        },
	        normPrivateKeyToScalar: normPrivateKeyToScalar,
	        /**
	         * Produces cryptographically secure private key from random of size
	         * (groupLen + ceil(groupLen / 2)) with modulo bias being negligible.
	         */
	        randomPrivateKey: () => {
	            const length = getMinHashLength(CURVE.n);
	            return mapHashToField(CURVE.randomBytes(length), CURVE.n);
	        },
	        /**
	         * Creates precompute table for an arbitrary EC point. Makes point "cached".
	         * Allows to massively speed-up `point.multiply(scalar)`.
	         * @returns cached point
	         * @example
	         * const fast = utils.precompute(8, ProjectivePoint.fromHex(someonesPubKey));
	         * fast.multiply(privKey); // much faster ECDH now
	         */
	        precompute(windowSize = 8, point = Point.BASE) {
	            point._setWindowSize(windowSize);
	            point.multiply(BigInt(3)); // 3 is arbitrary, just need any number here
	            return point;
	        },
	    };
	    /**
	     * Computes public key for a private key. Checks for validity of the private key.
	     * @param privateKey private key
	     * @param isCompressed whether to return compact (default), or full key
	     * @returns Public key, full when isCompressed=false; short when isCompressed=true
	     */
	    function getPublicKey(privateKey, isCompressed = true) {
	        return Point.fromPrivateKey(privateKey).toRawBytes(isCompressed);
	    }
	    /**
	     * Quick and dirty check for item being public key. Does not validate hex, or being on-curve.
	     */
	    function isProbPub(item) {
	        const arr = isBytes(item);
	        const str = typeof item === 'string';
	        const len = (arr || str) && item.length;
	        if (arr)
	            return len === compressedLen || len === uncompressedLen;
	        if (str)
	            return len === 2 * compressedLen || len === 2 * uncompressedLen;
	        if (item instanceof Point)
	            return true;
	        return false;
	    }
	    /**
	     * ECDH (Elliptic Curve Diffie Hellman).
	     * Computes shared public key from private key and public key.
	     * Checks: 1) private key validity 2) shared key is on-curve.
	     * Does NOT hash the result.
	     * @param privateA private key
	     * @param publicB different public key
	     * @param isCompressed whether to return compact (default), or full key
	     * @returns shared public key
	     */
	    function getSharedSecret(privateA, publicB, isCompressed = true) {
	        if (isProbPub(privateA))
	            throw new Error('first arg must be private key');
	        if (!isProbPub(publicB))
	            throw new Error('second arg must be public key');
	        const b = Point.fromHex(publicB); // check for being on-curve
	        return b.multiply(normPrivateKeyToScalar(privateA)).toRawBytes(isCompressed);
	    }
	    // RFC6979: ensure ECDSA msg is X bytes and < N. RFC suggests optional truncating via bits2octets.
	    // FIPS 186-4 4.6 suggests the leftmost min(nBitLen, outLen) bits, which matches bits2int.
	    // bits2int can produce res>N, we can do mod(res, N) since the bitLen is the same.
	    // int2octets can't be used; pads small msgs with 0: unacceptatble for trunc as per RFC vectors
	    const bits2int = CURVE.bits2int ||
	        function (bytes) {
	            // For curves with nBitLength % 8 !== 0: bits2octets(bits2octets(m)) !== bits2octets(m)
	            // for some cases, since bytes.length * 8 is not actual bitLength.
	            const num = bytesToNumberBE(bytes); // check for == u8 done here
	            const delta = bytes.length * 8 - CURVE.nBitLength; // truncate to nBitLength leftmost bits
	            return delta > 0 ? num >> BigInt(delta) : num;
	        };
	    const bits2int_modN = CURVE.bits2int_modN ||
	        function (bytes) {
	            return modN(bits2int(bytes)); // can't use bytesToNumberBE here
	        };
	    // NOTE: pads output with zero as per spec
	    const ORDER_MASK = bitMask(CURVE.nBitLength);
	    /**
	     * Converts to bytes. Checks if num in `[0..ORDER_MASK-1]` e.g.: `[0..2^256-1]`.
	     */
	    function int2octets(num) {
	        if (typeof num !== 'bigint')
	            throw new Error('bigint expected');
	        if (!(_0n <= num && num < ORDER_MASK))
	            throw new Error(`bigint expected < 2^${CURVE.nBitLength}`);
	        // works with order, can have different size than numToField!
	        return numberToBytesBE(num, CURVE.nByteLength);
	    }
	    // Steps A, D of RFC6979 3.2
	    // Creates RFC6979 seed; converts msg/privKey to numbers.
	    // Used only in sign, not in verify.
	    // NOTE: we cannot assume here that msgHash has same amount of bytes as curve order, this will be wrong at least for P521.
	    // Also it can be bigger for P224 + SHA256
	    function prepSig(msgHash, privateKey, opts = defaultSigOpts) {
	        if (['recovered', 'canonical'].some((k) => k in opts))
	            throw new Error('sign() legacy options not supported');
	        const { hash, randomBytes } = CURVE;
	        let { lowS, prehash, extraEntropy: ent } = opts; // generates low-s sigs by default
	        if (lowS == null)
	            lowS = true; // RFC6979 3.2: we skip step A, because we already provide hash
	        msgHash = ensureBytes('msgHash', msgHash);
	        if (prehash)
	            msgHash = ensureBytes('prehashed msgHash', hash(msgHash));
	        // We can't later call bits2octets, since nested bits2int is broken for curves
	        // with nBitLength % 8 !== 0. Because of that, we unwrap it here as int2octets call.
	        // const bits2octets = (bits) => int2octets(bits2int_modN(bits))
	        const h1int = bits2int_modN(msgHash);
	        const d = normPrivateKeyToScalar(privateKey); // validate private key, convert to bigint
	        const seedArgs = [int2octets(d), int2octets(h1int)];
	        // extraEntropy. RFC6979 3.6: additional k' (optional).
	        if (ent != null && ent !== false) {
	            // K = HMAC_K(V || 0x00 || int2octets(x) || bits2octets(h1) || k')
	            const e = ent === true ? randomBytes(Fp.BYTES) : ent; // generate random bytes OR pass as-is
	            seedArgs.push(ensureBytes('extraEntropy', e)); // check for being bytes
	        }
	        const seed = concatBytes(...seedArgs); // Step D of RFC6979 3.2
	        const m = h1int; // NOTE: no need to call bits2int second time here, it is inside truncateHash!
	        // Converts signature params into point w r/s, checks result for validity.
	        function k2sig(kBytes) {
	            // RFC 6979 Section 3.2, step 3: k = bits2int(T)
	            const k = bits2int(kBytes); // Cannot use fields methods, since it is group element
	            if (!isWithinCurveOrder(k))
	                return; // Important: all mod() calls here must be done over N
	            const ik = invN(k); // k^-1 mod n
	            const q = Point.BASE.multiply(k).toAffine(); // q = Gk
	            const r = modN(q.x); // r = q.x mod n
	            if (r === _0n)
	                return;
	            // Can use scalar blinding b^-1(bm + bdr) where b ∈ [1,q−1] according to
	            // https://tches.iacr.org/index.php/TCHES/article/view/7337/6509. We've decided against it:
	            // a) dependency on CSPRNG b) 15% slowdown c) doesn't really help since bigints are not CT
	            const s = modN(ik * modN(m + r * d)); // Not using blinding here
	            if (s === _0n)
	                return;
	            let recovery = (q.x === r ? 0 : 2) | Number(q.y & _1n$1); // recovery bit (2 or 3, when q.x > n)
	            let normS = s;
	            if (lowS && isBiggerThanHalfOrder(s)) {
	                normS = normalizeS(s); // if lowS was passed, ensure s is always
	                recovery ^= 1; // // in the bottom half of N
	            }
	            return new Signature(r, normS, recovery); // use normS, not s
	        }
	        return { seed, k2sig };
	    }
	    const defaultSigOpts = { lowS: CURVE.lowS, prehash: false };
	    const defaultVerOpts = { lowS: CURVE.lowS, prehash: false };
	    /**
	     * Signs message hash with a private key.
	     * ```
	     * sign(m, d, k) where
	     *   (x, y) = G × k
	     *   r = x mod n
	     *   s = (m + dr)/k mod n
	     * ```
	     * @param msgHash NOT message. msg needs to be hashed to `msgHash`, or use `prehash`.
	     * @param privKey private key
	     * @param opts lowS for non-malleable sigs. extraEntropy for mixing randomness into k. prehash will hash first arg.
	     * @returns signature with recovery param
	     */
	    function sign(msgHash, privKey, opts = defaultSigOpts) {
	        const { seed, k2sig } = prepSig(msgHash, privKey, opts); // Steps A, D of RFC6979 3.2.
	        const C = CURVE;
	        const drbg = createHmacDrbg(C.hash.outputLen, C.nByteLength, C.hmac);
	        return drbg(seed, k2sig); // Steps B, C, D, E, F, G
	    }
	    // Enable precomputes. Slows down first publicKey computation by 20ms.
	    Point.BASE._setWindowSize(8);
	    // utils.precompute(8, ProjectivePoint.BASE)
	    /**
	     * Verifies a signature against message hash and public key.
	     * Rejects lowS signatures by default: to override,
	     * specify option `{lowS: false}`. Implements section 4.1.4 from https://www.secg.org/sec1-v2.pdf:
	     *
	     * ```
	     * verify(r, s, h, P) where
	     *   U1 = hs^-1 mod n
	     *   U2 = rs^-1 mod n
	     *   R = U1⋅G - U2⋅P
	     *   mod(R.x, n) == r
	     * ```
	     */
	    function verify(signature, msgHash, publicKey, opts = defaultVerOpts) {
	        const sg = signature;
	        msgHash = ensureBytes('msgHash', msgHash);
	        publicKey = ensureBytes('publicKey', publicKey);
	        if ('strict' in opts)
	            throw new Error('options.strict was renamed to lowS');
	        const { lowS, prehash } = opts;
	        let _sig = undefined;
	        let P;
	        try {
	            if (typeof sg === 'string' || isBytes(sg)) {
	                // Signature can be represented in 2 ways: compact (2*nByteLength) & DER (variable-length).
	                // Since DER can also be 2*nByteLength bytes, we check for it first.
	                try {
	                    _sig = Signature.fromDER(sg);
	                }
	                catch (derError) {
	                    if (!(derError instanceof DER.Err))
	                        throw derError;
	                    _sig = Signature.fromCompact(sg);
	                }
	            }
	            else if (typeof sg === 'object' && typeof sg.r === 'bigint' && typeof sg.s === 'bigint') {
	                const { r, s } = sg;
	                _sig = new Signature(r, s);
	            }
	            else {
	                throw new Error('PARSE');
	            }
	            P = Point.fromHex(publicKey);
	        }
	        catch (error) {
	            if (error.message === 'PARSE')
	                throw new Error(`signature must be Signature instance, Uint8Array or hex string`);
	            return false;
	        }
	        if (lowS && _sig.hasHighS())
	            return false;
	        if (prehash)
	            msgHash = CURVE.hash(msgHash);
	        const { r, s } = _sig;
	        const h = bits2int_modN(msgHash); // Cannot use fields methods, since it is group element
	        const is = invN(s); // s^-1
	        const u1 = modN(h * is); // u1 = hs^-1 mod n
	        const u2 = modN(r * is); // u2 = rs^-1 mod n
	        const R = Point.BASE.multiplyAndAddUnsafe(P, u1, u2)?.toAffine(); // R = u1⋅G + u2⋅P
	        if (!R)
	            return false;
	        const v = modN(R.x);
	        return v === r;
	    }
	    return {
	        CURVE,
	        getPublicKey,
	        getSharedSecret,
	        sign,
	        verify,
	        ProjectivePoint: Point,
	        Signature,
	        utils,
	    };
	}

	/*! noble-curves - MIT License (c) 2022 Paul Miller (paulmillr.com) */
	// connects noble-curves to noble-hashes
	function getHash(hash) {
	    return {
	        hash,
	        hmac: (key, ...msgs) => hmac(hash, key, concatBytes$1(...msgs)),
	        randomBytes,
	    };
	}
	function createCurve(curveDef, defHash) {
	    const create = (hash) => weierstrass({ ...curveDef, ...getHash(hash) });
	    return Object.freeze({ ...create(defHash), create });
	}

	/*! noble-curves - MIT License (c) 2022 Paul Miller (paulmillr.com) */
	const secp256k1P = BigInt('0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f');
	const secp256k1N = BigInt('0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141');
	const _1n = BigInt(1);
	const _2n = BigInt(2);
	const divNearest = (a, b) => (a + b / _2n) / b;
	/**
	 * √n = n^((p+1)/4) for fields p = 3 mod 4. We unwrap the loop and multiply bit-by-bit.
	 * (P+1n/4n).toString(2) would produce bits [223x 1, 0, 22x 1, 4x 0, 11, 00]
	 */
	function sqrtMod(y) {
	    const P = secp256k1P;
	    // prettier-ignore
	    const _3n = BigInt(3), _6n = BigInt(6), _11n = BigInt(11), _22n = BigInt(22);
	    // prettier-ignore
	    const _23n = BigInt(23), _44n = BigInt(44), _88n = BigInt(88);
	    const b2 = (y * y * y) % P; // x^3, 11
	    const b3 = (b2 * b2 * y) % P; // x^7
	    const b6 = (pow2(b3, _3n, P) * b3) % P;
	    const b9 = (pow2(b6, _3n, P) * b3) % P;
	    const b11 = (pow2(b9, _2n, P) * b2) % P;
	    const b22 = (pow2(b11, _11n, P) * b11) % P;
	    const b44 = (pow2(b22, _22n, P) * b22) % P;
	    const b88 = (pow2(b44, _44n, P) * b44) % P;
	    const b176 = (pow2(b88, _88n, P) * b88) % P;
	    const b220 = (pow2(b176, _44n, P) * b44) % P;
	    const b223 = (pow2(b220, _3n, P) * b3) % P;
	    const t1 = (pow2(b223, _23n, P) * b22) % P;
	    const t2 = (pow2(t1, _6n, P) * b2) % P;
	    const root = pow2(t2, _2n, P);
	    if (!Fp.eql(Fp.sqr(root), y))
	        throw new Error('Cannot find square root');
	    return root;
	}
	const Fp = Field(secp256k1P, undefined, undefined, { sqrt: sqrtMod });
	const secp256k1 = createCurve({
	    a: BigInt(0), // equation params: a, b
	    b: BigInt(7), // Seem to be rigid: bitcointalk.org/index.php?topic=289795.msg3183975#msg3183975
	    Fp, // Field's prime: 2n**256n - 2n**32n - 2n**9n - 2n**8n - 2n**7n - 2n**6n - 2n**4n - 1n
	    n: secp256k1N, // Curve order, total count of valid points in the field
	    // Base point (x, y) aka generator point
	    Gx: BigInt('55066263022277343669578718895168534326250603453777594175500187360389116729240'),
	    Gy: BigInt('32670510020758816978083085130507043184471273380659243275938904335757337482424'),
	    h: BigInt(1), // Cofactor
	    lowS: true, // Allow only low-S signatures by default in sign() and verify()
	    /**
	     * secp256k1 belongs to Koblitz curves: it has efficiently computable endomorphism.
	     * Endomorphism uses 2x less RAM, speeds up precomputation by 2x and ECDH / key recovery by 20%.
	     * For precomputed wNAF it trades off 1/2 init time & 1/3 ram for 20% perf hit.
	     * Explanation: https://gist.github.com/paulmillr/eb670806793e84df628a7c434a873066
	     */
	    endo: {
	        beta: BigInt('0x7ae96a2b657c07106e64479eac3434e99cf0497512f58995c1396c28719501ee'),
	        splitScalar: (k) => {
	            const n = secp256k1N;
	            const a1 = BigInt('0x3086d221a7d46bcde86c90e49284eb15');
	            const b1 = -_1n * BigInt('0xe4437ed6010e88286f547fa90abfe4c3');
	            const a2 = BigInt('0x114ca50f7a8e2f3f657c1108d9d44cfd8');
	            const b2 = a1;
	            const POW_2_128 = BigInt('0x100000000000000000000000000000000'); // (2n**128n).toString(16)
	            const c1 = divNearest(b2 * k, n);
	            const c2 = divNearest(-b1 * k, n);
	            let k1 = mod(k - c1 * a1 - c2 * a2, n);
	            let k2 = mod(-c1 * b1 - c2 * b2, n);
	            const k1neg = k1 > POW_2_128;
	            const k2neg = k2 > POW_2_128;
	            if (k1neg)
	                k1 = n - k1;
	            if (k2neg)
	                k2 = n - k2;
	            if (k1 > POW_2_128 || k2 > POW_2_128) {
	                throw new Error('splitScalar: Endomorphism failed, k=' + k);
	            }
	            return { k1neg, k1, k2neg, k2 };
	        },
	    },
	}, sha256);
	// Schnorr signatures are superior to ECDSA from above. Below is Schnorr-specific BIP0340 code.
	// https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki
	BigInt(0);
	secp256k1.ProjectivePoint;

	const generateKeypair = () => {
	  const privateScalar = ed25519.utils.randomPrivateKey();
	  const publicKey = getPublicKey(privateScalar);
	  const secretKey = new Uint8Array(64);
	  secretKey.set(privateScalar);
	  secretKey.set(publicKey, 32);
	  return {
	    publicKey,
	    secretKey
	  };
	};
	const getPublicKey = ed25519.getPublicKey;
	function isOnCurve(publicKey) {
	  try {
	    ed25519.ExtendedPoint.fromHex(publicKey);
	    return true;
	  } catch {
	    return false;
	  }
	}
	const sign = (message, secretKey) => ed25519.sign(message, secretKey.slice(0, 32));
	const verify = ed25519.verify;

	const toBuffer = arr => {
	  if (bufferExports.Buffer.isBuffer(arr)) {
	    return arr;
	  } else if (arr instanceof Uint8Array) {
	    return bufferExports.Buffer.from(arr.buffer, arr.byteOffset, arr.byteLength);
	  } else {
	    return bufferExports.Buffer.from(arr);
	  }
	};

	// Class wrapping a plain object
	class Struct {
	  constructor(properties) {
	    Object.assign(this, properties);
	  }
	  encode() {
	    return bufferExports.Buffer.from(libExports.serialize(SOLANA_SCHEMA, this));
	  }
	  static decode(data) {
	    return libExports.deserialize(SOLANA_SCHEMA, this, data);
	  }
	  static decodeUnchecked(data) {
	    return libExports.deserializeUnchecked(SOLANA_SCHEMA, this, data);
	  }
	}
	const SOLANA_SCHEMA = new Map();

	var _PublicKey;

	/**
	 * Maximum length of derived pubkey seed
	 */
	const MAX_SEED_LENGTH = 32;

	/**
	 * Size of public key in bytes
	 */
	const PUBLIC_KEY_LENGTH = 32;

	/**
	 * Value to be converted into public key
	 */

	/**
	 * JSON object representation of PublicKey class
	 */

	function isPublicKeyData(value) {
	  return value._bn !== undefined;
	}

	// local counter used by PublicKey.unique()
	let uniquePublicKeyCounter = 1;

	/**
	 * A public key
	 */
	class PublicKey extends Struct {
	  /**
	   * Create a new PublicKey object
	   * @param value ed25519 public key as buffer or base-58 encoded string
	   */
	  constructor(value) {
	    super({});
	    /** @internal */
	    this._bn = void 0;
	    if (isPublicKeyData(value)) {
	      this._bn = value._bn;
	    } else {
	      if (typeof value === 'string') {
	        // assume base 58 encoding by default
	        const decoded = bs58.decode(value);
	        if (decoded.length != PUBLIC_KEY_LENGTH) {
	          throw new Error(`Invalid public key input`);
	        }
	        this._bn = new BN(decoded);
	      } else {
	        this._bn = new BN(value);
	      }
	      if (this._bn.byteLength() > PUBLIC_KEY_LENGTH) {
	        throw new Error(`Invalid public key input`);
	      }
	    }
	  }

	  /**
	   * Returns a unique PublicKey for tests and benchmarks using a counter
	   */
	  static unique() {
	    const key = new PublicKey(uniquePublicKeyCounter);
	    uniquePublicKeyCounter += 1;
	    return new PublicKey(key.toBuffer());
	  }

	  /**
	   * Default public key value. The base58-encoded string representation is all ones (as seen below)
	   * The underlying BN number is 32 bytes that are all zeros
	   */

	  /**
	   * Checks if two publicKeys are equal
	   */
	  equals(publicKey) {
	    return this._bn.eq(publicKey._bn);
	  }

	  /**
	   * Return the base-58 representation of the public key
	   */
	  toBase58() {
	    return bs58.encode(this.toBytes());
	  }
	  toJSON() {
	    return this.toBase58();
	  }

	  /**
	   * Return the byte array representation of the public key in big endian
	   */
	  toBytes() {
	    const buf = this.toBuffer();
	    return new Uint8Array(buf.buffer, buf.byteOffset, buf.byteLength);
	  }

	  /**
	   * Return the Buffer representation of the public key in big endian
	   */
	  toBuffer() {
	    const b = this._bn.toArrayLike(bufferExports.Buffer);
	    if (b.length === PUBLIC_KEY_LENGTH) {
	      return b;
	    }
	    const zeroPad = bufferExports.Buffer.alloc(32);
	    b.copy(zeroPad, 32 - b.length);
	    return zeroPad;
	  }
	  get [Symbol.toStringTag]() {
	    return `PublicKey(${this.toString()})`;
	  }

	  /**
	   * Return the base-58 representation of the public key
	   */
	  toString() {
	    return this.toBase58();
	  }

	  /**
	   * Derive a public key from another key, a seed, and a program ID.
	   * The program ID will also serve as the owner of the public key, giving
	   * it permission to write data to the account.
	   */
	  /* eslint-disable require-await */
	  static async createWithSeed(fromPublicKey, seed, programId) {
	    const buffer = bufferExports.Buffer.concat([fromPublicKey.toBuffer(), bufferExports.Buffer.from(seed), programId.toBuffer()]);
	    const publicKeyBytes = sha256(buffer);
	    return new PublicKey(publicKeyBytes);
	  }

	  /**
	   * Derive a program address from seeds and a program ID.
	   */
	  /* eslint-disable require-await */
	  static createProgramAddressSync(seeds, programId) {
	    let buffer = bufferExports.Buffer.alloc(0);
	    seeds.forEach(function (seed) {
	      if (seed.length > MAX_SEED_LENGTH) {
	        throw new TypeError(`Max seed length exceeded`);
	      }
	      buffer = bufferExports.Buffer.concat([buffer, toBuffer(seed)]);
	    });
	    buffer = bufferExports.Buffer.concat([buffer, programId.toBuffer(), bufferExports.Buffer.from('ProgramDerivedAddress')]);
	    const publicKeyBytes = sha256(buffer);
	    if (isOnCurve(publicKeyBytes)) {
	      throw new Error(`Invalid seeds, address must fall off the curve`);
	    }
	    return new PublicKey(publicKeyBytes);
	  }

	  /**
	   * Async version of createProgramAddressSync
	   * For backwards compatibility
	   *
	   * @deprecated Use {@link createProgramAddressSync} instead
	   */
	  /* eslint-disable require-await */
	  static async createProgramAddress(seeds, programId) {
	    return this.createProgramAddressSync(seeds, programId);
	  }

	  /**
	   * Find a valid program address
	   *
	   * Valid program addresses must fall off the ed25519 curve.  This function
	   * iterates a nonce until it finds one that when combined with the seeds
	   * results in a valid program address.
	   */
	  static findProgramAddressSync(seeds, programId) {
	    let nonce = 255;
	    let address;
	    while (nonce != 0) {
	      try {
	        const seedsWithNonce = seeds.concat(bufferExports.Buffer.from([nonce]));
	        address = this.createProgramAddressSync(seedsWithNonce, programId);
	      } catch (err) {
	        if (err instanceof TypeError) {
	          throw err;
	        }
	        nonce--;
	        continue;
	      }
	      return [address, nonce];
	    }
	    throw new Error(`Unable to find a viable program address nonce`);
	  }

	  /**
	   * Async version of findProgramAddressSync
	   * For backwards compatibility
	   *
	   * @deprecated Use {@link findProgramAddressSync} instead
	   */
	  static async findProgramAddress(seeds, programId) {
	    return this.findProgramAddressSync(seeds, programId);
	  }

	  /**
	   * Check that a pubkey is on the ed25519 curve.
	   */
	  static isOnCurve(pubkeyData) {
	    const pubkey = new PublicKey(pubkeyData);
	    return isOnCurve(pubkey.toBytes());
	  }
	}
	_PublicKey = PublicKey;
	PublicKey.default = new _PublicKey('11111111111111111111111111111111');
	SOLANA_SCHEMA.set(PublicKey, {
	  kind: 'struct',
	  fields: [['_bn', 'u256']]
	});

	new PublicKey('BPFLoader1111111111111111111111111111111111');

	/**
	 * Maximum over-the-wire size of a Transaction
	 *
	 * 1280 is IPv6 minimum MTU
	 * 40 bytes is the size of the IPv6 header
	 * 8 bytes is the size of the fragment header
	 */
	const PACKET_DATA_SIZE = 1280 - 40 - 8;
	const VERSION_PREFIX_MASK = 0x7f;
	const SIGNATURE_LENGTH_IN_BYTES = 64;

	class MessageAccountKeys {
	  constructor(staticAccountKeys, accountKeysFromLookups) {
	    this.staticAccountKeys = void 0;
	    this.accountKeysFromLookups = void 0;
	    this.staticAccountKeys = staticAccountKeys;
	    this.accountKeysFromLookups = accountKeysFromLookups;
	  }
	  keySegments() {
	    const keySegments = [this.staticAccountKeys];
	    if (this.accountKeysFromLookups) {
	      keySegments.push(this.accountKeysFromLookups.writable);
	      keySegments.push(this.accountKeysFromLookups.readonly);
	    }
	    return keySegments;
	  }
	  get(index) {
	    for (const keySegment of this.keySegments()) {
	      if (index < keySegment.length) {
	        return keySegment[index];
	      } else {
	        index -= keySegment.length;
	      }
	    }
	    return;
	  }
	  get length() {
	    return this.keySegments().flat().length;
	  }
	  compileInstructions(instructions) {
	    // Bail early if any account indexes would overflow a u8
	    const U8_MAX = 255;
	    if (this.length > U8_MAX + 1) {
	      throw new Error('Account index overflow encountered during compilation');
	    }
	    const keyIndexMap = new Map();
	    this.keySegments().flat().forEach((key, index) => {
	      keyIndexMap.set(key.toBase58(), index);
	    });
	    const findKeyIndex = key => {
	      const keyIndex = keyIndexMap.get(key.toBase58());
	      if (keyIndex === undefined) throw new Error('Encountered an unknown instruction account key during compilation');
	      return keyIndex;
	    };
	    return instructions.map(instruction => {
	      return {
	        programIdIndex: findKeyIndex(instruction.programId),
	        accountKeyIndexes: instruction.keys.map(meta => findKeyIndex(meta.pubkey)),
	        data: instruction.data
	      };
	    });
	  }
	}

	/**
	 * Layout for a public key
	 */
	const publicKey$2 = (property = 'publicKey') => {
	  return LayoutExports$1.blob(32, property);
	};
	/**
	 * Layout for a Rust String type
	 */
	const rustString = (property = 'string') => {
	  const rsl = LayoutExports$1.struct([LayoutExports$1.u32('length'), LayoutExports$1.u32('lengthPadding'), LayoutExports$1.blob(LayoutExports$1.offset(LayoutExports$1.u32(), -8), 'chars')], property);
	  const _decode = rsl.decode.bind(rsl);
	  const _encode = rsl.encode.bind(rsl);
	  const rslShim = rsl;
	  rslShim.decode = (b, offset) => {
	    const data = _decode(b, offset);
	    return data['chars'].toString();
	  };
	  rslShim.encode = (str, b, offset) => {
	    const data = {
	      chars: bufferExports.Buffer.from(str, 'utf8')
	    };
	    return _encode(data, b, offset);
	  };
	  rslShim.alloc = str => {
	    return LayoutExports$1.u32().span + LayoutExports$1.u32().span + bufferExports.Buffer.from(str, 'utf8').length;
	  };
	  return rslShim;
	};

	/**
	 * Layout for an Authorized object
	 */
	const authorized = (property = 'authorized') => {
	  return LayoutExports$1.struct([publicKey$2('staker'), publicKey$2('withdrawer')], property);
	};

	/**
	 * Layout for a Lockup object
	 */
	const lockup = (property = 'lockup') => {
	  return LayoutExports$1.struct([LayoutExports$1.ns64('unixTimestamp'), LayoutExports$1.ns64('epoch'), publicKey$2('custodian')], property);
	};

	/**
	 *  Layout for a VoteInit object
	 */
	const voteInit = (property = 'voteInit') => {
	  return LayoutExports$1.struct([publicKey$2('nodePubkey'), publicKey$2('authorizedVoter'), publicKey$2('authorizedWithdrawer'), LayoutExports$1.u8('commission')], property);
	};

	/**
	 *  Layout for a VoteAuthorizeWithSeedArgs object
	 */
	const voteAuthorizeWithSeedArgs = (property = 'voteAuthorizeWithSeedArgs') => {
	  return LayoutExports$1.struct([LayoutExports$1.u32('voteAuthorizationType'), publicKey$2('currentAuthorityDerivedKeyOwnerPubkey'), rustString('currentAuthorityDerivedKeySeed'), publicKey$2('newAuthorized')], property);
	};
	function getAlloc(type, fields) {
	  const getItemAlloc = item => {
	    if (item.span >= 0) {
	      return item.span;
	    } else if (typeof item.alloc === 'function') {
	      return item.alloc(fields[item.property]);
	    } else if ('count' in item && 'elementLayout' in item) {
	      const field = fields[item.property];
	      if (Array.isArray(field)) {
	        return field.length * getItemAlloc(item.elementLayout);
	      }
	    } else if ('fields' in item) {
	      // This is a `Structure` whose size needs to be recursively measured.
	      return getAlloc({
	        layout: item
	      }, fields[item.property]);
	    }
	    // Couldn't determine allocated size of layout
	    return 0;
	  };
	  let alloc = 0;
	  type.layout.fields.forEach(item => {
	    alloc += getItemAlloc(item);
	  });
	  return alloc;
	}

	function decodeLength(bytes) {
	  let len = 0;
	  let size = 0;
	  for (;;) {
	    let elem = bytes.shift();
	    len |= (elem & 0x7f) << size * 7;
	    size += 1;
	    if ((elem & 0x80) === 0) {
	      break;
	    }
	  }
	  return len;
	}
	function encodeLength(bytes, len) {
	  let rem_len = len;
	  for (;;) {
	    let elem = rem_len & 0x7f;
	    rem_len >>= 7;
	    if (rem_len == 0) {
	      bytes.push(elem);
	      break;
	    } else {
	      elem |= 0x80;
	      bytes.push(elem);
	    }
	  }
	}

	function assert (condition, message) {
	  if (!condition) {
	    throw new Error(message || 'Assertion failed');
	  }
	}

	class CompiledKeys {
	  constructor(payer, keyMetaMap) {
	    this.payer = void 0;
	    this.keyMetaMap = void 0;
	    this.payer = payer;
	    this.keyMetaMap = keyMetaMap;
	  }
	  static compile(instructions, payer) {
	    const keyMetaMap = new Map();
	    const getOrInsertDefault = pubkey => {
	      const address = pubkey.toBase58();
	      let keyMeta = keyMetaMap.get(address);
	      if (keyMeta === undefined) {
	        keyMeta = {
	          isSigner: false,
	          isWritable: false,
	          isInvoked: false
	        };
	        keyMetaMap.set(address, keyMeta);
	      }
	      return keyMeta;
	    };
	    const payerKeyMeta = getOrInsertDefault(payer);
	    payerKeyMeta.isSigner = true;
	    payerKeyMeta.isWritable = true;
	    for (const ix of instructions) {
	      getOrInsertDefault(ix.programId).isInvoked = true;
	      for (const accountMeta of ix.keys) {
	        const keyMeta = getOrInsertDefault(accountMeta.pubkey);
	        keyMeta.isSigner ||= accountMeta.isSigner;
	        keyMeta.isWritable ||= accountMeta.isWritable;
	      }
	    }
	    return new CompiledKeys(payer, keyMetaMap);
	  }
	  getMessageComponents() {
	    const mapEntries = [...this.keyMetaMap.entries()];
	    assert(mapEntries.length <= 256, 'Max static account keys length exceeded');
	    const writableSigners = mapEntries.filter(([, meta]) => meta.isSigner && meta.isWritable);
	    const readonlySigners = mapEntries.filter(([, meta]) => meta.isSigner && !meta.isWritable);
	    const writableNonSigners = mapEntries.filter(([, meta]) => !meta.isSigner && meta.isWritable);
	    const readonlyNonSigners = mapEntries.filter(([, meta]) => !meta.isSigner && !meta.isWritable);
	    const header = {
	      numRequiredSignatures: writableSigners.length + readonlySigners.length,
	      numReadonlySignedAccounts: readonlySigners.length,
	      numReadonlyUnsignedAccounts: readonlyNonSigners.length
	    };

	    // sanity checks
	    {
	      assert(writableSigners.length > 0, 'Expected at least one writable signer key');
	      const [payerAddress] = writableSigners[0];
	      assert(payerAddress === this.payer.toBase58(), 'Expected first writable signer key to be the fee payer');
	    }
	    const staticAccountKeys = [...writableSigners.map(([address]) => new PublicKey(address)), ...readonlySigners.map(([address]) => new PublicKey(address)), ...writableNonSigners.map(([address]) => new PublicKey(address)), ...readonlyNonSigners.map(([address]) => new PublicKey(address))];
	    return [header, staticAccountKeys];
	  }
	  extractTableLookup(lookupTable) {
	    const [writableIndexes, drainedWritableKeys] = this.drainKeysFoundInLookupTable(lookupTable.state.addresses, keyMeta => !keyMeta.isSigner && !keyMeta.isInvoked && keyMeta.isWritable);
	    const [readonlyIndexes, drainedReadonlyKeys] = this.drainKeysFoundInLookupTable(lookupTable.state.addresses, keyMeta => !keyMeta.isSigner && !keyMeta.isInvoked && !keyMeta.isWritable);

	    // Don't extract lookup if no keys were found
	    if (writableIndexes.length === 0 && readonlyIndexes.length === 0) {
	      return;
	    }
	    return [{
	      accountKey: lookupTable.key,
	      writableIndexes,
	      readonlyIndexes
	    }, {
	      writable: drainedWritableKeys,
	      readonly: drainedReadonlyKeys
	    }];
	  }

	  /** @internal */
	  drainKeysFoundInLookupTable(lookupTableEntries, keyMetaFilter) {
	    const lookupTableIndexes = new Array();
	    const drainedKeys = new Array();
	    for (const [address, keyMeta] of this.keyMetaMap.entries()) {
	      if (keyMetaFilter(keyMeta)) {
	        const key = new PublicKey(address);
	        const lookupTableIndex = lookupTableEntries.findIndex(entry => entry.equals(key));
	        if (lookupTableIndex >= 0) {
	          assert(lookupTableIndex < 256, 'Max lookup table index exceeded');
	          lookupTableIndexes.push(lookupTableIndex);
	          drainedKeys.push(key);
	          this.keyMetaMap.delete(address);
	        }
	      }
	    }
	    return [lookupTableIndexes, drainedKeys];
	  }
	}

	const END_OF_BUFFER_ERROR_MESSAGE = 'Reached end of buffer unexpectedly';

	/**
	 * Delegates to `Array#shift`, but throws if the array is zero-length.
	 */
	function guardedShift(byteArray) {
	  if (byteArray.length === 0) {
	    throw new Error(END_OF_BUFFER_ERROR_MESSAGE);
	  }
	  return byteArray.shift();
	}

	/**
	 * Delegates to `Array#splice`, but throws if the section being spliced out extends past the end of
	 * the array.
	 */
	function guardedSplice(byteArray, ...args) {
	  const [start] = args;
	  if (args.length === 2 // Implies that `deleteCount` was supplied
	  ? start + (args[1] ?? 0) > byteArray.length : start >= byteArray.length) {
	    throw new Error(END_OF_BUFFER_ERROR_MESSAGE);
	  }
	  return byteArray.splice(...args);
	}

	/**
	 * An instruction to execute by a program
	 *
	 * @property {number} programIdIndex
	 * @property {number[]} accounts
	 * @property {string} data
	 */

	/**
	 * Message constructor arguments
	 */

	/**
	 * List of instructions to be processed atomically
	 */
	class Message {
	  constructor(args) {
	    this.header = void 0;
	    this.accountKeys = void 0;
	    this.recentBlockhash = void 0;
	    this.instructions = void 0;
	    this.indexToProgramIds = new Map();
	    this.header = args.header;
	    this.accountKeys = args.accountKeys.map(account => new PublicKey(account));
	    this.recentBlockhash = args.recentBlockhash;
	    this.instructions = args.instructions;
	    this.instructions.forEach(ix => this.indexToProgramIds.set(ix.programIdIndex, this.accountKeys[ix.programIdIndex]));
	  }
	  get version() {
	    return 'legacy';
	  }
	  get staticAccountKeys() {
	    return this.accountKeys;
	  }
	  get compiledInstructions() {
	    return this.instructions.map(ix => ({
	      programIdIndex: ix.programIdIndex,
	      accountKeyIndexes: ix.accounts,
	      data: bs58.decode(ix.data)
	    }));
	  }
	  get addressTableLookups() {
	    return [];
	  }
	  getAccountKeys() {
	    return new MessageAccountKeys(this.staticAccountKeys);
	  }
	  static compile(args) {
	    const compiledKeys = CompiledKeys.compile(args.instructions, args.payerKey);
	    const [header, staticAccountKeys] = compiledKeys.getMessageComponents();
	    const accountKeys = new MessageAccountKeys(staticAccountKeys);
	    const instructions = accountKeys.compileInstructions(args.instructions).map(ix => ({
	      programIdIndex: ix.programIdIndex,
	      accounts: ix.accountKeyIndexes,
	      data: bs58.encode(ix.data)
	    }));
	    return new Message({
	      header,
	      accountKeys: staticAccountKeys,
	      recentBlockhash: args.recentBlockhash,
	      instructions
	    });
	  }
	  isAccountSigner(index) {
	    return index < this.header.numRequiredSignatures;
	  }
	  isAccountWritable(index) {
	    const numSignedAccounts = this.header.numRequiredSignatures;
	    if (index >= this.header.numRequiredSignatures) {
	      const unsignedAccountIndex = index - numSignedAccounts;
	      const numUnsignedAccounts = this.accountKeys.length - numSignedAccounts;
	      const numWritableUnsignedAccounts = numUnsignedAccounts - this.header.numReadonlyUnsignedAccounts;
	      return unsignedAccountIndex < numWritableUnsignedAccounts;
	    } else {
	      const numWritableSignedAccounts = numSignedAccounts - this.header.numReadonlySignedAccounts;
	      return index < numWritableSignedAccounts;
	    }
	  }
	  isProgramId(index) {
	    return this.indexToProgramIds.has(index);
	  }
	  programIds() {
	    return [...this.indexToProgramIds.values()];
	  }
	  nonProgramIds() {
	    return this.accountKeys.filter((_, index) => !this.isProgramId(index));
	  }
	  serialize() {
	    const numKeys = this.accountKeys.length;
	    let keyCount = [];
	    encodeLength(keyCount, numKeys);
	    const instructions = this.instructions.map(instruction => {
	      const {
	        accounts,
	        programIdIndex
	      } = instruction;
	      const data = Array.from(bs58.decode(instruction.data));
	      let keyIndicesCount = [];
	      encodeLength(keyIndicesCount, accounts.length);
	      let dataCount = [];
	      encodeLength(dataCount, data.length);
	      return {
	        programIdIndex,
	        keyIndicesCount: bufferExports.Buffer.from(keyIndicesCount),
	        keyIndices: accounts,
	        dataLength: bufferExports.Buffer.from(dataCount),
	        data
	      };
	    });
	    let instructionCount = [];
	    encodeLength(instructionCount, instructions.length);
	    let instructionBuffer = bufferExports.Buffer.alloc(PACKET_DATA_SIZE);
	    bufferExports.Buffer.from(instructionCount).copy(instructionBuffer);
	    let instructionBufferLength = instructionCount.length;
	    instructions.forEach(instruction => {
	      const instructionLayout = LayoutExports$1.struct([LayoutExports$1.u8('programIdIndex'), LayoutExports$1.blob(instruction.keyIndicesCount.length, 'keyIndicesCount'), LayoutExports$1.seq(LayoutExports$1.u8('keyIndex'), instruction.keyIndices.length, 'keyIndices'), LayoutExports$1.blob(instruction.dataLength.length, 'dataLength'), LayoutExports$1.seq(LayoutExports$1.u8('userdatum'), instruction.data.length, 'data')]);
	      const length = instructionLayout.encode(instruction, instructionBuffer, instructionBufferLength);
	      instructionBufferLength += length;
	    });
	    instructionBuffer = instructionBuffer.slice(0, instructionBufferLength);
	    const signDataLayout = LayoutExports$1.struct([LayoutExports$1.blob(1, 'numRequiredSignatures'), LayoutExports$1.blob(1, 'numReadonlySignedAccounts'), LayoutExports$1.blob(1, 'numReadonlyUnsignedAccounts'), LayoutExports$1.blob(keyCount.length, 'keyCount'), LayoutExports$1.seq(publicKey$2('key'), numKeys, 'keys'), publicKey$2('recentBlockhash')]);
	    const transaction = {
	      numRequiredSignatures: bufferExports.Buffer.from([this.header.numRequiredSignatures]),
	      numReadonlySignedAccounts: bufferExports.Buffer.from([this.header.numReadonlySignedAccounts]),
	      numReadonlyUnsignedAccounts: bufferExports.Buffer.from([this.header.numReadonlyUnsignedAccounts]),
	      keyCount: bufferExports.Buffer.from(keyCount),
	      keys: this.accountKeys.map(key => toBuffer(key.toBytes())),
	      recentBlockhash: bs58.decode(this.recentBlockhash)
	    };
	    let signData = bufferExports.Buffer.alloc(2048);
	    const length = signDataLayout.encode(transaction, signData);
	    instructionBuffer.copy(signData, length);
	    return signData.slice(0, length + instructionBuffer.length);
	  }

	  /**
	   * Decode a compiled message into a Message object.
	   */
	  static from(buffer) {
	    // Slice up wire data
	    let byteArray = [...buffer];
	    const numRequiredSignatures = guardedShift(byteArray);
	    if (numRequiredSignatures !== (numRequiredSignatures & VERSION_PREFIX_MASK)) {
	      throw new Error('Versioned messages must be deserialized with VersionedMessage.deserialize()');
	    }
	    const numReadonlySignedAccounts = guardedShift(byteArray);
	    const numReadonlyUnsignedAccounts = guardedShift(byteArray);
	    const accountCount = decodeLength(byteArray);
	    let accountKeys = [];
	    for (let i = 0; i < accountCount; i++) {
	      const account = guardedSplice(byteArray, 0, PUBLIC_KEY_LENGTH);
	      accountKeys.push(new PublicKey(bufferExports.Buffer.from(account)));
	    }
	    const recentBlockhash = guardedSplice(byteArray, 0, PUBLIC_KEY_LENGTH);
	    const instructionCount = decodeLength(byteArray);
	    let instructions = [];
	    for (let i = 0; i < instructionCount; i++) {
	      const programIdIndex = guardedShift(byteArray);
	      const accountCount = decodeLength(byteArray);
	      const accounts = guardedSplice(byteArray, 0, accountCount);
	      const dataLength = decodeLength(byteArray);
	      const dataSlice = guardedSplice(byteArray, 0, dataLength);
	      const data = bs58.encode(bufferExports.Buffer.from(dataSlice));
	      instructions.push({
	        programIdIndex,
	        accounts,
	        data
	      });
	    }
	    const messageArgs = {
	      header: {
	        numRequiredSignatures,
	        numReadonlySignedAccounts,
	        numReadonlyUnsignedAccounts
	      },
	      recentBlockhash: bs58.encode(bufferExports.Buffer.from(recentBlockhash)),
	      accountKeys,
	      instructions
	    };
	    return new Message(messageArgs);
	  }
	}

	/**
	 * Default (empty) signature
	 */
	const DEFAULT_SIGNATURE = bufferExports.Buffer.alloc(SIGNATURE_LENGTH_IN_BYTES).fill(0);

	/**
	 * Account metadata used to define instructions
	 */

	/**
	 * List of TransactionInstruction object fields that may be initialized at construction
	 */

	/**
	 * Configuration object for Transaction.serialize()
	 */

	/**
	 * @internal
	 */

	/**
	 * Transaction Instruction class
	 */
	class TransactionInstruction {
	  constructor(opts) {
	    /**
	     * Public keys to include in this transaction
	     * Boolean represents whether this pubkey needs to sign the transaction
	     */
	    this.keys = void 0;
	    /**
	     * Program Id to execute
	     */
	    this.programId = void 0;
	    /**
	     * Program input
	     */
	    this.data = bufferExports.Buffer.alloc(0);
	    this.programId = opts.programId;
	    this.keys = opts.keys;
	    if (opts.data) {
	      this.data = opts.data;
	    }
	  }

	  /**
	   * @internal
	   */
	  toJSON() {
	    return {
	      keys: this.keys.map(({
	        pubkey,
	        isSigner,
	        isWritable
	      }) => ({
	        pubkey: pubkey.toJSON(),
	        isSigner,
	        isWritable
	      })),
	      programId: this.programId.toJSON(),
	      data: [...this.data]
	    };
	  }
	}

	/**
	 * Pair of signature and corresponding public key
	 */

	/**
	 * List of Transaction object fields that may be initialized at construction
	 */

	// For backward compatibility; an unfortunate consequence of being
	// forced to over-export types by the documentation generator.
	// See https://github.com/solana-labs/solana/pull/25820

	/**
	 * Blockhash-based transactions have a lifetime that are defined by
	 * the blockhash they include. Any transaction whose blockhash is
	 * too old will be rejected.
	 */

	/**
	 * Use these options to construct a durable nonce transaction.
	 */

	/**
	 * Nonce information to be used to build an offline Transaction.
	 */

	/**
	 * @internal
	 */

	/**
	 * Transaction class
	 */
	class Transaction {
	  /**
	   * The first (payer) Transaction signature
	   *
	   * @returns {Buffer | null} Buffer of payer's signature
	   */
	  get signature() {
	    if (this.signatures.length > 0) {
	      return this.signatures[0].signature;
	    }
	    return null;
	  }

	  /**
	   * The transaction fee payer
	   */

	  // Construct a transaction with a blockhash and lastValidBlockHeight

	  // Construct a transaction using a durable nonce

	  /**
	   * @deprecated `TransactionCtorFields` has been deprecated and will be removed in a future version.
	   * Please supply a `TransactionBlockhashCtor` instead.
	   */

	  /**
	   * Construct an empty Transaction
	   */
	  constructor(opts) {
	    /**
	     * Signatures for the transaction.  Typically created by invoking the
	     * `sign()` method
	     */
	    this.signatures = [];
	    this.feePayer = void 0;
	    /**
	     * The instructions to atomically execute
	     */
	    this.instructions = [];
	    /**
	     * A recent transaction id. Must be populated by the caller
	     */
	    this.recentBlockhash = void 0;
	    /**
	     * the last block chain can advance to before tx is declared expired
	     * */
	    this.lastValidBlockHeight = void 0;
	    /**
	     * Optional Nonce information. If populated, transaction will use a durable
	     * Nonce hash instead of a recentBlockhash. Must be populated by the caller
	     */
	    this.nonceInfo = void 0;
	    /**
	     * If this is a nonce transaction this represents the minimum slot from which
	     * to evaluate if the nonce has advanced when attempting to confirm the
	     * transaction. This protects against a case where the transaction confirmation
	     * logic loads the nonce account from an old slot and assumes the mismatch in
	     * nonce value implies that the nonce has been advanced.
	     */
	    this.minNonceContextSlot = void 0;
	    /**
	     * @internal
	     */
	    this._message = void 0;
	    /**
	     * @internal
	     */
	    this._json = void 0;
	    if (!opts) {
	      return;
	    }
	    if (opts.feePayer) {
	      this.feePayer = opts.feePayer;
	    }
	    if (opts.signatures) {
	      this.signatures = opts.signatures;
	    }
	    if (Object.prototype.hasOwnProperty.call(opts, 'nonceInfo')) {
	      const {
	        minContextSlot,
	        nonceInfo
	      } = opts;
	      this.minNonceContextSlot = minContextSlot;
	      this.nonceInfo = nonceInfo;
	    } else if (Object.prototype.hasOwnProperty.call(opts, 'lastValidBlockHeight')) {
	      const {
	        blockhash,
	        lastValidBlockHeight
	      } = opts;
	      this.recentBlockhash = blockhash;
	      this.lastValidBlockHeight = lastValidBlockHeight;
	    } else {
	      const {
	        recentBlockhash,
	        nonceInfo
	      } = opts;
	      if (nonceInfo) {
	        this.nonceInfo = nonceInfo;
	      }
	      this.recentBlockhash = recentBlockhash;
	    }
	  }

	  /**
	   * @internal
	   */
	  toJSON() {
	    return {
	      recentBlockhash: this.recentBlockhash || null,
	      feePayer: this.feePayer ? this.feePayer.toJSON() : null,
	      nonceInfo: this.nonceInfo ? {
	        nonce: this.nonceInfo.nonce,
	        nonceInstruction: this.nonceInfo.nonceInstruction.toJSON()
	      } : null,
	      instructions: this.instructions.map(instruction => instruction.toJSON()),
	      signers: this.signatures.map(({
	        publicKey
	      }) => {
	        return publicKey.toJSON();
	      })
	    };
	  }

	  /**
	   * Add one or more instructions to this Transaction
	   *
	   * @param {Array< Transaction | TransactionInstruction | TransactionInstructionCtorFields >} items - Instructions to add to the Transaction
	   */
	  add(...items) {
	    if (items.length === 0) {
	      throw new Error('No instructions');
	    }
	    items.forEach(item => {
	      if ('instructions' in item) {
	        this.instructions = this.instructions.concat(item.instructions);
	      } else if ('data' in item && 'programId' in item && 'keys' in item) {
	        this.instructions.push(item);
	      } else {
	        this.instructions.push(new TransactionInstruction(item));
	      }
	    });
	    return this;
	  }

	  /**
	   * Compile transaction data
	   */
	  compileMessage() {
	    if (this._message && JSON.stringify(this.toJSON()) === JSON.stringify(this._json)) {
	      return this._message;
	    }
	    let recentBlockhash;
	    let instructions;
	    if (this.nonceInfo) {
	      recentBlockhash = this.nonceInfo.nonce;
	      if (this.instructions[0] != this.nonceInfo.nonceInstruction) {
	        instructions = [this.nonceInfo.nonceInstruction, ...this.instructions];
	      } else {
	        instructions = this.instructions;
	      }
	    } else {
	      recentBlockhash = this.recentBlockhash;
	      instructions = this.instructions;
	    }
	    if (!recentBlockhash) {
	      throw new Error('Transaction recentBlockhash required');
	    }
	    if (instructions.length < 1) {
	      console.warn('No instructions provided');
	    }
	    let feePayer;
	    if (this.feePayer) {
	      feePayer = this.feePayer;
	    } else if (this.signatures.length > 0 && this.signatures[0].publicKey) {
	      // Use implicit fee payer
	      feePayer = this.signatures[0].publicKey;
	    } else {
	      throw new Error('Transaction fee payer required');
	    }
	    for (let i = 0; i < instructions.length; i++) {
	      if (instructions[i].programId === undefined) {
	        throw new Error(`Transaction instruction index ${i} has undefined program id`);
	      }
	    }
	    const programIds = [];
	    const accountMetas = [];
	    instructions.forEach(instruction => {
	      instruction.keys.forEach(accountMeta => {
	        accountMetas.push({
	          ...accountMeta
	        });
	      });
	      const programId = instruction.programId.toString();
	      if (!programIds.includes(programId)) {
	        programIds.push(programId);
	      }
	    });

	    // Append programID account metas
	    programIds.forEach(programId => {
	      accountMetas.push({
	        pubkey: new PublicKey(programId),
	        isSigner: false,
	        isWritable: false
	      });
	    });

	    // Cull duplicate account metas
	    const uniqueMetas = [];
	    accountMetas.forEach(accountMeta => {
	      const pubkeyString = accountMeta.pubkey.toString();
	      const uniqueIndex = uniqueMetas.findIndex(x => {
	        return x.pubkey.toString() === pubkeyString;
	      });
	      if (uniqueIndex > -1) {
	        uniqueMetas[uniqueIndex].isWritable = uniqueMetas[uniqueIndex].isWritable || accountMeta.isWritable;
	        uniqueMetas[uniqueIndex].isSigner = uniqueMetas[uniqueIndex].isSigner || accountMeta.isSigner;
	      } else {
	        uniqueMetas.push(accountMeta);
	      }
	    });

	    // Sort. Prioritizing first by signer, then by writable
	    uniqueMetas.sort(function (x, y) {
	      if (x.isSigner !== y.isSigner) {
	        // Signers always come before non-signers
	        return x.isSigner ? -1 : 1;
	      }
	      if (x.isWritable !== y.isWritable) {
	        // Writable accounts always come before read-only accounts
	        return x.isWritable ? -1 : 1;
	      }
	      // Otherwise, sort by pubkey, stringwise.
	      const options = {
	        localeMatcher: 'best fit',
	        usage: 'sort',
	        sensitivity: 'variant',
	        ignorePunctuation: false,
	        numeric: false,
	        caseFirst: 'lower'
	      };
	      return x.pubkey.toBase58().localeCompare(y.pubkey.toBase58(), 'en', options);
	    });

	    // Move fee payer to the front
	    const feePayerIndex = uniqueMetas.findIndex(x => {
	      return x.pubkey.equals(feePayer);
	    });
	    if (feePayerIndex > -1) {
	      const [payerMeta] = uniqueMetas.splice(feePayerIndex, 1);
	      payerMeta.isSigner = true;
	      payerMeta.isWritable = true;
	      uniqueMetas.unshift(payerMeta);
	    } else {
	      uniqueMetas.unshift({
	        pubkey: feePayer,
	        isSigner: true,
	        isWritable: true
	      });
	    }

	    // Disallow unknown signers
	    for (const signature of this.signatures) {
	      const uniqueIndex = uniqueMetas.findIndex(x => {
	        return x.pubkey.equals(signature.publicKey);
	      });
	      if (uniqueIndex > -1) {
	        if (!uniqueMetas[uniqueIndex].isSigner) {
	          uniqueMetas[uniqueIndex].isSigner = true;
	          console.warn('Transaction references a signature that is unnecessary, ' + 'only the fee payer and instruction signer accounts should sign a transaction. ' + 'This behavior is deprecated and will throw an error in the next major version release.');
	        }
	      } else {
	        throw new Error(`unknown signer: ${signature.publicKey.toString()}`);
	      }
	    }
	    let numRequiredSignatures = 0;
	    let numReadonlySignedAccounts = 0;
	    let numReadonlyUnsignedAccounts = 0;

	    // Split out signing from non-signing keys and count header values
	    const signedKeys = [];
	    const unsignedKeys = [];
	    uniqueMetas.forEach(({
	      pubkey,
	      isSigner,
	      isWritable
	    }) => {
	      if (isSigner) {
	        signedKeys.push(pubkey.toString());
	        numRequiredSignatures += 1;
	        if (!isWritable) {
	          numReadonlySignedAccounts += 1;
	        }
	      } else {
	        unsignedKeys.push(pubkey.toString());
	        if (!isWritable) {
	          numReadonlyUnsignedAccounts += 1;
	        }
	      }
	    });
	    const accountKeys = signedKeys.concat(unsignedKeys);
	    const compiledInstructions = instructions.map(instruction => {
	      const {
	        data,
	        programId
	      } = instruction;
	      return {
	        programIdIndex: accountKeys.indexOf(programId.toString()),
	        accounts: instruction.keys.map(meta => accountKeys.indexOf(meta.pubkey.toString())),
	        data: bs58.encode(data)
	      };
	    });
	    compiledInstructions.forEach(instruction => {
	      assert(instruction.programIdIndex >= 0);
	      instruction.accounts.forEach(keyIndex => assert(keyIndex >= 0));
	    });
	    return new Message({
	      header: {
	        numRequiredSignatures,
	        numReadonlySignedAccounts,
	        numReadonlyUnsignedAccounts
	      },
	      accountKeys,
	      recentBlockhash,
	      instructions: compiledInstructions
	    });
	  }

	  /**
	   * @internal
	   */
	  _compile() {
	    const message = this.compileMessage();
	    const signedKeys = message.accountKeys.slice(0, message.header.numRequiredSignatures);
	    if (this.signatures.length === signedKeys.length) {
	      const valid = this.signatures.every((pair, index) => {
	        return signedKeys[index].equals(pair.publicKey);
	      });
	      if (valid) return message;
	    }
	    this.signatures = signedKeys.map(publicKey => ({
	      signature: null,
	      publicKey
	    }));
	    return message;
	  }

	  /**
	   * Get a buffer of the Transaction data that need to be covered by signatures
	   */
	  serializeMessage() {
	    return this._compile().serialize();
	  }

	  /**
	   * Get the estimated fee associated with a transaction
	   *
	   * @param {Connection} connection Connection to RPC Endpoint.
	   *
	   * @returns {Promise<number | null>} The estimated fee for the transaction
	   */
	  async getEstimatedFee(connection) {
	    return (await connection.getFeeForMessage(this.compileMessage())).value;
	  }

	  /**
	   * Specify the public keys which will be used to sign the Transaction.
	   * The first signer will be used as the transaction fee payer account.
	   *
	   * Signatures can be added with either `partialSign` or `addSignature`
	   *
	   * @deprecated Deprecated since v0.84.0. Only the fee payer needs to be
	   * specified and it can be set in the Transaction constructor or with the
	   * `feePayer` property.
	   */
	  setSigners(...signers) {
	    if (signers.length === 0) {
	      throw new Error('No signers');
	    }
	    const seen = new Set();
	    this.signatures = signers.filter(publicKey => {
	      const key = publicKey.toString();
	      if (seen.has(key)) {
	        return false;
	      } else {
	        seen.add(key);
	        return true;
	      }
	    }).map(publicKey => ({
	      signature: null,
	      publicKey
	    }));
	  }

	  /**
	   * Sign the Transaction with the specified signers. Multiple signatures may
	   * be applied to a Transaction. The first signature is considered "primary"
	   * and is used identify and confirm transactions.
	   *
	   * If the Transaction `feePayer` is not set, the first signer will be used
	   * as the transaction fee payer account.
	   *
	   * Transaction fields should not be modified after the first call to `sign`,
	   * as doing so may invalidate the signature and cause the Transaction to be
	   * rejected.
	   *
	   * The Transaction must be assigned a valid `recentBlockhash` before invoking this method
	   *
	   * @param {Array<Signer>} signers Array of signers that will sign the transaction
	   */
	  sign(...signers) {
	    if (signers.length === 0) {
	      throw new Error('No signers');
	    }

	    // Dedupe signers
	    const seen = new Set();
	    const uniqueSigners = [];
	    for (const signer of signers) {
	      const key = signer.publicKey.toString();
	      if (seen.has(key)) {
	        continue;
	      } else {
	        seen.add(key);
	        uniqueSigners.push(signer);
	      }
	    }
	    this.signatures = uniqueSigners.map(signer => ({
	      signature: null,
	      publicKey: signer.publicKey
	    }));
	    const message = this._compile();
	    this._partialSign(message, ...uniqueSigners);
	  }

	  /**
	   * Partially sign a transaction with the specified accounts. All accounts must
	   * correspond to either the fee payer or a signer account in the transaction
	   * instructions.
	   *
	   * All the caveats from the `sign` method apply to `partialSign`
	   *
	   * @param {Array<Signer>} signers Array of signers that will sign the transaction
	   */
	  partialSign(...signers) {
	    if (signers.length === 0) {
	      throw new Error('No signers');
	    }

	    // Dedupe signers
	    const seen = new Set();
	    const uniqueSigners = [];
	    for (const signer of signers) {
	      const key = signer.publicKey.toString();
	      if (seen.has(key)) {
	        continue;
	      } else {
	        seen.add(key);
	        uniqueSigners.push(signer);
	      }
	    }
	    const message = this._compile();
	    this._partialSign(message, ...uniqueSigners);
	  }

	  /**
	   * @internal
	   */
	  _partialSign(message, ...signers) {
	    const signData = message.serialize();
	    signers.forEach(signer => {
	      const signature = sign(signData, signer.secretKey);
	      this._addSignature(signer.publicKey, toBuffer(signature));
	    });
	  }

	  /**
	   * Add an externally created signature to a transaction. The public key
	   * must correspond to either the fee payer or a signer account in the transaction
	   * instructions.
	   *
	   * @param {PublicKey} pubkey Public key that will be added to the transaction.
	   * @param {Buffer} signature An externally created signature to add to the transaction.
	   */
	  addSignature(pubkey, signature) {
	    this._compile(); // Ensure signatures array is populated
	    this._addSignature(pubkey, signature);
	  }

	  /**
	   * @internal
	   */
	  _addSignature(pubkey, signature) {
	    assert(signature.length === 64);
	    const index = this.signatures.findIndex(sigpair => pubkey.equals(sigpair.publicKey));
	    if (index < 0) {
	      throw new Error(`unknown signer: ${pubkey.toString()}`);
	    }
	    this.signatures[index].signature = bufferExports.Buffer.from(signature);
	  }

	  /**
	   * Verify signatures of a Transaction
	   * Optional parameter specifies if we're expecting a fully signed Transaction or a partially signed one.
	   * If no boolean is provided, we expect a fully signed Transaction by default.
	   *
	   * @param {boolean} [requireAllSignatures=true] Require a fully signed Transaction
	   */
	  verifySignatures(requireAllSignatures = true) {
	    const signatureErrors = this._getMessageSignednessErrors(this.serializeMessage(), requireAllSignatures);
	    return !signatureErrors;
	  }

	  /**
	   * @internal
	   */
	  _getMessageSignednessErrors(message, requireAllSignatures) {
	    const errors = {};
	    for (const {
	      signature,
	      publicKey
	    } of this.signatures) {
	      if (signature === null) {
	        if (requireAllSignatures) {
	          (errors.missing ||= []).push(publicKey);
	        }
	      } else {
	        if (!verify(signature, message, publicKey.toBytes())) {
	          (errors.invalid ||= []).push(publicKey);
	        }
	      }
	    }
	    return errors.invalid || errors.missing ? errors : undefined;
	  }

	  /**
	   * Serialize the Transaction in the wire format.
	   *
	   * @param {Buffer} [config] Config of transaction.
	   *
	   * @returns {Buffer} Signature of transaction in wire format.
	   */
	  serialize(config) {
	    const {
	      requireAllSignatures,
	      verifySignatures
	    } = Object.assign({
	      requireAllSignatures: true,
	      verifySignatures: true
	    }, config);
	    const signData = this.serializeMessage();
	    if (verifySignatures) {
	      const sigErrors = this._getMessageSignednessErrors(signData, requireAllSignatures);
	      if (sigErrors) {
	        let errorMessage = 'Signature verification failed.';
	        if (sigErrors.invalid) {
	          errorMessage += `\nInvalid signature for public key${sigErrors.invalid.length === 1 ? '' : '(s)'} [\`${sigErrors.invalid.map(p => p.toBase58()).join('`, `')}\`].`;
	        }
	        if (sigErrors.missing) {
	          errorMessage += `\nMissing signature for public key${sigErrors.missing.length === 1 ? '' : '(s)'} [\`${sigErrors.missing.map(p => p.toBase58()).join('`, `')}\`].`;
	        }
	        throw new Error(errorMessage);
	      }
	    }
	    return this._serialize(signData);
	  }

	  /**
	   * @internal
	   */
	  _serialize(signData) {
	    const {
	      signatures
	    } = this;
	    const signatureCount = [];
	    encodeLength(signatureCount, signatures.length);
	    const transactionLength = signatureCount.length + signatures.length * 64 + signData.length;
	    const wireTransaction = bufferExports.Buffer.alloc(transactionLength);
	    assert(signatures.length < 256);
	    bufferExports.Buffer.from(signatureCount).copy(wireTransaction, 0);
	    signatures.forEach(({
	      signature
	    }, index) => {
	      if (signature !== null) {
	        assert(signature.length === 64, `signature has invalid length`);
	        bufferExports.Buffer.from(signature).copy(wireTransaction, signatureCount.length + index * 64);
	      }
	    });
	    signData.copy(wireTransaction, signatureCount.length + signatures.length * 64);
	    assert(wireTransaction.length <= PACKET_DATA_SIZE, `Transaction too large: ${wireTransaction.length} > ${PACKET_DATA_SIZE}`);
	    return wireTransaction;
	  }

	  /**
	   * Deprecated method
	   * @internal
	   */
	  get keys() {
	    assert(this.instructions.length === 1);
	    return this.instructions[0].keys.map(keyObj => keyObj.pubkey);
	  }

	  /**
	   * Deprecated method
	   * @internal
	   */
	  get programId() {
	    assert(this.instructions.length === 1);
	    return this.instructions[0].programId;
	  }

	  /**
	   * Deprecated method
	   * @internal
	   */
	  get data() {
	    assert(this.instructions.length === 1);
	    return this.instructions[0].data;
	  }

	  /**
	   * Parse a wire transaction into a Transaction object.
	   *
	   * @param {Buffer | Uint8Array | Array<number>} buffer Signature of wire Transaction
	   *
	   * @returns {Transaction} Transaction associated with the signature
	   */
	  static from(buffer) {
	    // Slice up wire data
	    let byteArray = [...buffer];
	    const signatureCount = decodeLength(byteArray);
	    let signatures = [];
	    for (let i = 0; i < signatureCount; i++) {
	      const signature = guardedSplice(byteArray, 0, SIGNATURE_LENGTH_IN_BYTES);
	      signatures.push(bs58.encode(bufferExports.Buffer.from(signature)));
	    }
	    return Transaction.populate(Message.from(byteArray), signatures);
	  }

	  /**
	   * Populate Transaction object from message and signatures
	   *
	   * @param {Message} message Message of transaction
	   * @param {Array<string>} signatures List of signatures to assign to the transaction
	   *
	   * @returns {Transaction} The populated Transaction
	   */
	  static populate(message, signatures = []) {
	    const transaction = new Transaction();
	    transaction.recentBlockhash = message.recentBlockhash;
	    if (message.header.numRequiredSignatures > 0) {
	      transaction.feePayer = message.accountKeys[0];
	    }
	    signatures.forEach((signature, index) => {
	      const sigPubkeyPair = {
	        signature: signature == bs58.encode(DEFAULT_SIGNATURE) ? null : bs58.decode(signature),
	        publicKey: message.accountKeys[index]
	      };
	      transaction.signatures.push(sigPubkeyPair);
	    });
	    message.instructions.forEach(instruction => {
	      const keys = instruction.accounts.map(account => {
	        const pubkey = message.accountKeys[account];
	        return {
	          pubkey,
	          isSigner: transaction.signatures.some(keyObj => keyObj.publicKey.toString() === pubkey.toString()) || message.isAccountSigner(account),
	          isWritable: message.isAccountWritable(account)
	        };
	      });
	      transaction.instructions.push(new TransactionInstruction({
	        keys,
	        programId: message.accountKeys[instruction.programIdIndex],
	        data: bs58.decode(instruction.data)
	      }));
	    });
	    transaction._message = message;
	    transaction._json = transaction.toJSON();
	    return transaction;
	  }
	}

	const SYSVAR_CLOCK_PUBKEY = new PublicKey('SysvarC1ock11111111111111111111111111111111');
	new PublicKey('SysvarEpochSchedu1e111111111111111111111111');
	new PublicKey('Sysvar1nstructions1111111111111111111111111');
	const SYSVAR_RECENT_BLOCKHASHES_PUBKEY = new PublicKey('SysvarRecentB1ockHashes11111111111111111111');
	const SYSVAR_RENT_PUBKEY = new PublicKey('SysvarRent111111111111111111111111111111111');
	new PublicKey('SysvarRewards111111111111111111111111111111');
	new PublicKey('SysvarS1otHashes111111111111111111111111111');
	new PublicKey('SysvarS1otHistory11111111111111111111111111');
	const SYSVAR_STAKE_HISTORY_PUBKEY = new PublicKey('SysvarStakeHistory1111111111111111111111111');

	/**
	 * @internal
	 */

	/**
	 * Populate a buffer of instruction data using an InstructionType
	 * @internal
	 */
	function encodeData$1(type, fields) {
	  const allocLength = type.layout.span >= 0 ? type.layout.span : getAlloc(type, fields);
	  const data = bufferExports.Buffer.alloc(allocLength);
	  const layoutFields = Object.assign({
	    instruction: type.index
	  }, fields);
	  type.layout.encode(layoutFields, data);
	  return data;
	}

	/**
	 * https://github.com/solana-labs/solana/blob/90bedd7e067b5b8f3ddbb45da00a4e9cabb22c62/sdk/src/fee_calculator.rs#L7-L11
	 *
	 * @internal
	 */
	const FeeCalculatorLayout = LayoutExports$1.nu64('lamportsPerSignature');

	/**
	 * Calculator for transaction fees.
	 *
	 * @deprecated Deprecated since Solana v1.8.0.
	 */

	/**
	 * See https://github.com/solana-labs/solana/blob/0ea2843ec9cdc517572b8e62c959f41b55cf4453/sdk/src/nonce_state.rs#L29-L32
	 *
	 * @internal
	 */
	const NonceAccountLayout = LayoutExports$1.struct([LayoutExports$1.u32('version'), LayoutExports$1.u32('state'), publicKey$2('authorizedPubkey'), publicKey$2('nonce'), LayoutExports$1.struct([FeeCalculatorLayout], 'feeCalculator')]);
	const NONCE_ACCOUNT_LENGTH = NonceAccountLayout.span;

	const encodeDecode$1 = layout => {
	  const decode = layout.decode.bind(layout);
	  const encode = layout.encode.bind(layout);
	  return {
	    decode,
	    encode
	  };
	};
	const bigInt$1 = length => property => {
	  const layout = LayoutExports$1.blob(length, property);
	  const {
	    encode,
	    decode
	  } = encodeDecode$1(layout);
	  const bigIntLayout = layout;
	  bigIntLayout.decode = (buffer, offset) => {
	    const src = decode(buffer, offset);
	    return browserExports.toBigIntLE(bufferExports.Buffer.from(src));
	  };
	  bigIntLayout.encode = (bigInt, buffer, offset) => {
	    const src = browserExports.toBufferLE(bigInt, length);
	    return encode(src, buffer, offset);
	  };
	  return bigIntLayout;
	};
	const u64$2 = bigInt$1(8);

	/**
	 * An enumeration of valid SystemInstructionType's
	 */

	/**
	 * An enumeration of valid system InstructionType's
	 * @internal
	 */
	const SYSTEM_INSTRUCTION_LAYOUTS = Object.freeze({
	  Create: {
	    index: 0,
	    layout: LayoutExports$1.struct([LayoutExports$1.u32('instruction'), LayoutExports$1.ns64('lamports'), LayoutExports$1.ns64('space'), publicKey$2('programId')])
	  },
	  Assign: {
	    index: 1,
	    layout: LayoutExports$1.struct([LayoutExports$1.u32('instruction'), publicKey$2('programId')])
	  },
	  Transfer: {
	    index: 2,
	    layout: LayoutExports$1.struct([LayoutExports$1.u32('instruction'), u64$2('lamports')])
	  },
	  CreateWithSeed: {
	    index: 3,
	    layout: LayoutExports$1.struct([LayoutExports$1.u32('instruction'), publicKey$2('base'), rustString('seed'), LayoutExports$1.ns64('lamports'), LayoutExports$1.ns64('space'), publicKey$2('programId')])
	  },
	  AdvanceNonceAccount: {
	    index: 4,
	    layout: LayoutExports$1.struct([LayoutExports$1.u32('instruction')])
	  },
	  WithdrawNonceAccount: {
	    index: 5,
	    layout: LayoutExports$1.struct([LayoutExports$1.u32('instruction'), LayoutExports$1.ns64('lamports')])
	  },
	  InitializeNonceAccount: {
	    index: 6,
	    layout: LayoutExports$1.struct([LayoutExports$1.u32('instruction'), publicKey$2('authorized')])
	  },
	  AuthorizeNonceAccount: {
	    index: 7,
	    layout: LayoutExports$1.struct([LayoutExports$1.u32('instruction'), publicKey$2('authorized')])
	  },
	  Allocate: {
	    index: 8,
	    layout: LayoutExports$1.struct([LayoutExports$1.u32('instruction'), LayoutExports$1.ns64('space')])
	  },
	  AllocateWithSeed: {
	    index: 9,
	    layout: LayoutExports$1.struct([LayoutExports$1.u32('instruction'), publicKey$2('base'), rustString('seed'), LayoutExports$1.ns64('space'), publicKey$2('programId')])
	  },
	  AssignWithSeed: {
	    index: 10,
	    layout: LayoutExports$1.struct([LayoutExports$1.u32('instruction'), publicKey$2('base'), rustString('seed'), publicKey$2('programId')])
	  },
	  TransferWithSeed: {
	    index: 11,
	    layout: LayoutExports$1.struct([LayoutExports$1.u32('instruction'), u64$2('lamports'), rustString('seed'), publicKey$2('programId')])
	  },
	  UpgradeNonceAccount: {
	    index: 12,
	    layout: LayoutExports$1.struct([LayoutExports$1.u32('instruction')])
	  }
	});

	/**
	 * Factory class for transactions to interact with the System program
	 */
	class SystemProgram {
	  /**
	   * @internal
	   */
	  constructor() {}

	  /**
	   * Public key that identifies the System program
	   */

	  /**
	   * Generate a transaction instruction that creates a new account
	   */
	  static createAccount(params) {
	    const type = SYSTEM_INSTRUCTION_LAYOUTS.Create;
	    const data = encodeData$1(type, {
	      lamports: params.lamports,
	      space: params.space,
	      programId: toBuffer(params.programId.toBuffer())
	    });
	    return new TransactionInstruction({
	      keys: [{
	        pubkey: params.fromPubkey,
	        isSigner: true,
	        isWritable: true
	      }, {
	        pubkey: params.newAccountPubkey,
	        isSigner: true,
	        isWritable: true
	      }],
	      programId: this.programId,
	      data
	    });
	  }

	  /**
	   * Generate a transaction instruction that transfers lamports from one account to another
	   */
	  static transfer(params) {
	    let data;
	    let keys;
	    if ('basePubkey' in params) {
	      const type = SYSTEM_INSTRUCTION_LAYOUTS.TransferWithSeed;
	      data = encodeData$1(type, {
	        lamports: BigInt(params.lamports),
	        seed: params.seed,
	        programId: toBuffer(params.programId.toBuffer())
	      });
	      keys = [{
	        pubkey: params.fromPubkey,
	        isSigner: false,
	        isWritable: true
	      }, {
	        pubkey: params.basePubkey,
	        isSigner: true,
	        isWritable: false
	      }, {
	        pubkey: params.toPubkey,
	        isSigner: false,
	        isWritable: true
	      }];
	    } else {
	      const type = SYSTEM_INSTRUCTION_LAYOUTS.Transfer;
	      data = encodeData$1(type, {
	        lamports: BigInt(params.lamports)
	      });
	      keys = [{
	        pubkey: params.fromPubkey,
	        isSigner: true,
	        isWritable: true
	      }, {
	        pubkey: params.toPubkey,
	        isSigner: false,
	        isWritable: true
	      }];
	    }
	    return new TransactionInstruction({
	      keys,
	      programId: this.programId,
	      data
	    });
	  }

	  /**
	   * Generate a transaction instruction that assigns an account to a program
	   */
	  static assign(params) {
	    let data;
	    let keys;
	    if ('basePubkey' in params) {
	      const type = SYSTEM_INSTRUCTION_LAYOUTS.AssignWithSeed;
	      data = encodeData$1(type, {
	        base: toBuffer(params.basePubkey.toBuffer()),
	        seed: params.seed,
	        programId: toBuffer(params.programId.toBuffer())
	      });
	      keys = [{
	        pubkey: params.accountPubkey,
	        isSigner: false,
	        isWritable: true
	      }, {
	        pubkey: params.basePubkey,
	        isSigner: true,
	        isWritable: false
	      }];
	    } else {
	      const type = SYSTEM_INSTRUCTION_LAYOUTS.Assign;
	      data = encodeData$1(type, {
	        programId: toBuffer(params.programId.toBuffer())
	      });
	      keys = [{
	        pubkey: params.accountPubkey,
	        isSigner: true,
	        isWritable: true
	      }];
	    }
	    return new TransactionInstruction({
	      keys,
	      programId: this.programId,
	      data
	    });
	  }

	  /**
	   * Generate a transaction instruction that creates a new account at
	   *   an address generated with `from`, a seed, and programId
	   */
	  static createAccountWithSeed(params) {
	    const type = SYSTEM_INSTRUCTION_LAYOUTS.CreateWithSeed;
	    const data = encodeData$1(type, {
	      base: toBuffer(params.basePubkey.toBuffer()),
	      seed: params.seed,
	      lamports: params.lamports,
	      space: params.space,
	      programId: toBuffer(params.programId.toBuffer())
	    });
	    let keys = [{
	      pubkey: params.fromPubkey,
	      isSigner: true,
	      isWritable: true
	    }, {
	      pubkey: params.newAccountPubkey,
	      isSigner: false,
	      isWritable: true
	    }];
	    if (!params.basePubkey.equals(params.fromPubkey)) {
	      keys.push({
	        pubkey: params.basePubkey,
	        isSigner: true,
	        isWritable: false
	      });
	    }
	    return new TransactionInstruction({
	      keys,
	      programId: this.programId,
	      data
	    });
	  }

	  /**
	   * Generate a transaction that creates a new Nonce account
	   */
	  static createNonceAccount(params) {
	    const transaction = new Transaction();
	    if ('basePubkey' in params && 'seed' in params) {
	      transaction.add(SystemProgram.createAccountWithSeed({
	        fromPubkey: params.fromPubkey,
	        newAccountPubkey: params.noncePubkey,
	        basePubkey: params.basePubkey,
	        seed: params.seed,
	        lamports: params.lamports,
	        space: NONCE_ACCOUNT_LENGTH,
	        programId: this.programId
	      }));
	    } else {
	      transaction.add(SystemProgram.createAccount({
	        fromPubkey: params.fromPubkey,
	        newAccountPubkey: params.noncePubkey,
	        lamports: params.lamports,
	        space: NONCE_ACCOUNT_LENGTH,
	        programId: this.programId
	      }));
	    }
	    const initParams = {
	      noncePubkey: params.noncePubkey,
	      authorizedPubkey: params.authorizedPubkey
	    };
	    transaction.add(this.nonceInitialize(initParams));
	    return transaction;
	  }

	  /**
	   * Generate an instruction to initialize a Nonce account
	   */
	  static nonceInitialize(params) {
	    const type = SYSTEM_INSTRUCTION_LAYOUTS.InitializeNonceAccount;
	    const data = encodeData$1(type, {
	      authorized: toBuffer(params.authorizedPubkey.toBuffer())
	    });
	    const instructionData = {
	      keys: [{
	        pubkey: params.noncePubkey,
	        isSigner: false,
	        isWritable: true
	      }, {
	        pubkey: SYSVAR_RECENT_BLOCKHASHES_PUBKEY,
	        isSigner: false,
	        isWritable: false
	      }, {
	        pubkey: SYSVAR_RENT_PUBKEY,
	        isSigner: false,
	        isWritable: false
	      }],
	      programId: this.programId,
	      data
	    };
	    return new TransactionInstruction(instructionData);
	  }

	  /**
	   * Generate an instruction to advance the nonce in a Nonce account
	   */
	  static nonceAdvance(params) {
	    const type = SYSTEM_INSTRUCTION_LAYOUTS.AdvanceNonceAccount;
	    const data = encodeData$1(type);
	    const instructionData = {
	      keys: [{
	        pubkey: params.noncePubkey,
	        isSigner: false,
	        isWritable: true
	      }, {
	        pubkey: SYSVAR_RECENT_BLOCKHASHES_PUBKEY,
	        isSigner: false,
	        isWritable: false
	      }, {
	        pubkey: params.authorizedPubkey,
	        isSigner: true,
	        isWritable: false
	      }],
	      programId: this.programId,
	      data
	    };
	    return new TransactionInstruction(instructionData);
	  }

	  /**
	   * Generate a transaction instruction that withdraws lamports from a Nonce account
	   */
	  static nonceWithdraw(params) {
	    const type = SYSTEM_INSTRUCTION_LAYOUTS.WithdrawNonceAccount;
	    const data = encodeData$1(type, {
	      lamports: params.lamports
	    });
	    return new TransactionInstruction({
	      keys: [{
	        pubkey: params.noncePubkey,
	        isSigner: false,
	        isWritable: true
	      }, {
	        pubkey: params.toPubkey,
	        isSigner: false,
	        isWritable: true
	      }, {
	        pubkey: SYSVAR_RECENT_BLOCKHASHES_PUBKEY,
	        isSigner: false,
	        isWritable: false
	      }, {
	        pubkey: SYSVAR_RENT_PUBKEY,
	        isSigner: false,
	        isWritable: false
	      }, {
	        pubkey: params.authorizedPubkey,
	        isSigner: true,
	        isWritable: false
	      }],
	      programId: this.programId,
	      data
	    });
	  }

	  /**
	   * Generate a transaction instruction that authorizes a new PublicKey as the authority
	   * on a Nonce account.
	   */
	  static nonceAuthorize(params) {
	    const type = SYSTEM_INSTRUCTION_LAYOUTS.AuthorizeNonceAccount;
	    const data = encodeData$1(type, {
	      authorized: toBuffer(params.newAuthorizedPubkey.toBuffer())
	    });
	    return new TransactionInstruction({
	      keys: [{
	        pubkey: params.noncePubkey,
	        isSigner: false,
	        isWritable: true
	      }, {
	        pubkey: params.authorizedPubkey,
	        isSigner: true,
	        isWritable: false
	      }],
	      programId: this.programId,
	      data
	    });
	  }

	  /**
	   * Generate a transaction instruction that allocates space in an account without funding
	   */
	  static allocate(params) {
	    let data;
	    let keys;
	    if ('basePubkey' in params) {
	      const type = SYSTEM_INSTRUCTION_LAYOUTS.AllocateWithSeed;
	      data = encodeData$1(type, {
	        base: toBuffer(params.basePubkey.toBuffer()),
	        seed: params.seed,
	        space: params.space,
	        programId: toBuffer(params.programId.toBuffer())
	      });
	      keys = [{
	        pubkey: params.accountPubkey,
	        isSigner: false,
	        isWritable: true
	      }, {
	        pubkey: params.basePubkey,
	        isSigner: true,
	        isWritable: false
	      }];
	    } else {
	      const type = SYSTEM_INSTRUCTION_LAYOUTS.Allocate;
	      data = encodeData$1(type, {
	        space: params.space
	      });
	      keys = [{
	        pubkey: params.accountPubkey,
	        isSigner: true,
	        isWritable: true
	      }];
	    }
	    return new TransactionInstruction({
	      keys,
	      programId: this.programId,
	      data
	    });
	  }
	}
	SystemProgram.programId = new PublicKey('11111111111111111111111111111111');

	/**
	 * @deprecated Deprecated since Solana v1.17.20.
	 */
	new PublicKey('BPFLoader2111111111111111111111111111111111');
	({
	  index: 1,
	  layout: LayoutExports$1.struct([LayoutExports$1.u32('typeIndex'), u64$2('deactivationSlot'), LayoutExports$1.nu64('lastExtendedSlot'), LayoutExports$1.u8('lastExtendedStartIndex'), LayoutExports$1.u8(),
	  // option
	  LayoutExports$1.seq(publicKey$2(), LayoutExports$1.offset(LayoutExports$1.u8(), -1), 'authority')])
	});

	const PublicKeyFromString$1 = coerce(instance(PublicKey), string(), value => new PublicKey(value));
	const RawAccountDataResult = tuple([string(), literal('base64')]);
	const BufferFromRawAccountData = coerce(instance(bufferExports.Buffer), RawAccountDataResult, value => bufferExports.Buffer.from(value[0], 'base64'));

	/**
	 * @internal
	 */
	function createRpcResult(result) {
	  return union([type({
	    jsonrpc: literal('2.0'),
	    id: string(),
	    result
	  }), type({
	    jsonrpc: literal('2.0'),
	    id: string(),
	    error: type({
	      code: unknown(),
	      message: string(),
	      data: optional(any())
	    })
	  })]);
	}
	const UnknownRpcResult = createRpcResult(unknown());

	/**
	 * @internal
	 */
	function jsonRpcResult(schema) {
	  return coerce(createRpcResult(schema), UnknownRpcResult, value => {
	    if ('error' in value) {
	      return value;
	    } else {
	      return {
	        ...value,
	        result: create(value.result, schema)
	      };
	    }
	  });
	}

	/**
	 * @internal
	 */
	function jsonRpcResultAndContext(value) {
	  return jsonRpcResult(type({
	    context: type({
	      slot: number()
	    }),
	    value
	  }));
	}

	/**
	 * @internal
	 */
	function notificationResultAndContext(value) {
	  return type({
	    context: type({
	      slot: number()
	    }),
	    value
	  });
	}

	/**
	 * The level of commitment desired when querying state
	 * <pre>
	 *   'processed': Query the most recent block which has reached 1 confirmation by the connected node
	 *   'confirmed': Query the most recent block which has reached 1 confirmation by the cluster
	 *   'finalized': Query the most recent block which has been finalized by the cluster
	 * </pre>
	 */

	// Deprecated as of v1.5.5

	/**
	 * A subset of Commitment levels, which are at least optimistically confirmed
	 * <pre>
	 *   'confirmed': Query the most recent block which has reached 1 confirmation by the cluster
	 *   'finalized': Query the most recent block which has been finalized by the cluster
	 * </pre>
	 */

	/**
	 * Filter for largest accounts query
	 * <pre>
	 *   'circulating':    Return the largest accounts that are part of the circulating supply
	 *   'nonCirculating': Return the largest accounts that are not part of the circulating supply
	 * </pre>
	 */

	/**
	 * Configuration object for changing `getAccountInfo` query behavior
	 */

	/**
	 * Configuration object for changing `getBalance` query behavior
	 */

	/**
	 * Configuration object for changing `getBlock` query behavior
	 */

	/**
	 * Configuration object for changing `getBlock` query behavior
	 */

	/**
	 * Configuration object for changing `getStakeMinimumDelegation` query behavior
	 */

	/**
	 * Configuration object for changing `getBlockHeight` query behavior
	 */

	/**
	 * Configuration object for changing `getEpochInfo` query behavior
	 */

	/**
	 * Configuration object for changing `getInflationReward` query behavior
	 */

	/**
	 * Configuration object for changing `getLatestBlockhash` query behavior
	 */

	/**
	 * Configuration object for changing `isBlockhashValid` query behavior
	 */

	/**
	 * Configuration object for changing `getSlot` query behavior
	 */

	/**
	 * Configuration object for changing `getSlotLeader` query behavior
	 */

	/**
	 * Configuration object for changing `getTransaction` query behavior
	 */

	/**
	 * Configuration object for changing `getTransaction` query behavior
	 */

	/**
	 * Configuration object for changing `getLargestAccounts` query behavior
	 */

	/**
	 * Configuration object for changing `getSupply` request behavior
	 */

	/**
	 * Configuration object for changing query behavior
	 */

	/**
	 * Information describing a cluster node
	 */

	/**
	 * Information describing a vote account
	 */

	/**
	 * A collection of cluster vote accounts
	 */

	/**
	 * Network Inflation
	 * (see https://docs.solana.com/implemented-proposals/ed_overview)
	 */

	const GetInflationGovernorResult = type({
	  foundation: number(),
	  foundationTerm: number(),
	  initial: number(),
	  taper: number(),
	  terminal: number()
	});

	/**
	 * The inflation reward for an epoch
	 */

	/**
	 * Expected JSON RPC response for the "getInflationReward" message
	 */
	jsonRpcResult(array(nullable(type({
	  epoch: number(),
	  effectiveSlot: number(),
	  amount: number(),
	  postBalance: number(),
	  commission: optional(nullable(number()))
	}))));

	/**
	 * Configuration object for changing `getRecentPrioritizationFees` query behavior
	 */

	/**
	 * Expected JSON RPC response for the "getRecentPrioritizationFees" message
	 */
	const GetRecentPrioritizationFeesResult = array(type({
	  slot: number(),
	  prioritizationFee: number()
	}));
	/**
	 * Expected JSON RPC response for the "getInflationRate" message
	 */
	const GetInflationRateResult = type({
	  total: number(),
	  validator: number(),
	  foundation: number(),
	  epoch: number()
	});

	/**
	 * Information about the current epoch
	 */

	const GetEpochInfoResult = type({
	  epoch: number(),
	  slotIndex: number(),
	  slotsInEpoch: number(),
	  absoluteSlot: number(),
	  blockHeight: optional(number()),
	  transactionCount: optional(number())
	});
	const GetEpochScheduleResult = type({
	  slotsPerEpoch: number(),
	  leaderScheduleSlotOffset: number(),
	  warmup: boolean(),
	  firstNormalEpoch: number(),
	  firstNormalSlot: number()
	});

	/**
	 * Leader schedule
	 * (see https://docs.solana.com/terminology#leader-schedule)
	 */

	const GetLeaderScheduleResult = record(string(), array(number()));

	/**
	 * Transaction error or null
	 */
	const TransactionErrorResult = nullable(union([type({}), string()]));

	/**
	 * Signature status for a transaction
	 */
	const SignatureStatusResult = type({
	  err: TransactionErrorResult
	});

	/**
	 * Transaction signature received notification
	 */
	const SignatureReceivedResult = literal('receivedSignature');

	/**
	 * Version info for a node
	 */

	type({
	  'solana-core': string(),
	  'feature-set': optional(number())
	});
	const ParsedInstructionStruct = type({
	  program: string(),
	  programId: PublicKeyFromString$1,
	  parsed: unknown()
	});
	const PartiallyDecodedInstructionStruct = type({
	  programId: PublicKeyFromString$1,
	  accounts: array(PublicKeyFromString$1),
	  data: string()
	});
	jsonRpcResultAndContext(type({
	  err: nullable(union([type({}), string()])),
	  logs: nullable(array(string())),
	  accounts: optional(nullable(array(nullable(type({
	    executable: boolean(),
	    owner: string(),
	    lamports: number(),
	    data: array(string()),
	    rentEpoch: optional(number())
	  }))))),
	  unitsConsumed: optional(number()),
	  returnData: optional(nullable(type({
	    programId: string(),
	    data: tuple([string(), literal('base64')])
	  }))),
	  innerInstructions: optional(nullable(array(type({
	    index: number(),
	    instructions: array(union([ParsedInstructionStruct, PartiallyDecodedInstructionStruct]))
	  }))))
	}));

	/**
	 * Metadata for a parsed confirmed transaction on the ledger
	 *
	 * @deprecated Deprecated since RPC v1.8.0. Please use {@link ParsedTransactionMeta} instead.
	 */

	/**
	 * Collection of addresses loaded by a transaction using address table lookups
	 */

	/**
	 * Metadata for a parsed transaction on the ledger
	 */

	/**
	 * Metadata for a confirmed transaction on the ledger
	 */

	/**
	 * A processed transaction from the RPC API
	 */

	/**
	 * A processed transaction from the RPC API
	 */

	/**
	 * A processed transaction message from the RPC API
	 */

	/**
	 * A confirmed transaction on the ledger
	 *
	 * @deprecated Deprecated since RPC v1.8.0.
	 */

	/**
	 * A partially decoded transaction instruction
	 */

	/**
	 * A parsed transaction message account
	 */

	/**
	 * A parsed transaction instruction
	 */

	/**
	 * A parsed address table lookup
	 */

	/**
	 * A parsed transaction message
	 */

	/**
	 * A parsed transaction
	 */

	/**
	 * A parsed and confirmed transaction on the ledger
	 *
	 * @deprecated Deprecated since RPC v1.8.0. Please use {@link ParsedTransactionWithMeta} instead.
	 */

	/**
	 * A parsed transaction on the ledger with meta
	 */

	/**
	 * A processed block fetched from the RPC API
	 */

	/**
	 * A processed block fetched from the RPC API where the `transactionDetails` mode is `accounts`
	 */

	/**
	 * A processed block fetched from the RPC API where the `transactionDetails` mode is `none`
	 */

	/**
	 * A block with parsed transactions
	 */

	/**
	 * A block with parsed transactions where the `transactionDetails` mode is `accounts`
	 */

	/**
	 * A block with parsed transactions where the `transactionDetails` mode is `none`
	 */

	/**
	 * A processed block fetched from the RPC API
	 */

	/**
	 * A processed block fetched from the RPC API where the `transactionDetails` mode is `accounts`
	 */

	/**
	 * A processed block fetched from the RPC API where the `transactionDetails` mode is `none`
	 */

	/**
	 * A confirmed block on the ledger
	 *
	 * @deprecated Deprecated since RPC v1.8.0.
	 */

	/**
	 * A Block on the ledger with signatures only
	 */

	/**
	 * recent block production information
	 */

	/**
	 * Expected JSON RPC response for the "getBlockProduction" message
	 */
	jsonRpcResultAndContext(type({
	  byIdentity: record(string(), array(number())),
	  range: type({
	    firstSlot: number(),
	    lastSlot: number()
	  })
	}));

	/**
	 * Expected JSON RPC response for the "getInflationGovernor" message
	 */
	jsonRpcResult(GetInflationGovernorResult);

	/**
	 * Expected JSON RPC response for the "getInflationRate" message
	 */
	jsonRpcResult(GetInflationRateResult);

	/**
	 * Expected JSON RPC response for the "getRecentPrioritizationFees" message
	 */
	jsonRpcResult(GetRecentPrioritizationFeesResult);

	/**
	 * Expected JSON RPC response for the "getEpochInfo" message
	 */
	jsonRpcResult(GetEpochInfoResult);

	/**
	 * Expected JSON RPC response for the "getEpochSchedule" message
	 */
	jsonRpcResult(GetEpochScheduleResult);

	/**
	 * Expected JSON RPC response for the "getLeaderSchedule" message
	 */
	jsonRpcResult(GetLeaderScheduleResult);

	/**
	 * Expected JSON RPC response for the "minimumLedgerSlot" and "getFirstAvailableBlock" messages
	 */
	jsonRpcResult(number());

	/**
	 * Supply
	 */

	/**
	 * Expected JSON RPC response for the "getSupply" message
	 */
	jsonRpcResultAndContext(type({
	  total: number(),
	  circulating: number(),
	  nonCirculating: number(),
	  nonCirculatingAccounts: array(PublicKeyFromString$1)
	}));

	/**
	 * Token amount object which returns a token amount in different formats
	 * for various client use cases.
	 */

	/**
	 * Expected JSON RPC structure for token amounts
	 */
	const TokenAmountResult = type({
	  amount: string(),
	  uiAmount: nullable(number()),
	  decimals: number(),
	  uiAmountString: optional(string())
	});

	/**
	 * Token address and balance.
	 */

	/**
	 * Expected JSON RPC response for the "getTokenLargestAccounts" message
	 */
	jsonRpcResultAndContext(array(type({
	  address: PublicKeyFromString$1,
	  amount: string(),
	  uiAmount: nullable(number()),
	  decimals: number(),
	  uiAmountString: optional(string())
	})));

	/**
	 * Expected JSON RPC response for the "getTokenAccountsByOwner" message
	 */
	jsonRpcResultAndContext(array(type({
	  pubkey: PublicKeyFromString$1,
	  account: type({
	    executable: boolean(),
	    owner: PublicKeyFromString$1,
	    lamports: number(),
	    data: BufferFromRawAccountData,
	    rentEpoch: number()
	  })
	})));
	const ParsedAccountDataResult = type({
	  program: string(),
	  parsed: unknown(),
	  space: number()
	});

	/**
	 * Expected JSON RPC response for the "getTokenAccountsByOwner" message with parsed data
	 */
	jsonRpcResultAndContext(array(type({
	  pubkey: PublicKeyFromString$1,
	  account: type({
	    executable: boolean(),
	    owner: PublicKeyFromString$1,
	    lamports: number(),
	    data: ParsedAccountDataResult,
	    rentEpoch: number()
	  })
	})));

	/**
	 * Pair of an account address and its balance
	 */

	/**
	 * Expected JSON RPC response for the "getLargestAccounts" message
	 */
	jsonRpcResultAndContext(array(type({
	  lamports: number(),
	  address: PublicKeyFromString$1
	})));

	/**
	 * @internal
	 */
	const AccountInfoResult = type({
	  executable: boolean(),
	  owner: PublicKeyFromString$1,
	  lamports: number(),
	  data: BufferFromRawAccountData,
	  rentEpoch: number()
	});

	/**
	 * @internal
	 */
	type({
	  pubkey: PublicKeyFromString$1,
	  account: AccountInfoResult
	});
	const ParsedOrRawAccountData = coerce(union([instance(bufferExports.Buffer), ParsedAccountDataResult]), union([RawAccountDataResult, ParsedAccountDataResult]), value => {
	  if (Array.isArray(value)) {
	    return create(value, BufferFromRawAccountData);
	  } else {
	    return value;
	  }
	});

	/**
	 * @internal
	 */
	const ParsedAccountInfoResult = type({
	  executable: boolean(),
	  owner: PublicKeyFromString$1,
	  lamports: number(),
	  data: ParsedOrRawAccountData,
	  rentEpoch: number()
	});
	type({
	  pubkey: PublicKeyFromString$1,
	  account: ParsedAccountInfoResult
	});

	/**
	 * @internal
	 */
	type({
	  state: union([literal('active'), literal('inactive'), literal('activating'), literal('deactivating')]),
	  active: number(),
	  inactive: number()
	});

	/**
	 * Expected JSON RPC response for the "getConfirmedSignaturesForAddress2" message
	 */

	jsonRpcResult(array(type({
	  signature: string(),
	  slot: number(),
	  err: TransactionErrorResult,
	  memo: nullable(string()),
	  blockTime: optional(nullable(number()))
	})));

	/**
	 * Expected JSON RPC response for the "getSignaturesForAddress" message
	 */
	jsonRpcResult(array(type({
	  signature: string(),
	  slot: number(),
	  err: TransactionErrorResult,
	  memo: nullable(string()),
	  blockTime: optional(nullable(number()))
	})));

	/***
	 * Expected JSON RPC response for the "accountNotification" message
	 */
	type({
	  subscription: number(),
	  result: notificationResultAndContext(AccountInfoResult)
	});

	/**
	 * @internal
	 */
	const ProgramAccountInfoResult = type({
	  pubkey: PublicKeyFromString$1,
	  account: AccountInfoResult
	});

	/***
	 * Expected JSON RPC response for the "programNotification" message
	 */
	type({
	  subscription: number(),
	  result: notificationResultAndContext(ProgramAccountInfoResult)
	});

	/**
	 * @internal
	 */
	const SlotInfoResult = type({
	  parent: number(),
	  slot: number(),
	  root: number()
	});

	/**
	 * Expected JSON RPC response for the "slotNotification" message
	 */
	type({
	  subscription: number(),
	  result: SlotInfoResult
	});

	/**
	 * Slot updates which can be used for tracking the live progress of a cluster.
	 * - `"firstShredReceived"`: connected node received the first shred of a block.
	 * Indicates that a new block that is being produced.
	 * - `"completed"`: connected node has received all shreds of a block. Indicates
	 * a block was recently produced.
	 * - `"optimisticConfirmation"`: block was optimistically confirmed by the
	 * cluster. It is not guaranteed that an optimistic confirmation notification
	 * will be sent for every finalized blocks.
	 * - `"root"`: the connected node rooted this block.
	 * - `"createdBank"`: the connected node has started validating this block.
	 * - `"frozen"`: the connected node has validated this block.
	 * - `"dead"`: the connected node failed to validate this block.
	 */

	/**
	 * @internal
	 */
	const SlotUpdateResult = union([type({
	  type: union([literal('firstShredReceived'), literal('completed'), literal('optimisticConfirmation'), literal('root')]),
	  slot: number(),
	  timestamp: number()
	}), type({
	  type: literal('createdBank'),
	  parent: number(),
	  slot: number(),
	  timestamp: number()
	}), type({
	  type: literal('frozen'),
	  slot: number(),
	  timestamp: number(),
	  stats: type({
	    numTransactionEntries: number(),
	    numSuccessfulTransactions: number(),
	    numFailedTransactions: number(),
	    maxTransactionsPerEntry: number()
	  })
	}), type({
	  type: literal('dead'),
	  slot: number(),
	  timestamp: number(),
	  err: string()
	})]);

	/**
	 * Expected JSON RPC response for the "slotsUpdatesNotification" message
	 */
	type({
	  subscription: number(),
	  result: SlotUpdateResult
	});

	/**
	 * Expected JSON RPC response for the "signatureNotification" message
	 */
	type({
	  subscription: number(),
	  result: notificationResultAndContext(union([SignatureStatusResult, SignatureReceivedResult]))
	});

	/**
	 * Expected JSON RPC response for the "rootNotification" message
	 */
	type({
	  subscription: number(),
	  result: number()
	});
	type({
	  pubkey: string(),
	  gossip: nullable(string()),
	  tpu: nullable(string()),
	  rpc: nullable(string()),
	  version: nullable(string())
	});
	const VoteAccountInfoResult = type({
	  votePubkey: string(),
	  nodePubkey: string(),
	  activatedStake: number(),
	  epochVoteAccount: boolean(),
	  epochCredits: array(tuple([number(), number(), number()])),
	  commission: number(),
	  lastVote: number(),
	  rootSlot: nullable(number())
	});

	/**
	 * Expected JSON RPC response for the "getVoteAccounts" message
	 */
	jsonRpcResult(type({
	  current: array(VoteAccountInfoResult),
	  delinquent: array(VoteAccountInfoResult)
	}));
	const ConfirmationStatus = union([literal('processed'), literal('confirmed'), literal('finalized')]);
	const SignatureStatusResponse = type({
	  slot: number(),
	  confirmations: nullable(number()),
	  err: TransactionErrorResult,
	  confirmationStatus: optional(ConfirmationStatus)
	});

	/**
	 * Expected JSON RPC response for the "getSignatureStatuses" message
	 */
	jsonRpcResultAndContext(array(nullable(SignatureStatusResponse)));

	/**
	 * Expected JSON RPC response for the "getMinimumBalanceForRentExemption" message
	 */
	jsonRpcResult(number());
	const AddressTableLookupStruct = type({
	  accountKey: PublicKeyFromString$1,
	  writableIndexes: array(number()),
	  readonlyIndexes: array(number())
	});
	const ConfirmedTransactionResult = type({
	  signatures: array(string()),
	  message: type({
	    accountKeys: array(string()),
	    header: type({
	      numRequiredSignatures: number(),
	      numReadonlySignedAccounts: number(),
	      numReadonlyUnsignedAccounts: number()
	    }),
	    instructions: array(type({
	      accounts: array(number()),
	      data: string(),
	      programIdIndex: number()
	    })),
	    recentBlockhash: string(),
	    addressTableLookups: optional(array(AddressTableLookupStruct))
	  })
	});
	const AnnotatedAccountKey = type({
	  pubkey: PublicKeyFromString$1,
	  signer: boolean(),
	  writable: boolean(),
	  source: optional(union([literal('transaction'), literal('lookupTable')]))
	});
	const ConfirmedTransactionAccountsModeResult = type({
	  accountKeys: array(AnnotatedAccountKey),
	  signatures: array(string())
	});
	const ParsedInstructionResult = type({
	  parsed: unknown(),
	  program: string(),
	  programId: PublicKeyFromString$1
	});
	const RawInstructionResult = type({
	  accounts: array(PublicKeyFromString$1),
	  data: string(),
	  programId: PublicKeyFromString$1
	});
	const InstructionResult = union([RawInstructionResult, ParsedInstructionResult]);
	const UnknownInstructionResult = union([type({
	  parsed: unknown(),
	  program: string(),
	  programId: string()
	}), type({
	  accounts: array(string()),
	  data: string(),
	  programId: string()
	})]);
	const ParsedOrRawInstruction = coerce(InstructionResult, UnknownInstructionResult, value => {
	  if ('accounts' in value) {
	    return create(value, RawInstructionResult);
	  } else {
	    return create(value, ParsedInstructionResult);
	  }
	});

	/**
	 * @internal
	 */
	const ParsedConfirmedTransactionResult = type({
	  signatures: array(string()),
	  message: type({
	    accountKeys: array(AnnotatedAccountKey),
	    instructions: array(ParsedOrRawInstruction),
	    recentBlockhash: string(),
	    addressTableLookups: optional(nullable(array(AddressTableLookupStruct)))
	  })
	});
	const TokenBalanceResult = type({
	  accountIndex: number(),
	  mint: string(),
	  owner: optional(string()),
	  uiTokenAmount: TokenAmountResult
	});
	const LoadedAddressesResult = type({
	  writable: array(PublicKeyFromString$1),
	  readonly: array(PublicKeyFromString$1)
	});

	/**
	 * @internal
	 */
	const ConfirmedTransactionMetaResult = type({
	  err: TransactionErrorResult,
	  fee: number(),
	  innerInstructions: optional(nullable(array(type({
	    index: number(),
	    instructions: array(type({
	      accounts: array(number()),
	      data: string(),
	      programIdIndex: number()
	    }))
	  })))),
	  preBalances: array(number()),
	  postBalances: array(number()),
	  logMessages: optional(nullable(array(string()))),
	  preTokenBalances: optional(nullable(array(TokenBalanceResult))),
	  postTokenBalances: optional(nullable(array(TokenBalanceResult))),
	  loadedAddresses: optional(LoadedAddressesResult),
	  computeUnitsConsumed: optional(number())
	});

	/**
	 * @internal
	 */
	const ParsedConfirmedTransactionMetaResult = type({
	  err: TransactionErrorResult,
	  fee: number(),
	  innerInstructions: optional(nullable(array(type({
	    index: number(),
	    instructions: array(ParsedOrRawInstruction)
	  })))),
	  preBalances: array(number()),
	  postBalances: array(number()),
	  logMessages: optional(nullable(array(string()))),
	  preTokenBalances: optional(nullable(array(TokenBalanceResult))),
	  postTokenBalances: optional(nullable(array(TokenBalanceResult))),
	  loadedAddresses: optional(LoadedAddressesResult),
	  computeUnitsConsumed: optional(number())
	});
	const TransactionVersionStruct = union([literal(0), literal('legacy')]);

	/** @internal */
	const RewardsResult = type({
	  pubkey: string(),
	  lamports: number(),
	  postBalance: nullable(number()),
	  rewardType: nullable(string()),
	  commission: optional(nullable(number()))
	});

	/**
	 * Expected JSON RPC response for the "getBlock" message
	 */
	jsonRpcResult(nullable(type({
	  blockhash: string(),
	  previousBlockhash: string(),
	  parentSlot: number(),
	  transactions: array(type({
	    transaction: ConfirmedTransactionResult,
	    meta: nullable(ConfirmedTransactionMetaResult),
	    version: optional(TransactionVersionStruct)
	  })),
	  rewards: optional(array(RewardsResult)),
	  blockTime: nullable(number()),
	  blockHeight: nullable(number())
	})));

	/**
	 * Expected JSON RPC response for the "getBlock" message when `transactionDetails` is `none`
	 */
	jsonRpcResult(nullable(type({
	  blockhash: string(),
	  previousBlockhash: string(),
	  parentSlot: number(),
	  rewards: optional(array(RewardsResult)),
	  blockTime: nullable(number()),
	  blockHeight: nullable(number())
	})));

	/**
	 * Expected JSON RPC response for the "getBlock" message when `transactionDetails` is `accounts`
	 */
	jsonRpcResult(nullable(type({
	  blockhash: string(),
	  previousBlockhash: string(),
	  parentSlot: number(),
	  transactions: array(type({
	    transaction: ConfirmedTransactionAccountsModeResult,
	    meta: nullable(ConfirmedTransactionMetaResult),
	    version: optional(TransactionVersionStruct)
	  })),
	  rewards: optional(array(RewardsResult)),
	  blockTime: nullable(number()),
	  blockHeight: nullable(number())
	})));

	/**
	 * Expected parsed JSON RPC response for the "getBlock" message
	 */
	jsonRpcResult(nullable(type({
	  blockhash: string(),
	  previousBlockhash: string(),
	  parentSlot: number(),
	  transactions: array(type({
	    transaction: ParsedConfirmedTransactionResult,
	    meta: nullable(ParsedConfirmedTransactionMetaResult),
	    version: optional(TransactionVersionStruct)
	  })),
	  rewards: optional(array(RewardsResult)),
	  blockTime: nullable(number()),
	  blockHeight: nullable(number())
	})));

	/**
	 * Expected parsed JSON RPC response for the "getBlock" message  when `transactionDetails` is `accounts`
	 */
	jsonRpcResult(nullable(type({
	  blockhash: string(),
	  previousBlockhash: string(),
	  parentSlot: number(),
	  transactions: array(type({
	    transaction: ConfirmedTransactionAccountsModeResult,
	    meta: nullable(ParsedConfirmedTransactionMetaResult),
	    version: optional(TransactionVersionStruct)
	  })),
	  rewards: optional(array(RewardsResult)),
	  blockTime: nullable(number()),
	  blockHeight: nullable(number())
	})));

	/**
	 * Expected parsed JSON RPC response for the "getBlock" message  when `transactionDetails` is `none`
	 */
	jsonRpcResult(nullable(type({
	  blockhash: string(),
	  previousBlockhash: string(),
	  parentSlot: number(),
	  rewards: optional(array(RewardsResult)),
	  blockTime: nullable(number()),
	  blockHeight: nullable(number())
	})));

	/**
	 * Expected JSON RPC response for the "getConfirmedBlock" message
	 *
	 * @deprecated Deprecated since RPC v1.8.0. Please use {@link GetBlockRpcResult} instead.
	 */
	jsonRpcResult(nullable(type({
	  blockhash: string(),
	  previousBlockhash: string(),
	  parentSlot: number(),
	  transactions: array(type({
	    transaction: ConfirmedTransactionResult,
	    meta: nullable(ConfirmedTransactionMetaResult)
	  })),
	  rewards: optional(array(RewardsResult)),
	  blockTime: nullable(number())
	})));

	/**
	 * Expected JSON RPC response for the "getBlock" message
	 */
	jsonRpcResult(nullable(type({
	  blockhash: string(),
	  previousBlockhash: string(),
	  parentSlot: number(),
	  signatures: array(string()),
	  blockTime: nullable(number())
	})));

	/**
	 * Expected JSON RPC response for the "getTransaction" message
	 */
	jsonRpcResult(nullable(type({
	  slot: number(),
	  meta: nullable(ConfirmedTransactionMetaResult),
	  blockTime: optional(nullable(number())),
	  transaction: ConfirmedTransactionResult,
	  version: optional(TransactionVersionStruct)
	})));

	/**
	 * Expected parsed JSON RPC response for the "getTransaction" message
	 */
	jsonRpcResult(nullable(type({
	  slot: number(),
	  transaction: ParsedConfirmedTransactionResult,
	  meta: nullable(ParsedConfirmedTransactionMetaResult),
	  blockTime: optional(nullable(number())),
	  version: optional(TransactionVersionStruct)
	})));

	/**
	 * Expected JSON RPC response for the "getRecentBlockhash" message
	 *
	 * @deprecated Deprecated since RPC v1.8.0. Please use {@link GetLatestBlockhashRpcResult} instead.
	 */
	jsonRpcResultAndContext(type({
	  blockhash: string(),
	  feeCalculator: type({
	    lamportsPerSignature: number()
	  })
	}));

	/**
	 * Expected JSON RPC response for the "getLatestBlockhash" message
	 */
	jsonRpcResultAndContext(type({
	  blockhash: string(),
	  lastValidBlockHeight: number()
	}));

	/**
	 * Expected JSON RPC response for the "isBlockhashValid" message
	 */
	jsonRpcResultAndContext(boolean());
	const PerfSampleResult = type({
	  slot: number(),
	  numTransactions: number(),
	  numSlots: number(),
	  samplePeriodSecs: number()
	});

	/*
	 * Expected JSON RPC response for "getRecentPerformanceSamples" message
	 */
	jsonRpcResult(array(PerfSampleResult));

	/**
	 * Expected JSON RPC response for the "getFeeCalculatorForBlockhash" message
	 */
	jsonRpcResultAndContext(nullable(type({
	  feeCalculator: type({
	    lamportsPerSignature: number()
	  })
	})));

	/**
	 * Expected JSON RPC response for the "requestAirdrop" message
	 */
	jsonRpcResult(string());

	/**
	 * Expected JSON RPC response for the "sendTransaction" message
	 */
	jsonRpcResult(string());

	/**
	 * Information about the latest slot being processed by a node
	 */

	/**
	 * Parsed account data
	 */

	/**
	 * Stake Activation data
	 */

	/**
	 * Data slice argument for getProgramAccounts
	 */

	/**
	 * Memory comparison filter for getProgramAccounts
	 */

	/**
	 * Data size comparison filter for getProgramAccounts
	 */

	/**
	 * A filter object for getProgramAccounts
	 */

	/**
	 * Configuration object for getProgramAccounts requests
	 */

	/**
	 * Configuration object for getParsedProgramAccounts
	 */

	/**
	 * Configuration object for getMultipleAccounts
	 */

	/**
	 * Configuration object for `getStakeActivation`
	 */

	/**
	 * Configuration object for `getStakeActivation`
	 */

	/**
	 * Configuration object for `getStakeActivation`
	 */

	/**
	 * Configuration object for `getNonce`
	 */

	/**
	 * Configuration object for `getNonceAndContext`
	 */

	/**
	 * Information describing an account
	 */

	/**
	 * Account information identified by pubkey
	 */

	/**
	 * Callback function for account change notifications
	 */

	/**
	 * Callback function for program account change notifications
	 */

	/**
	 * Callback function for slot change notifications
	 */

	/**
	 * Callback function for slot update notifications
	 */

	/**
	 * Callback function for signature status notifications
	 */

	/**
	 * Signature status notification with transaction result
	 */

	/**
	 * Signature received notification
	 */

	/**
	 * Callback function for signature notifications
	 */

	/**
	 * Signature subscription options
	 */

	/**
	 * Callback function for root change notifications
	 */

	/**
	 * @internal
	 */
	const LogsResult = type({
	  err: TransactionErrorResult,
	  logs: array(string()),
	  signature: string()
	});

	/**
	 * Logs result.
	 */

	/**
	 * Expected JSON RPC response for the "logsNotification" message.
	 */
	type({
	  result: notificationResultAndContext(LogsResult),
	  subscription: number()
	});

	/**
	 * Keypair signer interface
	 */

	/**
	 * An account keypair used for signing transactions.
	 */
	class Keypair {
	  /**
	   * Create a new keypair instance.
	   * Generate random keypair if no {@link Ed25519Keypair} is provided.
	   *
	   * @param {Ed25519Keypair} keypair ed25519 keypair
	   */
	  constructor(keypair) {
	    this._keypair = void 0;
	    this._keypair = keypair ?? generateKeypair();
	  }

	  /**
	   * Generate a new random keypair
	   *
	   * @returns {Keypair} Keypair
	   */
	  static generate() {
	    return new Keypair(generateKeypair());
	  }

	  /**
	   * Create a keypair from a raw secret key byte array.
	   *
	   * This method should only be used to recreate a keypair from a previously
	   * generated secret key. Generating keypairs from a random seed should be done
	   * with the {@link Keypair.fromSeed} method.
	   *
	   * @throws error if the provided secret key is invalid and validation is not skipped.
	   *
	   * @param secretKey secret key byte array
	   * @param options skip secret key validation
	   *
	   * @returns {Keypair} Keypair
	   */
	  static fromSecretKey(secretKey, options) {
	    if (secretKey.byteLength !== 64) {
	      throw new Error('bad secret key size');
	    }
	    const publicKey = secretKey.slice(32, 64);
	    if (!options || !options.skipValidation) {
	      const privateScalar = secretKey.slice(0, 32);
	      const computedPublicKey = getPublicKey(privateScalar);
	      for (let ii = 0; ii < 32; ii++) {
	        if (publicKey[ii] !== computedPublicKey[ii]) {
	          throw new Error('provided secretKey is invalid');
	        }
	      }
	    }
	    return new Keypair({
	      publicKey,
	      secretKey
	    });
	  }

	  /**
	   * Generate a keypair from a 32 byte seed.
	   *
	   * @param seed seed byte array
	   *
	   * @returns {Keypair} Keypair
	   */
	  static fromSeed(seed) {
	    const publicKey = getPublicKey(seed);
	    const secretKey = new Uint8Array(64);
	    secretKey.set(seed);
	    secretKey.set(publicKey, 32);
	    return new Keypair({
	      publicKey,
	      secretKey
	    });
	  }

	  /**
	   * The public key for this keypair
	   *
	   * @returns {PublicKey} PublicKey
	   */
	  get publicKey() {
	    return new PublicKey(this._keypair.publicKey);
	  }

	  /**
	   * The raw secret key for this keypair
	   * @returns {Uint8Array} Secret key in an array of Uint8 bytes
	   */
	  get secretKey() {
	    return new Uint8Array(this._keypair.secretKey);
	  }
	}

	/**
	 * An enumeration of valid LookupTableInstructionType's
	 */

	/**
	 * An enumeration of valid address lookup table InstructionType's
	 * @internal
	 */
	Object.freeze({
	  CreateLookupTable: {
	    index: 0,
	    layout: LayoutExports$1.struct([LayoutExports$1.u32('instruction'), u64$2('recentSlot'), LayoutExports$1.u8('bumpSeed')])
	  },
	  FreezeLookupTable: {
	    index: 1,
	    layout: LayoutExports$1.struct([LayoutExports$1.u32('instruction')])
	  },
	  ExtendLookupTable: {
	    index: 2,
	    layout: LayoutExports$1.struct([LayoutExports$1.u32('instruction'), u64$2(), LayoutExports$1.seq(publicKey$2(), LayoutExports$1.offset(LayoutExports$1.u32(), -8), 'addresses')])
	  },
	  DeactivateLookupTable: {
	    index: 3,
	    layout: LayoutExports$1.struct([LayoutExports$1.u32('instruction')])
	  },
	  CloseLookupTable: {
	    index: 4,
	    layout: LayoutExports$1.struct([LayoutExports$1.u32('instruction')])
	  }
	});
	new PublicKey('AddressLookupTab1e1111111111111111111111111');

	/**
	 * An enumeration of valid ComputeBudgetInstructionType's
	 */

	/**
	 * Request units instruction params
	 */

	/**
	 * Request heap frame instruction params
	 */

	/**
	 * Set compute unit limit instruction params
	 */

	/**
	 * Set compute unit price instruction params
	 */

	/**
	 * An enumeration of valid ComputeBudget InstructionType's
	 * @internal
	 */
	Object.freeze({
	  RequestUnits: {
	    index: 0,
	    layout: LayoutExports$1.struct([LayoutExports$1.u8('instruction'), LayoutExports$1.u32('units'), LayoutExports$1.u32('additionalFee')])
	  },
	  RequestHeapFrame: {
	    index: 1,
	    layout: LayoutExports$1.struct([LayoutExports$1.u8('instruction'), LayoutExports$1.u32('bytes')])
	  },
	  SetComputeUnitLimit: {
	    index: 2,
	    layout: LayoutExports$1.struct([LayoutExports$1.u8('instruction'), LayoutExports$1.u32('units')])
	  },
	  SetComputeUnitPrice: {
	    index: 3,
	    layout: LayoutExports$1.struct([LayoutExports$1.u8('instruction'), u64$2('microLamports')])
	  }
	});
	new PublicKey('ComputeBudget111111111111111111111111111111');

	/**
	 * Params for creating an ed25519 instruction using a public key
	 */

	/**
	 * Params for creating an ed25519 instruction using a private key
	 */

	LayoutExports$1.struct([LayoutExports$1.u8('numSignatures'), LayoutExports$1.u8('padding'), LayoutExports$1.u16('signatureOffset'), LayoutExports$1.u16('signatureInstructionIndex'), LayoutExports$1.u16('publicKeyOffset'), LayoutExports$1.u16('publicKeyInstructionIndex'), LayoutExports$1.u16('messageDataOffset'), LayoutExports$1.u16('messageDataSize'), LayoutExports$1.u16('messageInstructionIndex')]);
	new PublicKey('Ed25519SigVerify111111111111111111111111111');
	secp256k1.utils.isValidPrivateKey;
	secp256k1.getPublicKey;

	/**
	 * Params for creating an secp256k1 instruction using a public key
	 */

	/**
	 * Params for creating an secp256k1 instruction using an Ethereum address
	 */

	/**
	 * Params for creating an secp256k1 instruction using a private key
	 */

	LayoutExports$1.struct([LayoutExports$1.u8('numSignatures'), LayoutExports$1.u16('signatureOffset'), LayoutExports$1.u8('signatureInstructionIndex'), LayoutExports$1.u16('ethAddressOffset'), LayoutExports$1.u8('ethAddressInstructionIndex'), LayoutExports$1.u16('messageDataOffset'), LayoutExports$1.u16('messageDataSize'), LayoutExports$1.u8('messageInstructionIndex'), LayoutExports$1.blob(20, 'ethAddress'), LayoutExports$1.blob(64, 'signature'), LayoutExports$1.u8('recoveryId')]);
	new PublicKey('KeccakSecp256k11111111111111111111111111111');

	var _Lockup;

	/**
	 * Address of the stake config account which configures the rate
	 * of stake warmup and cooldown as well as the slashing penalty.
	 */
	const STAKE_CONFIG_ID = new PublicKey('StakeConfig11111111111111111111111111111111');
	/**
	 * Stake account lockup info
	 */
	class Lockup {
	  /**
	   * Create a new Lockup object
	   */
	  constructor(unixTimestamp, epoch, custodian) {
	    /** Unix timestamp of lockup expiration */
	    this.unixTimestamp = void 0;
	    /** Epoch of lockup expiration */
	    this.epoch = void 0;
	    /** Lockup custodian authority */
	    this.custodian = void 0;
	    this.unixTimestamp = unixTimestamp;
	    this.epoch = epoch;
	    this.custodian = custodian;
	  }

	  /**
	   * Default, inactive Lockup value
	   */
	}
	_Lockup = Lockup;
	Lockup.default = new _Lockup(0, 0, PublicKey.default);

	/**
	 * An enumeration of valid StakeInstructionType's
	 */

	/**
	 * An enumeration of valid stake InstructionType's
	 * @internal
	 */
	const STAKE_INSTRUCTION_LAYOUTS = Object.freeze({
	  Initialize: {
	    index: 0,
	    layout: LayoutExports$1.struct([LayoutExports$1.u32('instruction'), authorized(), lockup()])
	  },
	  Authorize: {
	    index: 1,
	    layout: LayoutExports$1.struct([LayoutExports$1.u32('instruction'), publicKey$2('newAuthorized'), LayoutExports$1.u32('stakeAuthorizationType')])
	  },
	  Delegate: {
	    index: 2,
	    layout: LayoutExports$1.struct([LayoutExports$1.u32('instruction')])
	  },
	  Split: {
	    index: 3,
	    layout: LayoutExports$1.struct([LayoutExports$1.u32('instruction'), LayoutExports$1.ns64('lamports')])
	  },
	  Withdraw: {
	    index: 4,
	    layout: LayoutExports$1.struct([LayoutExports$1.u32('instruction'), LayoutExports$1.ns64('lamports')])
	  },
	  Deactivate: {
	    index: 5,
	    layout: LayoutExports$1.struct([LayoutExports$1.u32('instruction')])
	  },
	  Merge: {
	    index: 7,
	    layout: LayoutExports$1.struct([LayoutExports$1.u32('instruction')])
	  },
	  AuthorizeWithSeed: {
	    index: 8,
	    layout: LayoutExports$1.struct([LayoutExports$1.u32('instruction'), publicKey$2('newAuthorized'), LayoutExports$1.u32('stakeAuthorizationType'), rustString('authoritySeed'), publicKey$2('authorityOwner')])
	  }
	});

	/**
	 * Stake authorization type
	 */

	/**
	 * An enumeration of valid StakeAuthorizationLayout's
	 */
	const StakeAuthorizationLayout = Object.freeze({
	  Staker: {
	    index: 0
	  },
	  Withdrawer: {
	    index: 1
	  }
	});

	/**
	 * Factory class for transactions to interact with the Stake program
	 */
	class StakeProgram {
	  /**
	   * @internal
	   */
	  constructor() {}

	  /**
	   * Public key that identifies the Stake program
	   */

	  /**
	   * Generate an Initialize instruction to add to a Stake Create transaction
	   */
	  static initialize(params) {
	    const {
	      stakePubkey,
	      authorized,
	      lockup: maybeLockup
	    } = params;
	    const lockup = maybeLockup || Lockup.default;
	    const type = STAKE_INSTRUCTION_LAYOUTS.Initialize;
	    const data = encodeData$1(type, {
	      authorized: {
	        staker: toBuffer(authorized.staker.toBuffer()),
	        withdrawer: toBuffer(authorized.withdrawer.toBuffer())
	      },
	      lockup: {
	        unixTimestamp: lockup.unixTimestamp,
	        epoch: lockup.epoch,
	        custodian: toBuffer(lockup.custodian.toBuffer())
	      }
	    });
	    const instructionData = {
	      keys: [{
	        pubkey: stakePubkey,
	        isSigner: false,
	        isWritable: true
	      }, {
	        pubkey: SYSVAR_RENT_PUBKEY,
	        isSigner: false,
	        isWritable: false
	      }],
	      programId: this.programId,
	      data
	    };
	    return new TransactionInstruction(instructionData);
	  }

	  /**
	   * Generate a Transaction that creates a new Stake account at
	   *   an address generated with `from`, a seed, and the Stake programId
	   */
	  static createAccountWithSeed(params) {
	    const transaction = new Transaction();
	    transaction.add(SystemProgram.createAccountWithSeed({
	      fromPubkey: params.fromPubkey,
	      newAccountPubkey: params.stakePubkey,
	      basePubkey: params.basePubkey,
	      seed: params.seed,
	      lamports: params.lamports,
	      space: this.space,
	      programId: this.programId
	    }));
	    const {
	      stakePubkey,
	      authorized,
	      lockup
	    } = params;
	    return transaction.add(this.initialize({
	      stakePubkey,
	      authorized,
	      lockup
	    }));
	  }

	  /**
	   * Generate a Transaction that creates a new Stake account
	   */
	  static createAccount(params) {
	    const transaction = new Transaction();
	    transaction.add(SystemProgram.createAccount({
	      fromPubkey: params.fromPubkey,
	      newAccountPubkey: params.stakePubkey,
	      lamports: params.lamports,
	      space: this.space,
	      programId: this.programId
	    }));
	    const {
	      stakePubkey,
	      authorized,
	      lockup
	    } = params;
	    return transaction.add(this.initialize({
	      stakePubkey,
	      authorized,
	      lockup
	    }));
	  }

	  /**
	   * Generate a Transaction that delegates Stake tokens to a validator
	   * Vote PublicKey. This transaction can also be used to redelegate Stake
	   * to a new validator Vote PublicKey.
	   */
	  static delegate(params) {
	    const {
	      stakePubkey,
	      authorizedPubkey,
	      votePubkey
	    } = params;
	    const type = STAKE_INSTRUCTION_LAYOUTS.Delegate;
	    const data = encodeData$1(type);
	    return new Transaction().add({
	      keys: [{
	        pubkey: stakePubkey,
	        isSigner: false,
	        isWritable: true
	      }, {
	        pubkey: votePubkey,
	        isSigner: false,
	        isWritable: false
	      }, {
	        pubkey: SYSVAR_CLOCK_PUBKEY,
	        isSigner: false,
	        isWritable: false
	      }, {
	        pubkey: SYSVAR_STAKE_HISTORY_PUBKEY,
	        isSigner: false,
	        isWritable: false
	      }, {
	        pubkey: STAKE_CONFIG_ID,
	        isSigner: false,
	        isWritable: false
	      }, {
	        pubkey: authorizedPubkey,
	        isSigner: true,
	        isWritable: false
	      }],
	      programId: this.programId,
	      data
	    });
	  }

	  /**
	   * Generate a Transaction that authorizes a new PublicKey as Staker
	   * or Withdrawer on the Stake account.
	   */
	  static authorize(params) {
	    const {
	      stakePubkey,
	      authorizedPubkey,
	      newAuthorizedPubkey,
	      stakeAuthorizationType,
	      custodianPubkey
	    } = params;
	    const type = STAKE_INSTRUCTION_LAYOUTS.Authorize;
	    const data = encodeData$1(type, {
	      newAuthorized: toBuffer(newAuthorizedPubkey.toBuffer()),
	      stakeAuthorizationType: stakeAuthorizationType.index
	    });
	    const keys = [{
	      pubkey: stakePubkey,
	      isSigner: false,
	      isWritable: true
	    }, {
	      pubkey: SYSVAR_CLOCK_PUBKEY,
	      isSigner: false,
	      isWritable: true
	    }, {
	      pubkey: authorizedPubkey,
	      isSigner: true,
	      isWritable: false
	    }];
	    if (custodianPubkey) {
	      keys.push({
	        pubkey: custodianPubkey,
	        isSigner: true,
	        isWritable: false
	      });
	    }
	    return new Transaction().add({
	      keys,
	      programId: this.programId,
	      data
	    });
	  }

	  /**
	   * Generate a Transaction that authorizes a new PublicKey as Staker
	   * or Withdrawer on the Stake account.
	   */
	  static authorizeWithSeed(params) {
	    const {
	      stakePubkey,
	      authorityBase,
	      authoritySeed,
	      authorityOwner,
	      newAuthorizedPubkey,
	      stakeAuthorizationType,
	      custodianPubkey
	    } = params;
	    const type = STAKE_INSTRUCTION_LAYOUTS.AuthorizeWithSeed;
	    const data = encodeData$1(type, {
	      newAuthorized: toBuffer(newAuthorizedPubkey.toBuffer()),
	      stakeAuthorizationType: stakeAuthorizationType.index,
	      authoritySeed: authoritySeed,
	      authorityOwner: toBuffer(authorityOwner.toBuffer())
	    });
	    const keys = [{
	      pubkey: stakePubkey,
	      isSigner: false,
	      isWritable: true
	    }, {
	      pubkey: authorityBase,
	      isSigner: true,
	      isWritable: false
	    }, {
	      pubkey: SYSVAR_CLOCK_PUBKEY,
	      isSigner: false,
	      isWritable: false
	    }];
	    if (custodianPubkey) {
	      keys.push({
	        pubkey: custodianPubkey,
	        isSigner: true,
	        isWritable: false
	      });
	    }
	    return new Transaction().add({
	      keys,
	      programId: this.programId,
	      data
	    });
	  }

	  /**
	   * @internal
	   */
	  static splitInstruction(params) {
	    const {
	      stakePubkey,
	      authorizedPubkey,
	      splitStakePubkey,
	      lamports
	    } = params;
	    const type = STAKE_INSTRUCTION_LAYOUTS.Split;
	    const data = encodeData$1(type, {
	      lamports
	    });
	    return new TransactionInstruction({
	      keys: [{
	        pubkey: stakePubkey,
	        isSigner: false,
	        isWritable: true
	      }, {
	        pubkey: splitStakePubkey,
	        isSigner: false,
	        isWritable: true
	      }, {
	        pubkey: authorizedPubkey,
	        isSigner: true,
	        isWritable: false
	      }],
	      programId: this.programId,
	      data
	    });
	  }

	  /**
	   * Generate a Transaction that splits Stake tokens into another stake account
	   */
	  static split(params,
	  // Compute the cost of allocating the new stake account in lamports
	  rentExemptReserve) {
	    const transaction = new Transaction();
	    transaction.add(SystemProgram.createAccount({
	      fromPubkey: params.authorizedPubkey,
	      newAccountPubkey: params.splitStakePubkey,
	      lamports: rentExemptReserve,
	      space: this.space,
	      programId: this.programId
	    }));
	    return transaction.add(this.splitInstruction(params));
	  }

	  /**
	   * Generate a Transaction that splits Stake tokens into another account
	   * derived from a base public key and seed
	   */
	  static splitWithSeed(params,
	  // If this stake account is new, compute the cost of allocating it in lamports
	  rentExemptReserve) {
	    const {
	      stakePubkey,
	      authorizedPubkey,
	      splitStakePubkey,
	      basePubkey,
	      seed,
	      lamports
	    } = params;
	    const transaction = new Transaction();
	    transaction.add(SystemProgram.allocate({
	      accountPubkey: splitStakePubkey,
	      basePubkey,
	      seed,
	      space: this.space,
	      programId: this.programId
	    }));
	    if (rentExemptReserve && rentExemptReserve > 0) {
	      transaction.add(SystemProgram.transfer({
	        fromPubkey: params.authorizedPubkey,
	        toPubkey: splitStakePubkey,
	        lamports: rentExemptReserve
	      }));
	    }
	    return transaction.add(this.splitInstruction({
	      stakePubkey,
	      authorizedPubkey,
	      splitStakePubkey,
	      lamports
	    }));
	  }

	  /**
	   * Generate a Transaction that merges Stake accounts.
	   */
	  static merge(params) {
	    const {
	      stakePubkey,
	      sourceStakePubKey,
	      authorizedPubkey
	    } = params;
	    const type = STAKE_INSTRUCTION_LAYOUTS.Merge;
	    const data = encodeData$1(type);
	    return new Transaction().add({
	      keys: [{
	        pubkey: stakePubkey,
	        isSigner: false,
	        isWritable: true
	      }, {
	        pubkey: sourceStakePubKey,
	        isSigner: false,
	        isWritable: true
	      }, {
	        pubkey: SYSVAR_CLOCK_PUBKEY,
	        isSigner: false,
	        isWritable: false
	      }, {
	        pubkey: SYSVAR_STAKE_HISTORY_PUBKEY,
	        isSigner: false,
	        isWritable: false
	      }, {
	        pubkey: authorizedPubkey,
	        isSigner: true,
	        isWritable: false
	      }],
	      programId: this.programId,
	      data
	    });
	  }

	  /**
	   * Generate a Transaction that withdraws deactivated Stake tokens.
	   */
	  static withdraw(params) {
	    const {
	      stakePubkey,
	      authorizedPubkey,
	      toPubkey,
	      lamports,
	      custodianPubkey
	    } = params;
	    const type = STAKE_INSTRUCTION_LAYOUTS.Withdraw;
	    const data = encodeData$1(type, {
	      lamports
	    });
	    const keys = [{
	      pubkey: stakePubkey,
	      isSigner: false,
	      isWritable: true
	    }, {
	      pubkey: toPubkey,
	      isSigner: false,
	      isWritable: true
	    }, {
	      pubkey: SYSVAR_CLOCK_PUBKEY,
	      isSigner: false,
	      isWritable: false
	    }, {
	      pubkey: SYSVAR_STAKE_HISTORY_PUBKEY,
	      isSigner: false,
	      isWritable: false
	    }, {
	      pubkey: authorizedPubkey,
	      isSigner: true,
	      isWritable: false
	    }];
	    if (custodianPubkey) {
	      keys.push({
	        pubkey: custodianPubkey,
	        isSigner: true,
	        isWritable: false
	      });
	    }
	    return new Transaction().add({
	      keys,
	      programId: this.programId,
	      data
	    });
	  }

	  /**
	   * Generate a Transaction that deactivates Stake tokens.
	   */
	  static deactivate(params) {
	    const {
	      stakePubkey,
	      authorizedPubkey
	    } = params;
	    const type = STAKE_INSTRUCTION_LAYOUTS.Deactivate;
	    const data = encodeData$1(type);
	    return new Transaction().add({
	      keys: [{
	        pubkey: stakePubkey,
	        isSigner: false,
	        isWritable: true
	      }, {
	        pubkey: SYSVAR_CLOCK_PUBKEY,
	        isSigner: false,
	        isWritable: false
	      }, {
	        pubkey: authorizedPubkey,
	        isSigner: true,
	        isWritable: false
	      }],
	      programId: this.programId,
	      data
	    });
	  }
	}
	StakeProgram.programId = new PublicKey('Stake11111111111111111111111111111111111111');
	/**
	 * Max space of a Stake account
	 *
	 * This is generated from the solana-stake-program StakeState struct as
	 * `StakeStateV2::size_of()`:
	 * https://docs.rs/solana-stake-program/latest/solana_stake_program/stake_state/enum.StakeStateV2.html
	 */
	StakeProgram.space = 200;

	/**
	 * An enumeration of valid VoteInstructionType's
	 */

	/** @internal */

	Object.freeze({
	  InitializeAccount: {
	    index: 0,
	    layout: LayoutExports$1.struct([LayoutExports$1.u32('instruction'), voteInit()])
	  },
	  Authorize: {
	    index: 1,
	    layout: LayoutExports$1.struct([LayoutExports$1.u32('instruction'), publicKey$2('newAuthorized'), LayoutExports$1.u32('voteAuthorizationType')])
	  },
	  Withdraw: {
	    index: 3,
	    layout: LayoutExports$1.struct([LayoutExports$1.u32('instruction'), LayoutExports$1.ns64('lamports')])
	  },
	  UpdateValidatorIdentity: {
	    index: 4,
	    layout: LayoutExports$1.struct([LayoutExports$1.u32('instruction')])
	  },
	  AuthorizeWithSeed: {
	    index: 10,
	    layout: LayoutExports$1.struct([LayoutExports$1.u32('instruction'), voteAuthorizeWithSeedArgs()])
	  }
	});
	new PublicKey('Vote111111111111111111111111111111111111111');

	new PublicKey('Va1idator1nfo111111111111111111111111111111');

	/**
	 * @internal
	 */

	/**
	 * Info used to identity validators.
	 */

	type({
	  name: string(),
	  website: optional(string()),
	  details: optional(string()),
	  iconUrl: optional(string()),
	  keybaseUsername: optional(string())
	});

	new PublicKey('Vote111111111111111111111111111111111111111');

	/**
	 * History of how many credits earned by the end of each epoch
	 */

	/**
	 * See https://github.com/solana-labs/solana/blob/8a12ed029cfa38d4a45400916c2463fb82bbec8c/programs/vote_api/src/vote_state.rs#L68-L88
	 *
	 * @internal
	 */
	LayoutExports$1.struct([publicKey$2('nodePubkey'), publicKey$2('authorizedWithdrawer'), LayoutExports$1.u8('commission'), LayoutExports$1.nu64(),
	// votes.length
	LayoutExports$1.seq(LayoutExports$1.struct([LayoutExports$1.nu64('slot'), LayoutExports$1.u32('confirmationCount')]), LayoutExports$1.offset(LayoutExports$1.u32(), -8), 'votes'), LayoutExports$1.u8('rootSlotValid'), LayoutExports$1.nu64('rootSlot'), LayoutExports$1.nu64(),
	// authorizedVoters.length
	LayoutExports$1.seq(LayoutExports$1.struct([LayoutExports$1.nu64('epoch'), publicKey$2('authorizedVoter')]), LayoutExports$1.offset(LayoutExports$1.u32(), -8), 'authorizedVoters'), LayoutExports$1.struct([LayoutExports$1.seq(LayoutExports$1.struct([publicKey$2('authorizedPubkey'), LayoutExports$1.nu64('epochOfLastAuthorizedSwitch'), LayoutExports$1.nu64('targetEpoch')]), 32, 'buf'), LayoutExports$1.nu64('idx'), LayoutExports$1.u8('isEmpty')], 'priorVoters'), LayoutExports$1.nu64(),
	// epochCredits.length
	LayoutExports$1.seq(LayoutExports$1.struct([LayoutExports$1.nu64('epoch'), LayoutExports$1.nu64('credits'), LayoutExports$1.nu64('prevCredits')]), LayoutExports$1.offset(LayoutExports$1.u32(), -8), 'epochCredits'), LayoutExports$1.struct([LayoutExports$1.nu64('slot'), LayoutExports$1.nu64('timestamp')], 'lastTimestamp')]);

	/**
	 * There are 1-billion lamports in one SOL
	 */
	const LAMPORTS_PER_SOL = 1000000000;

	/** Address of the SPL Token program */
	const TOKEN_PROGRAM_ID = new PublicKey('TokenkegQfeZyiNwAJbNbGKPFXCWuBvf9Ss623VQ5DA');
	/** Address of the SPL Token 2022 program */
	new PublicKey('TokenzQdBNbLqP5VEhdkAS6EPFLC1PHnBqCXEpPxuEb');
	/** Address of the SPL Associated Token Account program */
	const ASSOCIATED_TOKEN_PROGRAM_ID = new PublicKey('ATokenGPvbdGVxr1b2hvZbsiqW5xWH25efTNsLJA8knL');
	/** Address of the special mint for wrapped native SOL in spl-token */
	new PublicKey('So11111111111111111111111111111111111111112');
	/** Address of the special mint for wrapped native SOL in spl-token-2022 */
	new PublicKey('9pan9bMn5HatX4EJdBwg9VgCa7Uz5HL8N1m5D3NdXejP');

	const encodeDecode = (layout) => {
	    const decode = layout.decode.bind(layout);
	    const encode = layout.encode.bind(layout);
	    return { decode, encode };
	};

	const bigInt = (length) => (property) => {
	    const layout = LayoutExports$1.blob(length, property);
	    const { encode, decode } = encodeDecode(layout);
	    const bigIntLayout = layout;
	    bigIntLayout.decode = (buffer, offset) => {
	        const src = decode(buffer, offset);
	        return browserExports.toBigIntLE(Buffer.from(src));
	    };
	    bigIntLayout.encode = (bigInt, buffer, offset) => {
	        const src = browserExports.toBufferLE(bigInt, length);
	        return encode(src, buffer, offset);
	    };
	    return bigIntLayout;
	};
	const u64$1 = bigInt(8);

	const bool = (property) => {
	    const layout = LayoutExports$1.u8(property);
	    const { encode, decode } = encodeDecode(layout);
	    const boolLayout = layout;
	    boolLayout.decode = (buffer, offset) => {
	        const src = decode(buffer, offset);
	        return !!src;
	    };
	    boolLayout.encode = (bool, buffer, offset) => {
	        const src = Number(bool);
	        return encode(src, buffer, offset);
	    };
	    return boolLayout;
	};

	const publicKey$1 = (property) => {
	    const layout = LayoutExports$1.blob(32, property);
	    const { encode, decode } = encodeDecode(layout);
	    const publicKeyLayout = layout;
	    publicKeyLayout.decode = (buffer, offset) => {
	        const src = decode(buffer, offset);
	        return new PublicKey(src);
	    };
	    publicKeyLayout.encode = (publicKey, buffer, offset) => {
	        const src = publicKey.toBuffer();
	        return encode(src, buffer, offset);
	    };
	    return publicKeyLayout;
	};

	/** Base class for errors */
	class TokenError extends Error {
	    constructor(message) {
	        super(message);
	    }
	}
	/** Thrown if an account is not found at the expected address */
	class TokenAccountNotFoundError extends TokenError {
	    constructor() {
	        super(...arguments);
	        this.name = 'TokenAccountNotFoundError';
	    }
	}
	/** Thrown if a program state account is not a valid Account */
	class TokenInvalidAccountError extends TokenError {
	    constructor() {
	        super(...arguments);
	        this.name = 'TokenInvalidAccountError';
	    }
	}
	/** Thrown if a program state account is not owned by the expected token program */
	class TokenInvalidAccountOwnerError extends TokenError {
	    constructor() {
	        super(...arguments);
	        this.name = 'TokenInvalidAccountOwnerError';
	    }
	}
	/** Thrown if the byte length of an program state account doesn't match the expected size */
	class TokenInvalidAccountSizeError extends TokenError {
	    constructor() {
	        super(...arguments);
	        this.name = 'TokenInvalidAccountSizeError';
	    }
	}
	/** Thrown if the owner of a token account is a PDA (Program Derived Address) */
	class TokenOwnerOffCurveError extends TokenError {
	    constructor() {
	        super(...arguments);
	        this.name = 'TokenOwnerOffCurveError';
	    }
	}

	/** Instructions defined by the program */
	var TokenInstruction;
	(function (TokenInstruction) {
	    TokenInstruction[TokenInstruction["InitializeMint"] = 0] = "InitializeMint";
	    TokenInstruction[TokenInstruction["InitializeAccount"] = 1] = "InitializeAccount";
	    TokenInstruction[TokenInstruction["InitializeMultisig"] = 2] = "InitializeMultisig";
	    TokenInstruction[TokenInstruction["Transfer"] = 3] = "Transfer";
	    TokenInstruction[TokenInstruction["Approve"] = 4] = "Approve";
	    TokenInstruction[TokenInstruction["Revoke"] = 5] = "Revoke";
	    TokenInstruction[TokenInstruction["SetAuthority"] = 6] = "SetAuthority";
	    TokenInstruction[TokenInstruction["MintTo"] = 7] = "MintTo";
	    TokenInstruction[TokenInstruction["Burn"] = 8] = "Burn";
	    TokenInstruction[TokenInstruction["CloseAccount"] = 9] = "CloseAccount";
	    TokenInstruction[TokenInstruction["FreezeAccount"] = 10] = "FreezeAccount";
	    TokenInstruction[TokenInstruction["ThawAccount"] = 11] = "ThawAccount";
	    TokenInstruction[TokenInstruction["TransferChecked"] = 12] = "TransferChecked";
	    TokenInstruction[TokenInstruction["ApproveChecked"] = 13] = "ApproveChecked";
	    TokenInstruction[TokenInstruction["MintToChecked"] = 14] = "MintToChecked";
	    TokenInstruction[TokenInstruction["BurnChecked"] = 15] = "BurnChecked";
	    TokenInstruction[TokenInstruction["InitializeAccount2"] = 16] = "InitializeAccount2";
	    TokenInstruction[TokenInstruction["SyncNative"] = 17] = "SyncNative";
	    TokenInstruction[TokenInstruction["InitializeAccount3"] = 18] = "InitializeAccount3";
	    TokenInstruction[TokenInstruction["InitializeMultisig2"] = 19] = "InitializeMultisig2";
	    TokenInstruction[TokenInstruction["InitializeMint2"] = 20] = "InitializeMint2";
	    TokenInstruction[TokenInstruction["GetAccountDataSize"] = 21] = "GetAccountDataSize";
	    TokenInstruction[TokenInstruction["InitializeImmutableOwner"] = 22] = "InitializeImmutableOwner";
	    TokenInstruction[TokenInstruction["AmountToUiAmount"] = 23] = "AmountToUiAmount";
	    TokenInstruction[TokenInstruction["UiAmountToAmount"] = 24] = "UiAmountToAmount";
	    TokenInstruction[TokenInstruction["InitializeMintCloseAuthority"] = 25] = "InitializeMintCloseAuthority";
	    TokenInstruction[TokenInstruction["TransferFeeExtension"] = 26] = "TransferFeeExtension";
	    TokenInstruction[TokenInstruction["ConfidentialTransferExtension"] = 27] = "ConfidentialTransferExtension";
	    TokenInstruction[TokenInstruction["DefaultAccountStateExtension"] = 28] = "DefaultAccountStateExtension";
	    TokenInstruction[TokenInstruction["Reallocate"] = 29] = "Reallocate";
	    TokenInstruction[TokenInstruction["MemoTransferExtension"] = 30] = "MemoTransferExtension";
	    TokenInstruction[TokenInstruction["CreateNativeMint"] = 31] = "CreateNativeMint";
	    TokenInstruction[TokenInstruction["InitializeNonTransferableMint"] = 32] = "InitializeNonTransferableMint";
	    TokenInstruction[TokenInstruction["InterestBearingMintExtension"] = 33] = "InterestBearingMintExtension";
	    TokenInstruction[TokenInstruction["CpiGuardExtension"] = 34] = "CpiGuardExtension";
	    TokenInstruction[TokenInstruction["InitializePermanentDelegate"] = 35] = "InitializePermanentDelegate";
	    TokenInstruction[TokenInstruction["TransferHookExtension"] = 36] = "TransferHookExtension";
	    // ConfidentialTransferFeeExtension = 37,
	    // WithdrawalExcessLamports = 38,
	    TokenInstruction[TokenInstruction["MetadataPointerExtension"] = 39] = "MetadataPointerExtension";
	    TokenInstruction[TokenInstruction["GroupPointerExtension"] = 40] = "GroupPointerExtension";
	    TokenInstruction[TokenInstruction["GroupMemberPointerExtension"] = 41] = "GroupMemberPointerExtension";
	})(TokenInstruction || (TokenInstruction = {}));

	/** @internal */
	function addSigners(keys, ownerOrAuthority, multiSigners) {
	    if (multiSigners.length) {
	        keys.push({ pubkey: ownerOrAuthority, isSigner: false, isWritable: false });
	        for (const signer of multiSigners) {
	            keys.push({
	                pubkey: signer instanceof PublicKey ? signer : signer.publicKey,
	                isSigner: true,
	                isWritable: false,
	            });
	        }
	    }
	    else {
	        keys.push({ pubkey: ownerOrAuthority, isSigner: true, isWritable: false });
	    }
	    return keys;
	}

	/** TODO: docs */
	const approveInstructionData = LayoutExports$1.struct([LayoutExports$1.u8('instruction'), u64$1('amount')]);
	/**
	 * Construct an Approve instruction
	 *
	 * @param account      Account to set the delegate for
	 * @param delegate     Account authorized to transfer tokens from the account
	 * @param owner        Owner of the account
	 * @param amount       Maximum number of tokens the delegate may transfer
	 * @param multiSigners Signing accounts if `owner` is a multisig
	 * @param programId    SPL Token program account
	 *
	 * @return Instruction to add to a transaction
	 */
	function createApproveInstruction(account, delegate, owner, amount, multiSigners = [], programId = TOKEN_PROGRAM_ID) {
	    const keys = addSigners([
	        { pubkey: account, isSigner: false, isWritable: true },
	        { pubkey: delegate, isSigner: false, isWritable: false },
	    ], owner, multiSigners);
	    const data = Buffer.alloc(approveInstructionData.span);
	    approveInstructionData.encode({
	        instruction: TokenInstruction.Approve,
	        amount: BigInt(amount),
	    }, data);
	    return new TransactionInstruction({ keys, programId, data });
	}

	var AccountType$1;
	(function (AccountType) {
	    AccountType[AccountType["Uninitialized"] = 0] = "Uninitialized";
	    AccountType[AccountType["Mint"] = 1] = "Mint";
	    AccountType[AccountType["Account"] = 2] = "Account";
	})(AccountType$1 || (AccountType$1 = {}));
	const ACCOUNT_TYPE_SIZE = 1;

	/** Buffer layout for de/serializing a multisig */
	const MultisigLayout = LayoutExports$1.struct([
	    LayoutExports$1.u8('m'),
	    LayoutExports$1.u8('n'),
	    bool('isInitialized'),
	    publicKey$1('signer1'),
	    publicKey$1('signer2'),
	    publicKey$1('signer3'),
	    publicKey$1('signer4'),
	    publicKey$1('signer5'),
	    publicKey$1('signer6'),
	    publicKey$1('signer7'),
	    publicKey$1('signer8'),
	    publicKey$1('signer9'),
	    publicKey$1('signer10'),
	    publicKey$1('signer11'),
	]);
	/** Byte length of a multisig */
	const MULTISIG_SIZE = MultisigLayout.span;

	/** Token account state as stored by the program */
	var AccountState;
	(function (AccountState) {
	    AccountState[AccountState["Uninitialized"] = 0] = "Uninitialized";
	    AccountState[AccountState["Initialized"] = 1] = "Initialized";
	    AccountState[AccountState["Frozen"] = 2] = "Frozen";
	})(AccountState || (AccountState = {}));
	/** Buffer layout for de/serializing a token account */
	const AccountLayout = LayoutExports$1.struct([
	    publicKey$1('mint'),
	    publicKey$1('owner'),
	    u64$1('amount'),
	    LayoutExports$1.u32('delegateOption'),
	    publicKey$1('delegate'),
	    LayoutExports$1.u8('state'),
	    LayoutExports$1.u32('isNativeOption'),
	    u64$1('isNative'),
	    u64$1('delegatedAmount'),
	    LayoutExports$1.u32('closeAuthorityOption'),
	    publicKey$1('closeAuthority'),
	]);
	/** Byte length of a token account */
	const ACCOUNT_SIZE = AccountLayout.span;
	/**
	 * Retrieve information about a token account
	 *
	 * @param connection Connection to use
	 * @param address    Token account
	 * @param commitment Desired level of commitment for querying the state
	 * @param programId  SPL Token program account
	 *
	 * @return Token account information
	 */
	async function getAccount(connection, address, commitment, programId = TOKEN_PROGRAM_ID) {
	    const info = await connection.getAccountInfo(address, commitment);
	    return unpackAccount(address, info, programId);
	}
	/**
	 * Unpack a token account
	 *
	 * @param address   Token account
	 * @param info      Token account data
	 * @param programId SPL Token program account
	 *
	 * @return Unpacked token account
	 */
	function unpackAccount(address, info, programId = TOKEN_PROGRAM_ID) {
	    if (!info)
	        throw new TokenAccountNotFoundError();
	    if (!info.owner.equals(programId))
	        throw new TokenInvalidAccountOwnerError();
	    if (info.data.length < ACCOUNT_SIZE)
	        throw new TokenInvalidAccountSizeError();
	    const rawAccount = AccountLayout.decode(info.data.slice(0, ACCOUNT_SIZE));
	    let tlvData = Buffer.alloc(0);
	    if (info.data.length > ACCOUNT_SIZE) {
	        if (info.data.length === MULTISIG_SIZE)
	            throw new TokenInvalidAccountSizeError();
	        if (info.data[ACCOUNT_SIZE] != AccountType$1.Account)
	            throw new TokenInvalidAccountError();
	        tlvData = info.data.slice(ACCOUNT_SIZE + ACCOUNT_TYPE_SIZE);
	    }
	    return {
	        address,
	        mint: rawAccount.mint,
	        owner: rawAccount.owner,
	        amount: rawAccount.amount,
	        delegate: rawAccount.delegateOption ? rawAccount.delegate : null,
	        delegatedAmount: rawAccount.delegatedAmount,
	        isInitialized: rawAccount.state !== AccountState.Uninitialized,
	        isFrozen: rawAccount.state === AccountState.Frozen,
	        isNative: !!rawAccount.isNativeOption,
	        rentExemptReserve: rawAccount.isNativeOption ? rawAccount.isNative : null,
	        closeAuthority: rawAccount.closeAuthorityOption ? rawAccount.closeAuthority : null,
	        tlvData,
	    };
	}

	/** Buffer layout for de/serializing a mint */
	const MintLayout = LayoutExports$1.struct([
	    LayoutExports$1.u32('mintAuthorityOption'),
	    publicKey$1('mintAuthority'),
	    u64$1('supply'),
	    LayoutExports$1.u8('decimals'),
	    bool('isInitialized'),
	    LayoutExports$1.u32('freezeAuthorityOption'),
	    publicKey$1('freezeAuthority'),
	]);
	/** Byte length of a mint */
	MintLayout.span;
	/**
	 * Get the address of the associated token account for a given mint and owner
	 *
	 * @param mint                     Token mint account
	 * @param owner                    Owner of the new account
	 * @param allowOwnerOffCurve       Allow the owner account to be a PDA (Program Derived Address)
	 * @param programId                SPL Token program account
	 * @param associatedTokenProgramId SPL Associated Token program account
	 *
	 * @return Address of the associated token account
	 */
	function getAssociatedTokenAddressSync(mint, owner, allowOwnerOffCurve = false, programId = TOKEN_PROGRAM_ID, associatedTokenProgramId = ASSOCIATED_TOKEN_PROGRAM_ID) {
	    if (!allowOwnerOffCurve && !PublicKey.isOnCurve(owner.toBuffer()))
	        throw new TokenOwnerOffCurveError();
	    const [address] = PublicKey.findProgramAddressSync([owner.toBuffer(), programId.toBuffer(), mint.toBuffer()], associatedTokenProgramId);
	    return address;
	}

	/**
	 * Construct a CreateAssociatedTokenAccountIdempotent instruction
	 *
	 * @param payer                    Payer of the initialization fees
	 * @param associatedToken          New associated token account
	 * @param owner                    Owner of the new account
	 * @param mint                     Token mint account
	 * @param programId                SPL Token program account
	 * @param associatedTokenProgramId SPL Associated Token program account
	 *
	 * @return Instruction to add to a transaction
	 */
	function createAssociatedTokenAccountIdempotentInstruction(payer, associatedToken, owner, mint, programId = TOKEN_PROGRAM_ID, associatedTokenProgramId = ASSOCIATED_TOKEN_PROGRAM_ID) {
	    return buildAssociatedTokenAccountInstruction(payer, associatedToken, owner, mint, Buffer.from([1]), programId, associatedTokenProgramId);
	}
	function buildAssociatedTokenAccountInstruction(payer, associatedToken, owner, mint, instructionData, programId = TOKEN_PROGRAM_ID, associatedTokenProgramId = ASSOCIATED_TOKEN_PROGRAM_ID) {
	    const keys = [
	        { pubkey: payer, isSigner: true, isWritable: true },
	        { pubkey: associatedToken, isSigner: false, isWritable: true },
	        { pubkey: owner, isSigner: false, isWritable: false },
	        { pubkey: mint, isSigner: false, isWritable: false },
	        { pubkey: SystemProgram.programId, isSigner: false, isWritable: false },
	        { pubkey: programId, isSigner: false, isWritable: false },
	    ];
	    return new TransactionInstruction({
	        keys,
	        programId: associatedTokenProgramId,
	        data: instructionData,
	    });
	}

	function solToLamports(amount) {
	    if (isNaN(amount))
	        return Number(0);
	    return Number(amount * LAMPORTS_PER_SOL);
	}
	function lamportsToSol(lamports) {
	    if (typeof lamports === 'number') {
	        return Math.abs(lamports) / LAMPORTS_PER_SOL;
	    }
	    if (typeof lamports === 'bigint') {
	        return Math.abs(Number(lamports)) / LAMPORTS_PER_SOL;
	    }
	    let signMultiplier = 1;
	    if (lamports.isNeg()) {
	        signMultiplier = -1;
	    }
	    const absLamports = lamports.abs();
	    const lamportsString = absLamports.toString(10).padStart(10, '0');
	    const splitIndex = lamportsString.length - 9;
	    const solString = lamportsString.slice(0, splitIndex) + '.' + lamportsString.slice(splitIndex);
	    return signMultiplier * parseFloat(solString);
	}

	// Public key that identifies the metadata program.
	const METADATA_PROGRAM_ID = new PublicKey('metaqbxxUerdq28cj1RbAWkYQm3ybzjb6a8bt518x1s');
	const METADATA_MAX_NAME_LENGTH = 32;
	const METADATA_MAX_SYMBOL_LENGTH = 10;
	const METADATA_MAX_URI_LENGTH = 200;
	// Public key that identifies the SPL Stake Pool program.
	const STAKE_POOL_PROGRAM_ID = new PublicKey('SPoo1Ku8WFXoNDMHPsrGSTSG1Y47rzgn41SLUNakuHy');
	// Maximum number of validators to update during UpdateValidatorListBalance.
	const MAX_VALIDATORS_TO_UPDATE = 5;
	// Seed for ephemeral stake account
	const EPHEMERAL_STAKE_SEED_PREFIX = bufferExports.Buffer.from('ephemeral');
	// Seed used to derive transient stake accounts.
	const TRANSIENT_STAKE_SEED_PREFIX = bufferExports.Buffer.from('transient');
	// Minimum amount of staked SOL required in a validator stake account to allow
	// for merges without a mismatch on credits observed
	const MINIMUM_ACTIVE_STAKE = LAMPORTS_PER_SOL;

	/**
	 * Generates the withdraw authority program address for the stake pool
	 */
	async function findWithdrawAuthorityProgramAddress(programId, stakePoolAddress) {
	    const [publicKey] = await PublicKey.findProgramAddress([stakePoolAddress.toBuffer(), bufferExports.Buffer.from('withdraw')], programId);
	    return publicKey;
	}
	/**
	 * Generates the stake program address for a validator's vote account
	 */
	async function findStakeProgramAddress(programId, voteAccountAddress, stakePoolAddress, seed) {
	    const [publicKey] = await PublicKey.findProgramAddress([
	        voteAccountAddress.toBuffer(),
	        stakePoolAddress.toBuffer(),
	        seed ? new BN(seed).toArrayLike(bufferExports.Buffer, 'le', 4) : bufferExports.Buffer.alloc(0),
	    ], programId);
	    return publicKey;
	}
	/**
	 * Generates the stake program address for a validator's vote account
	 */
	async function findTransientStakeProgramAddress(programId, voteAccountAddress, stakePoolAddress, seed) {
	    const [publicKey] = await PublicKey.findProgramAddress([
	        TRANSIENT_STAKE_SEED_PREFIX,
	        voteAccountAddress.toBuffer(),
	        stakePoolAddress.toBuffer(),
	        seed.toArrayLike(bufferExports.Buffer, 'le', 8),
	    ], programId);
	    return publicKey;
	}
	/**
	 * Generates the ephemeral program address for stake pool redelegation
	 */
	async function findEphemeralStakeProgramAddress(programId, stakePoolAddress, seed) {
	    const [publicKey] = await PublicKey.findProgramAddress([EPHEMERAL_STAKE_SEED_PREFIX, stakePoolAddress.toBuffer(), seed.toArrayLike(bufferExports.Buffer, 'le', 8)], programId);
	    return publicKey;
	}
	/**
	 * Generates the metadata program address for the stake pool
	 */
	function findMetadataAddress(stakePoolMintAddress) {
	    const [publicKey] = PublicKey.findProgramAddressSync([bufferExports.Buffer.from('metadata'), METADATA_PROGRAM_ID.toBuffer(), stakePoolMintAddress.toBuffer()], METADATA_PROGRAM_ID);
	    return publicKey;
	}

	var Layout = {};

	/* The MIT License (MIT)
	 *
	 * Copyright 2015-2018 Peter A. Bigot
	 *
	 * Permission is hereby granted, free of charge, to any person obtaining a copy
	 * of this software and associated documentation files (the "Software"), to deal
	 * in the Software without restriction, including without limitation the rights
	 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
	 * copies of the Software, and to permit persons to whom the Software is
	 * furnished to do so, subject to the following conditions:
	 *
	 * The above copyright notice and this permission notice shall be included in
	 * all copies or substantial portions of the Software.
	 *
	 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
	 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
	 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
	 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
	 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
	 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
	 * THE SOFTWARE.
	 */

	var hasRequiredLayout;

	function requireLayout () {
		if (hasRequiredLayout) return Layout;
		hasRequiredLayout = 1;

		/**
		 * Base class for layout objects.
		 *
		 * **NOTE** This is an abstract base class; you can create instances
		 * if it amuses you, but they won't support the {@link
		 * Layout#encode|encode} or {@link Layout#decode|decode} functions.
		 *
		 * @param {Number} span - Initializer for {@link Layout#span|span}.  The
		 * parameter must be an integer; a negative value signifies that the
		 * span is {@link Layout#getSpan|value-specific}.
		 *
		 * @param {string} [property] - Initializer for {@link
		 * Layout#property|property}.
		 *
		 * @abstract
		 */
		let Layout$1 = class Layout {
		  constructor(span, property) {
		    if (!Number.isInteger(span)) {
		      throw new TypeError('span must be an integer');
		    }

		    /** The span of the layout in bytes.
		     *
		     * Positive values are generally expected.
		     *
		     * Zero will only appear in {@link Constant}s and in {@link
		     * Sequence}s where the {@link Sequence#count|count} is zero.
		     *
		     * A negative value indicates that the span is value-specific, and
		     * must be obtained using {@link Layout#getSpan|getSpan}. */
		    this.span = span;

		    /** The property name used when this layout is represented in an
		     * Object.
		     *
		     * Used only for layouts that {@link Layout#decode|decode} to Object
		     * instances.  If left undefined the span of the unnamed layout will
		     * be treated as padding: it will not be mutated by {@link
		     * Layout#encode|encode} nor represented as a property in the
		     * decoded Object. */
		    this.property = property;
		  }

		  /** Function to create an Object into which decoded properties will
		   * be written.
		   *
		   * Used only for layouts that {@link Layout#decode|decode} to Object
		   * instances, which means:
		   * * {@link Structure}
		   * * {@link Union}
		   * * {@link VariantLayout}
		   * * {@link BitStructure}
		   *
		   * If left undefined the JavaScript representation of these layouts
		   * will be Object instances.
		   *
		   * See {@link bindConstructorLayout}.
		   */
		  makeDestinationObject() {
		    return {};
		  }

		  /**
		   * Decode from a Buffer into an JavaScript value.
		   *
		   * @param {Buffer} b - the buffer from which encoded data is read.
		   *
		   * @param {Number} [offset] - the offset at which the encoded data
		   * starts.  If absent a zero offset is inferred.
		   *
		   * @returns {(Number|Array|Object)} - the value of the decoded data.
		   *
		   * @abstract
		   */
		  decode(b, offset) {
		    throw new Error('Layout is abstract');
		  }

		  /**
		   * Encode a JavaScript value into a Buffer.
		   *
		   * @param {(Number|Array|Object)} src - the value to be encoded into
		   * the buffer.  The type accepted depends on the (sub-)type of {@link
		   * Layout}.
		   *
		   * @param {Buffer} b - the buffer into which encoded data will be
		   * written.
		   *
		   * @param {Number} [offset] - the offset at which the encoded data
		   * starts.  If absent a zero offset is inferred.
		   *
		   * @returns {Number} - the number of bytes encoded, including the
		   * space skipped for internal padding, but excluding data such as
		   * {@link Sequence#count|lengths} when stored {@link
		   * ExternalLayout|externally}.  This is the adjustment to `offset`
		   * producing the offset where data for the next layout would be
		   * written.
		   *
		   * @abstract
		   */
		  encode(src, b, offset) {
		    throw new Error('Layout is abstract');
		  }

		  /**
		   * Calculate the span of a specific instance of a layout.
		   *
		   * @param {Buffer} b - the buffer that contains an encoded instance.
		   *
		   * @param {Number} [offset] - the offset at which the encoded instance
		   * starts.  If absent a zero offset is inferred.
		   *
		   * @return {Number} - the number of bytes covered by the layout
		   * instance.  If this method is not overridden in a subclass the
		   * definition-time constant {@link Layout#span|span} will be
		   * returned.
		   *
		   * @throws {RangeError} - if the length of the value cannot be
		   * determined.
		   */
		  getSpan(b, offset) {
		    if (0 > this.span) {
		      throw new RangeError('indeterminate span');
		    }
		    return this.span;
		  }

		  /**
		   * Replicate the layout using a new property.
		   *
		   * This function must be used to get a structurally-equivalent layout
		   * with a different name since all {@link Layout} instances are
		   * immutable.
		   *
		   * **NOTE** This is a shallow copy.  All fields except {@link
		   * Layout#property|property} are strictly equal to the origin layout.
		   *
		   * @param {String} property - the value for {@link
		   * Layout#property|property} in the replica.
		   *
		   * @returns {Layout} - the copy with {@link Layout#property|property}
		   * set to `property`.
		   */
		  replicate(property) {
		    const rv = Object.create(this.constructor.prototype);
		    Object.assign(rv, this);
		    rv.property = property;
		    return rv;
		  }

		  /**
		   * Create an object from layout properties and an array of values.
		   *
		   * **NOTE** This function returns `undefined` if invoked on a layout
		   * that does not return its value as an Object.  Objects are
		   * returned for things that are a {@link Structure}, which includes
		   * {@link VariantLayout|variant layouts} if they are structures, and
		   * excludes {@link Union}s.  If you want this feature for a union
		   * you must use {@link Union.getVariant|getVariant} to select the
		   * desired layout.
		   *
		   * @param {Array} values - an array of values that correspond to the
		   * default order for properties.  As with {@link Layout#decode|decode}
		   * layout elements that have no property name are skipped when
		   * iterating over the array values.  Only the top-level properties are
		   * assigned; arguments are not assigned to properties of contained
		   * layouts.  Any unused values are ignored.
		   *
		   * @return {(Object|undefined)}
		   */
		  fromArray(values) {
		    return undefined;
		  }
		};
		Layout.Layout = Layout$1;

		/* Provide text that carries a name (such as for a function that will
		 * be throwing an error) annotated with the property of a given layout
		 * (such as one for which the value was unacceptable).
		 *
		 * @ignore */
		function nameWithProperty(name, lo) {
		  if (lo.property) {
		    return name + '[' + lo.property + ']';
		  }
		  return name;
		}
		Layout.nameWithProperty = nameWithProperty;

		/**
		 * Augment a class so that instances can be encoded/decoded using a
		 * given layout.
		 *
		 * Calling this function couples `Class` with `layout` in several ways:
		 *
		 * * `Class.layout_` becomes a static member property equal to `layout`;
		 * * `layout.boundConstructor_` becomes a static member property equal
		 *    to `Class`;
		 * * The {@link Layout#makeDestinationObject|makeDestinationObject()}
		 *   property of `layout` is set to a function that returns a `new
		 *   Class()`;
		 * * `Class.decode(b, offset)` becomes a static member function that
		 *   delegates to {@link Layout#decode|layout.decode}.  The
		 *   synthesized function may be captured and extended.
		 * * `Class.prototype.encode(b, offset)` provides an instance member
		 *   function that delegates to {@link Layout#encode|layout.encode}
		 *   with `src` set to `this`.  The synthesized function may be
		 *   captured and extended, but when the extension is invoked `this`
		 *   must be explicitly bound to the instance.
		 *
		 * @param {class} Class - a JavaScript class with a nullary
		 * constructor.
		 *
		 * @param {Layout} layout - the {@link Layout} instance used to encode
		 * instances of `Class`.
		 */
		function bindConstructorLayout(Class, layout) {
		  if ('function' !== typeof Class) {
		    throw new TypeError('Class must be constructor');
		  }
		  if (Class.hasOwnProperty('layout_')) {
		    throw new Error('Class is already bound to a layout');
		  }
		  if (!(layout && (layout instanceof Layout$1))) {
		    throw new TypeError('layout must be a Layout');
		  }
		  if (layout.hasOwnProperty('boundConstructor_')) {
		    throw new Error('layout is already bound to a constructor');
		  }
		  Class.layout_ = layout;
		  layout.boundConstructor_ = Class;
		  layout.makeDestinationObject = (() => new Class());
		  Object.defineProperty(Class.prototype, 'encode', {
		    value: function(b, offset) {
		      return layout.encode(this, b, offset);
		    },
		    writable: true,
		  });
		  Object.defineProperty(Class, 'decode', {
		    value: function(b, offset) {
		      return layout.decode(b, offset);
		    },
		    writable: true,
		  });
		}
		Layout.bindConstructorLayout = bindConstructorLayout;

		/**
		 * An object that behaves like a layout but does not consume space
		 * within its containing layout.
		 *
		 * This is primarily used to obtain metadata about a member, such as a
		 * {@link OffsetLayout} that can provide data about a {@link
		 * Layout#getSpan|value-specific span}.
		 *
		 * **NOTE** This is an abstract base class; you can create instances
		 * if it amuses you, but they won't support {@link
		 * ExternalLayout#isCount|isCount} or other {@link Layout} functions.
		 *
		 * @param {Number} span - initializer for {@link Layout#span|span}.
		 * The parameter can range from 1 through 6.
		 *
		 * @param {string} [property] - initializer for {@link
		 * Layout#property|property}.
		 *
		 * @abstract
		 * @augments {Layout}
		 */
		class ExternalLayout extends Layout$1 {
		  /**
		   * Return `true` iff the external layout decodes to an unsigned
		   * integer layout.
		   *
		   * In that case it can be used as the source of {@link
		   * Sequence#count|Sequence counts}, {@link Blob#length|Blob lengths},
		   * or as {@link UnionLayoutDiscriminator#layout|external union
		   * discriminators}.
		   *
		   * @abstract
		   */
		  isCount() {
		    throw new Error('ExternalLayout is abstract');
		  }
		}

		/**
		 * An {@link ExternalLayout} that determines its {@link
		 * Layout#decode|value} based on offset into and length of the buffer
		 * on which it is invoked.
		 *
		 * *Factory*: {@link module:Layout.greedy|greedy}
		 *
		 * @param {Number} [elementSpan] - initializer for {@link
		 * GreedyCount#elementSpan|elementSpan}.
		 *
		 * @param {string} [property] - initializer for {@link
		 * Layout#property|property}.
		 *
		 * @augments {ExternalLayout}
		 */
		class GreedyCount extends ExternalLayout {
		  constructor(elementSpan, property) {
		    if (undefined === elementSpan) {
		      elementSpan = 1;
		    }
		    if ((!Number.isInteger(elementSpan)) || (0 >= elementSpan)) {
		      throw new TypeError('elementSpan must be a (positive) integer');
		    }
		    super(-1, property);

		    /** The layout for individual elements of the sequence.  The value
		     * must be a positive integer.  If not provided, the value will be
		     * 1. */
		    this.elementSpan = elementSpan;
		  }

		  /** @override */
		  isCount() {
		    return true;
		  }

		  /** @override */
		  decode(b, offset) {
		    if (undefined === offset) {
		      offset = 0;
		    }
		    const rem = b.length - offset;
		    return Math.floor(rem / this.elementSpan);
		  }

		  /** @override */
		  encode(src, b, offset) {
		    return 0;
		  }
		}

		/**
		 * An {@link ExternalLayout} that supports accessing a {@link Layout}
		 * at a fixed offset from the start of another Layout.  The offset may
		 * be before, within, or after the base layout.
		 *
		 * *Factory*: {@link module:Layout.offset|offset}
		 *
		 * @param {Layout} layout - initializer for {@link
		 * OffsetLayout#layout|layout}, modulo `property`.
		 *
		 * @param {Number} [offset] - Initializes {@link
		 * OffsetLayout#offset|offset}.  Defaults to zero.
		 *
		 * @param {string} [property] - Optional new property name for a
		 * {@link Layout#replicate| replica} of `layout` to be used as {@link
		 * OffsetLayout#layout|layout}.  If not provided the `layout` is used
		 * unchanged.
		 *
		 * @augments {Layout}
		 */
		class OffsetLayout extends ExternalLayout {
		  constructor(layout, offset, property) {
		    if (!(layout instanceof Layout$1)) {
		      throw new TypeError('layout must be a Layout');
		    }

		    if (undefined === offset) {
		      offset = 0;
		    } else if (!Number.isInteger(offset)) {
		      throw new TypeError('offset must be integer or undefined');
		    }

		    super(layout.span, property || layout.property);

		    /** The subordinated layout. */
		    this.layout = layout;

		    /** The location of {@link OffsetLayout#layout} relative to the
		     * start of another layout.
		     *
		     * The value may be positive or negative, but an error will thrown
		     * if at the point of use it goes outside the span of the Buffer
		     * being accessed.  */
		    this.offset = offset;
		  }

		  /** @override */
		  isCount() {
		    return ((this.layout instanceof UInt)
		            || (this.layout instanceof UIntBE));
		  }

		  /** @override */
		  decode(b, offset) {
		    if (undefined === offset) {
		      offset = 0;
		    }
		    return this.layout.decode(b, offset + this.offset);
		  }

		  /** @override */
		  encode(src, b, offset) {
		    if (undefined === offset) {
		      offset = 0;
		    }
		    return this.layout.encode(src, b, offset + this.offset);
		  }
		}

		/**
		 * Represent an unsigned integer in little-endian format.
		 *
		 * *Factory*: {@link module:Layout.u8|u8}, {@link
		 *  module:Layout.u16|u16}, {@link module:Layout.u24|u24}, {@link
		 *  module:Layout.u32|u32}, {@link module:Layout.u40|u40}, {@link
		 *  module:Layout.u48|u48}
		 *
		 * @param {Number} span - initializer for {@link Layout#span|span}.
		 * The parameter can range from 1 through 6.
		 *
		 * @param {string} [property] - initializer for {@link
		 * Layout#property|property}.
		 *
		 * @augments {Layout}
		 */
		class UInt extends Layout$1 {
		  constructor(span, property) {
		    super(span, property);
		    if (6 < this.span) {
		      throw new RangeError('span must not exceed 6 bytes');
		    }
		  }

		  /** @override */
		  decode(b, offset) {
		    if (undefined === offset) {
		      offset = 0;
		    }
		    return b.readUIntLE(offset, this.span);
		  }

		  /** @override */
		  encode(src, b, offset) {
		    if (undefined === offset) {
		      offset = 0;
		    }
		    b.writeUIntLE(src, offset, this.span);
		    return this.span;
		  }
		}

		/**
		 * Represent an unsigned integer in big-endian format.
		 *
		 * *Factory*: {@link module:Layout.u8be|u8be}, {@link
		 * module:Layout.u16be|u16be}, {@link module:Layout.u24be|u24be},
		 * {@link module:Layout.u32be|u32be}, {@link
		 * module:Layout.u40be|u40be}, {@link module:Layout.u48be|u48be}
		 *
		 * @param {Number} span - initializer for {@link Layout#span|span}.
		 * The parameter can range from 1 through 6.
		 *
		 * @param {string} [property] - initializer for {@link
		 * Layout#property|property}.
		 *
		 * @augments {Layout}
		 */
		class UIntBE extends Layout$1 {
		  constructor(span, property) {
		    super( span, property);
		    if (6 < this.span) {
		      throw new RangeError('span must not exceed 6 bytes');
		    }
		  }

		  /** @override */
		  decode(b, offset) {
		    if (undefined === offset) {
		      offset = 0;
		    }
		    return b.readUIntBE(offset, this.span);
		  }

		  /** @override */
		  encode(src, b, offset) {
		    if (undefined === offset) {
		      offset = 0;
		    }
		    b.writeUIntBE(src, offset, this.span);
		    return this.span;
		  }
		}

		/**
		 * Represent a signed integer in little-endian format.
		 *
		 * *Factory*: {@link module:Layout.s8|s8}, {@link
		 *  module:Layout.s16|s16}, {@link module:Layout.s24|s24}, {@link
		 *  module:Layout.s32|s32}, {@link module:Layout.s40|s40}, {@link
		 *  module:Layout.s48|s48}
		 *
		 * @param {Number} span - initializer for {@link Layout#span|span}.
		 * The parameter can range from 1 through 6.
		 *
		 * @param {string} [property] - initializer for {@link
		 * Layout#property|property}.
		 *
		 * @augments {Layout}
		 */
		class Int extends Layout$1 {
		  constructor(span, property) {
		    super(span, property);
		    if (6 < this.span) {
		      throw new RangeError('span must not exceed 6 bytes');
		    }
		  }

		  /** @override */
		  decode(b, offset) {
		    if (undefined === offset) {
		      offset = 0;
		    }
		    return b.readIntLE(offset, this.span);
		  }

		  /** @override */
		  encode(src, b, offset) {
		    if (undefined === offset) {
		      offset = 0;
		    }
		    b.writeIntLE(src, offset, this.span);
		    return this.span;
		  }
		}

		/**
		 * Represent a signed integer in big-endian format.
		 *
		 * *Factory*: {@link module:Layout.s8be|s8be}, {@link
		 * module:Layout.s16be|s16be}, {@link module:Layout.s24be|s24be},
		 * {@link module:Layout.s32be|s32be}, {@link
		 * module:Layout.s40be|s40be}, {@link module:Layout.s48be|s48be}
		 *
		 * @param {Number} span - initializer for {@link Layout#span|span}.
		 * The parameter can range from 1 through 6.
		 *
		 * @param {string} [property] - initializer for {@link
		 * Layout#property|property}.
		 *
		 * @augments {Layout}
		 */
		class IntBE extends Layout$1 {
		  constructor(span, property) {
		    super(span, property);
		    if (6 < this.span) {
		      throw new RangeError('span must not exceed 6 bytes');
		    }
		  }

		  /** @override */
		  decode(b, offset) {
		    if (undefined === offset) {
		      offset = 0;
		    }
		    return b.readIntBE(offset, this.span);
		  }

		  /** @override */
		  encode(src, b, offset) {
		    if (undefined === offset) {
		      offset = 0;
		    }
		    b.writeIntBE(src, offset, this.span);
		    return this.span;
		  }
		}

		const V2E32 = Math.pow(2, 32);

		/* True modulus high and low 32-bit words, where low word is always
		 * non-negative. */
		function divmodInt64(src) {
		  const hi32 = Math.floor(src / V2E32);
		  const lo32 = src - (hi32 * V2E32);
		  return {hi32, lo32};
		}
		/* Reconstruct Number from quotient and non-negative remainder */
		function roundedInt64(hi32, lo32) {
		  return hi32 * V2E32 + lo32;
		}

		/**
		 * Represent an unsigned 64-bit integer in little-endian format when
		 * encoded and as a near integral JavaScript Number when decoded.
		 *
		 * *Factory*: {@link module:Layout.nu64|nu64}
		 *
		 * **NOTE** Values with magnitude greater than 2^52 may not decode to
		 * the exact value of the encoded representation.
		 *
		 * @augments {Layout}
		 */
		class NearUInt64 extends Layout$1 {
		  constructor(property) {
		    super(8, property);
		  }

		  /** @override */
		  decode(b, offset) {
		    if (undefined === offset) {
		      offset = 0;
		    }
		    const lo32 = b.readUInt32LE(offset);
		    const hi32 = b.readUInt32LE(offset + 4);
		    return roundedInt64(hi32, lo32);
		  }

		  /** @override */
		  encode(src, b, offset) {
		    if (undefined === offset) {
		      offset = 0;
		    }
		    const split = divmodInt64(src);
		    b.writeUInt32LE(split.lo32, offset);
		    b.writeUInt32LE(split.hi32, offset + 4);
		    return 8;
		  }
		}

		/**
		 * Represent an unsigned 64-bit integer in big-endian format when
		 * encoded and as a near integral JavaScript Number when decoded.
		 *
		 * *Factory*: {@link module:Layout.nu64be|nu64be}
		 *
		 * **NOTE** Values with magnitude greater than 2^52 may not decode to
		 * the exact value of the encoded representation.
		 *
		 * @augments {Layout}
		 */
		class NearUInt64BE extends Layout$1 {
		  constructor(property) {
		    super(8, property);
		  }

		  /** @override */
		  decode(b, offset) {
		    if (undefined === offset) {
		      offset = 0;
		    }
		    const hi32 = b.readUInt32BE(offset);
		    const lo32 = b.readUInt32BE(offset + 4);
		    return roundedInt64(hi32, lo32);
		  }

		  /** @override */
		  encode(src, b, offset) {
		    if (undefined === offset) {
		      offset = 0;
		    }
		    const split = divmodInt64(src);
		    b.writeUInt32BE(split.hi32, offset);
		    b.writeUInt32BE(split.lo32, offset + 4);
		    return 8;
		  }
		}

		/**
		 * Represent a signed 64-bit integer in little-endian format when
		 * encoded and as a near integral JavaScript Number when decoded.
		 *
		 * *Factory*: {@link module:Layout.ns64|ns64}
		 *
		 * **NOTE** Values with magnitude greater than 2^52 may not decode to
		 * the exact value of the encoded representation.
		 *
		 * @augments {Layout}
		 */
		class NearInt64 extends Layout$1 {
		  constructor(property) {
		    super(8, property);
		  }

		  /** @override */
		  decode(b, offset) {
		    if (undefined === offset) {
		      offset = 0;
		    }
		    const lo32 = b.readUInt32LE(offset);
		    const hi32 = b.readInt32LE(offset + 4);
		    return roundedInt64(hi32, lo32);
		  }

		  /** @override */
		  encode(src, b, offset) {
		    if (undefined === offset) {
		      offset = 0;
		    }
		    const split = divmodInt64(src);
		    b.writeUInt32LE(split.lo32, offset);
		    b.writeInt32LE(split.hi32, offset + 4);
		    return 8;
		  }
		}

		/**
		 * Represent a signed 64-bit integer in big-endian format when
		 * encoded and as a near integral JavaScript Number when decoded.
		 *
		 * *Factory*: {@link module:Layout.ns64be|ns64be}
		 *
		 * **NOTE** Values with magnitude greater than 2^52 may not decode to
		 * the exact value of the encoded representation.
		 *
		 * @augments {Layout}
		 */
		class NearInt64BE extends Layout$1 {
		  constructor(property) {
		    super(8, property);
		  }

		  /** @override */
		  decode(b, offset) {
		    if (undefined === offset) {
		      offset = 0;
		    }
		    const hi32 = b.readInt32BE(offset);
		    const lo32 = b.readUInt32BE(offset + 4);
		    return roundedInt64(hi32, lo32);
		  }

		  /** @override */
		  encode(src, b, offset) {
		    if (undefined === offset) {
		      offset = 0;
		    }
		    const split = divmodInt64(src);
		    b.writeInt32BE(split.hi32, offset);
		    b.writeUInt32BE(split.lo32, offset + 4);
		    return 8;
		  }
		}

		/**
		 * Represent a 32-bit floating point number in little-endian format.
		 *
		 * *Factory*: {@link module:Layout.f32|f32}
		 *
		 * @param {string} [property] - initializer for {@link
		 * Layout#property|property}.
		 *
		 * @augments {Layout}
		 */
		class Float extends Layout$1 {
		  constructor(property) {
		    super(4, property);
		  }

		  /** @override */
		  decode(b, offset) {
		    if (undefined === offset) {
		      offset = 0;
		    }
		    return b.readFloatLE(offset);
		  }

		  /** @override */
		  encode(src, b, offset) {
		    if (undefined === offset) {
		      offset = 0;
		    }
		    b.writeFloatLE(src, offset);
		    return 4;
		  }
		}

		/**
		 * Represent a 32-bit floating point number in big-endian format.
		 *
		 * *Factory*: {@link module:Layout.f32be|f32be}
		 *
		 * @param {string} [property] - initializer for {@link
		 * Layout#property|property}.
		 *
		 * @augments {Layout}
		 */
		class FloatBE extends Layout$1 {
		  constructor(property) {
		    super(4, property);
		  }

		  /** @override */
		  decode(b, offset) {
		    if (undefined === offset) {
		      offset = 0;
		    }
		    return b.readFloatBE(offset);
		  }

		  /** @override */
		  encode(src, b, offset) {
		    if (undefined === offset) {
		      offset = 0;
		    }
		    b.writeFloatBE(src, offset);
		    return 4;
		  }
		}

		/**
		 * Represent a 64-bit floating point number in little-endian format.
		 *
		 * *Factory*: {@link module:Layout.f64|f64}
		 *
		 * @param {string} [property] - initializer for {@link
		 * Layout#property|property}.
		 *
		 * @augments {Layout}
		 */
		class Double extends Layout$1 {
		  constructor(property) {
		    super(8, property);
		  }

		  /** @override */
		  decode(b, offset) {
		    if (undefined === offset) {
		      offset = 0;
		    }
		    return b.readDoubleLE(offset);
		  }

		  /** @override */
		  encode(src, b, offset) {
		    if (undefined === offset) {
		      offset = 0;
		    }
		    b.writeDoubleLE(src, offset);
		    return 8;
		  }
		}

		/**
		 * Represent a 64-bit floating point number in big-endian format.
		 *
		 * *Factory*: {@link module:Layout.f64be|f64be}
		 *
		 * @param {string} [property] - initializer for {@link
		 * Layout#property|property}.
		 *
		 * @augments {Layout}
		 */
		class DoubleBE extends Layout$1 {
		  constructor(property) {
		    super(8, property);
		  }

		  /** @override */
		  decode(b, offset) {
		    if (undefined === offset) {
		      offset = 0;
		    }
		    return b.readDoubleBE(offset);
		  }

		  /** @override */
		  encode(src, b, offset) {
		    if (undefined === offset) {
		      offset = 0;
		    }
		    b.writeDoubleBE(src, offset);
		    return 8;
		  }
		}

		/**
		 * Represent a contiguous sequence of a specific layout as an Array.
		 *
		 * *Factory*: {@link module:Layout.seq|seq}
		 *
		 * @param {Layout} elementLayout - initializer for {@link
		 * Sequence#elementLayout|elementLayout}.
		 *
		 * @param {(Number|ExternalLayout)} count - initializer for {@link
		 * Sequence#count|count}.  The parameter must be either a positive
		 * integer or an instance of {@link ExternalLayout}.
		 *
		 * @param {string} [property] - initializer for {@link
		 * Layout#property|property}.
		 *
		 * @augments {Layout}
		 */
		class Sequence extends Layout$1 {
		  constructor(elementLayout, count, property) {
		    if (!(elementLayout instanceof Layout$1)) {
		      throw new TypeError('elementLayout must be a Layout');
		    }
		    if (!(((count instanceof ExternalLayout) && count.isCount())
		          || (Number.isInteger(count) && (0 <= count)))) {
		      throw new TypeError('count must be non-negative integer '
		                          + 'or an unsigned integer ExternalLayout');
		    }
		    let span = -1;
		    if ((!(count instanceof ExternalLayout))
		        && (0 < elementLayout.span)) {
		      span = count * elementLayout.span;
		    }

		    super(span, property);

		    /** The layout for individual elements of the sequence. */
		    this.elementLayout = elementLayout;

		    /** The number of elements in the sequence.
		     *
		     * This will be either a non-negative integer or an instance of
		     * {@link ExternalLayout} for which {@link
		     * ExternalLayout#isCount|isCount()} is `true`. */
		    this.count = count;
		  }

		  /** @override */
		  getSpan(b, offset) {
		    if (0 <= this.span) {
		      return this.span;
		    }
		    if (undefined === offset) {
		      offset = 0;
		    }
		    let span = 0;
		    let count = this.count;
		    if (count instanceof ExternalLayout) {
		      count = count.decode(b, offset);
		    }
		    if (0 < this.elementLayout.span) {
		      span = count * this.elementLayout.span;
		    } else {
		      let idx = 0;
		      while (idx < count) {
		        span += this.elementLayout.getSpan(b, offset + span);
		        ++idx;
		      }
		    }
		    return span;
		  }

		  /** @override */
		  decode(b, offset) {
		    if (undefined === offset) {
		      offset = 0;
		    }
		    const rv = [];
		    let i = 0;
		    let count = this.count;
		    if (count instanceof ExternalLayout) {
		      count = count.decode(b, offset);
		    }
		    while (i < count) {
		      rv.push(this.elementLayout.decode(b, offset));
		      offset += this.elementLayout.getSpan(b, offset);
		      i += 1;
		    }
		    return rv;
		  }

		  /** Implement {@link Layout#encode|encode} for {@link Sequence}.
		   *
		   * **NOTE** If `src` is shorter than {@link Sequence#count|count} then
		   * the unused space in the buffer is left unchanged.  If `src` is
		   * longer than {@link Sequence#count|count} the unneeded elements are
		   * ignored.
		   *
		   * **NOTE** If {@link Layout#count|count} is an instance of {@link
		   * ExternalLayout} then the length of `src` will be encoded as the
		   * count after `src` is encoded. */
		  encode(src, b, offset) {
		    if (undefined === offset) {
		      offset = 0;
		    }
		    const elo = this.elementLayout;
		    const span = src.reduce((span, v) => {
		      return span + elo.encode(v, b, offset + span);
		    }, 0);
		    if (this.count instanceof ExternalLayout) {
		      this.count.encode(src.length, b, offset);
		    }
		    return span;
		  }
		}

		/**
		 * Represent a contiguous sequence of arbitrary layout elements as an
		 * Object.
		 *
		 * *Factory*: {@link module:Layout.struct|struct}
		 *
		 * **NOTE** The {@link Layout#span|span} of the structure is variable
		 * if any layout in {@link Structure#fields|fields} has a variable
		 * span.  When {@link Layout#encode|encoding} we must have a value for
		 * all variable-length fields, or we wouldn't be able to figure out
		 * how much space to use for storage.  We can only identify the value
		 * for a field when it has a {@link Layout#property|property}.  As
		 * such, although a structure may contain both unnamed fields and
		 * variable-length fields, it cannot contain an unnamed
		 * variable-length field.
		 *
		 * @param {Layout[]} fields - initializer for {@link
		 * Structure#fields|fields}.  An error is raised if this contains a
		 * variable-length field for which a {@link Layout#property|property}
		 * is not defined.
		 *
		 * @param {string} [property] - initializer for {@link
		 * Layout#property|property}.
		 *
		 * @param {Boolean} [decodePrefixes] - initializer for {@link
		 * Structure#decodePrefixes|property}.
		 *
		 * @throws {Error} - if `fields` contains an unnamed variable-length
		 * layout.
		 *
		 * @augments {Layout}
		 */
		class Structure extends Layout$1 {
		  constructor(fields, property, decodePrefixes) {
		    if (!(Array.isArray(fields)
		          && fields.reduce((acc, v) => acc && (v instanceof Layout$1), true))) {
		      throw new TypeError('fields must be array of Layout instances');
		    }
		    if (('boolean' === typeof property)
		        && (undefined === decodePrefixes)) {
		      decodePrefixes = property;
		      property = undefined;
		    }

		    /* Verify absence of unnamed variable-length fields. */
		    for (const fd of fields) {
		      if ((0 > fd.span)
		          && (undefined === fd.property)) {
		        throw new Error('fields cannot contain unnamed variable-length layout');
		      }
		    }

		    let span = -1;
		    try {
		      span = fields.reduce((span, fd) => span + fd.getSpan(), 0);
		    } catch (e) {
		    }
		    super(span, property);

		    /** The sequence of {@link Layout} values that comprise the
		     * structure.
		     *
		     * The individual elements need not be the same type, and may be
		     * either scalar or aggregate layouts.  If a member layout leaves
		     * its {@link Layout#property|property} undefined the
		     * corresponding region of the buffer associated with the element
		     * will not be mutated.
		     *
		     * @type {Layout[]} */
		    this.fields = fields;

		    /** Control behavior of {@link Layout#decode|decode()} given short
		     * buffers.
		     *
		     * In some situations a structure many be extended with additional
		     * fields over time, with older installations providing only a
		     * prefix of the full structure.  If this property is `true`
		     * decoding will accept those buffers and leave subsequent fields
		     * undefined, as long as the buffer ends at a field boundary.
		     * Defaults to `false`. */
		    this.decodePrefixes = !!decodePrefixes;
		  }

		  /** @override */
		  getSpan(b, offset) {
		    if (0 <= this.span) {
		      return this.span;
		    }
		    if (undefined === offset) {
		      offset = 0;
		    }
		    let span = 0;
		    try {
		      span = this.fields.reduce((span, fd) => {
		        const fsp = fd.getSpan(b, offset);
		        offset += fsp;
		        return span + fsp;
		      }, 0);
		    } catch (e) {
		      throw new RangeError('indeterminate span');
		    }
		    return span;
		  }

		  /** @override */
		  decode(b, offset) {
		    if (undefined === offset) {
		      offset = 0;
		    }
		    const dest = this.makeDestinationObject();
		    for (const fd of this.fields) {
		      if (undefined !== fd.property) {
		        dest[fd.property] = fd.decode(b, offset);
		      }
		      offset += fd.getSpan(b, offset);
		      if (this.decodePrefixes
		          && (b.length === offset)) {
		        break;
		      }
		    }
		    return dest;
		  }

		  /** Implement {@link Layout#encode|encode} for {@link Structure}.
		   *
		   * If `src` is missing a property for a member with a defined {@link
		   * Layout#property|property} the corresponding region of the buffer is
		   * left unmodified. */
		  encode(src, b, offset) {
		    if (undefined === offset) {
		      offset = 0;
		    }
		    const firstOffset = offset;
		    let lastOffset = 0;
		    let lastWrote = 0;
		    for (const fd of this.fields) {
		      let span = fd.span;
		      lastWrote = (0 < span) ? span : 0;
		      if (undefined !== fd.property) {
		        const fv = src[fd.property];
		        if (undefined !== fv) {
		          lastWrote = fd.encode(fv, b, offset);
		          if (0 > span) {
		            /* Read the as-encoded span, which is not necessarily the
		             * same as what we wrote. */
		            span = fd.getSpan(b, offset);
		          }
		        }
		      }
		      lastOffset = offset;
		      offset += span;
		    }
		    /* Use (lastOffset + lastWrote) instead of offset because the last
		     * item may have had a dynamic length and we don't want to include
		     * the padding between it and the end of the space reserved for
		     * it. */
		    return (lastOffset + lastWrote) - firstOffset;
		  }

		  /** @override */
		  fromArray(values) {
		    const dest = this.makeDestinationObject();
		    for (const fd of this.fields) {
		      if ((undefined !== fd.property)
		          && (0 < values.length)) {
		        dest[fd.property] = values.shift();
		      }
		    }
		    return dest;
		  }

		  /**
		   * Get access to the layout of a given property.
		   *
		   * @param {String} property - the structure member of interest.
		   *
		   * @return {Layout} - the layout associated with `property`, or
		   * undefined if there is no such property.
		   */
		  layoutFor(property) {
		    if ('string' !== typeof property) {
		      throw new TypeError('property must be string');
		    }
		    for (const fd of this.fields) {
		      if (fd.property === property) {
		        return fd;
		      }
		    }
		  }

		  /**
		   * Get the offset of a structure member.
		   *
		   * @param {String} property - the structure member of interest.
		   *
		   * @return {Number} - the offset in bytes to the start of `property`
		   * within the structure, or undefined if `property` is not a field
		   * within the structure.  If the property is a member but follows a
		   * variable-length structure member a negative number will be
		   * returned.
		   */
		  offsetOf(property) {
		    if ('string' !== typeof property) {
		      throw new TypeError('property must be string');
		    }
		    let offset = 0;
		    for (const fd of this.fields) {
		      if (fd.property === property) {
		        return offset;
		      }
		      if (0 > fd.span) {
		        offset = -1;
		      } else if (0 <= offset) {
		        offset += fd.span;
		      }
		    }
		  }
		}

		/**
		 * An object that can provide a {@link
		 * Union#discriminator|discriminator} API for {@link Union}.
		 *
		 * **NOTE** This is an abstract base class; you can create instances
		 * if it amuses you, but they won't support the {@link
		 * UnionDiscriminator#encode|encode} or {@link
		 * UnionDiscriminator#decode|decode} functions.
		 *
		 * @param {string} [property] - Default for {@link
		 * UnionDiscriminator#property|property}.
		 *
		 * @abstract
		 */
		class UnionDiscriminator {
		  constructor(property) {
		    /** The {@link Layout#property|property} to be used when the
		     * discriminator is referenced in isolation (generally when {@link
		     * Union#decode|Union decode} cannot delegate to a specific
		     * variant). */
		    this.property = property;
		  }

		  /** Analog to {@link Layout#decode|Layout decode} for union discriminators.
		   *
		   * The implementation of this method need not reference the buffer if
		   * variant information is available through other means. */
		  decode() {
		    throw new Error('UnionDiscriminator is abstract');
		  }

		  /** Analog to {@link Layout#decode|Layout encode} for union discriminators.
		   *
		   * The implementation of this method need not store the value if
		   * variant information is maintained through other means. */
		  encode() {
		    throw new Error('UnionDiscriminator is abstract');
		  }
		}

		/**
		 * An object that can provide a {@link
		 * UnionDiscriminator|discriminator API} for {@link Union} using an
		 * unsigned integral {@link Layout} instance located either inside or
		 * outside the union.
		 *
		 * @param {ExternalLayout} layout - initializes {@link
		 * UnionLayoutDiscriminator#layout|layout}.  Must satisfy {@link
		 * ExternalLayout#isCount|isCount()}.
		 *
		 * @param {string} [property] - Default for {@link
		 * UnionDiscriminator#property|property}, superseding the property
		 * from `layout`, but defaulting to `variant` if neither `property`
		 * nor layout provide a property name.
		 *
		 * @augments {UnionDiscriminator}
		 */
		class UnionLayoutDiscriminator extends UnionDiscriminator {
		  constructor(layout, property) {
		    if (!((layout instanceof ExternalLayout)
		          && layout.isCount())) {
		      throw new TypeError('layout must be an unsigned integer ExternalLayout');
		    }

		    super(property || layout.property || 'variant');

		    /** The {@link ExternalLayout} used to access the discriminator
		     * value. */
		    this.layout = layout;
		  }

		  /** Delegate decoding to {@link UnionLayoutDiscriminator#layout|layout}. */
		  decode(b, offset) {
		    return this.layout.decode(b, offset);
		  }

		  /** Delegate encoding to {@link UnionLayoutDiscriminator#layout|layout}. */
		  encode(src, b, offset) {
		    return this.layout.encode(src, b, offset);
		  }
		}

		/**
		 * Represent any number of span-compatible layouts.
		 *
		 * *Factory*: {@link module:Layout.union|union}
		 *
		 * If the union has a {@link Union#defaultLayout|default layout} that
		 * layout must have a non-negative {@link Layout#span|span}.  The span
		 * of a fixed-span union includes its {@link
		 * Union#discriminator|discriminator} if the variant is a {@link
		 * Union#usesPrefixDiscriminator|prefix of the union}, plus the span
		 * of its {@link Union#defaultLayout|default layout}.
		 *
		 * If the union does not have a default layout then the encoded span
		 * of the union depends on the encoded span of its variant (which may
		 * be fixed or variable).
		 *
		 * {@link VariantLayout#layout|Variant layout}s are added through
		 * {@link Union#addVariant|addVariant}.  If the union has a default
		 * layout, the span of the {@link VariantLayout#layout|layout
		 * contained by the variant} must not exceed the span of the {@link
		 * Union#defaultLayout|default layout} (minus the span of a {@link
		 * Union#usesPrefixDiscriminator|prefix disriminator}, if used).  The
		 * span of the variant will equal the span of the union itself.
		 *
		 * The variant for a buffer can only be identified from the {@link
		 * Union#discriminator|discriminator} {@link
		 * UnionDiscriminator#property|property} (in the case of the {@link
		 * Union#defaultLayout|default layout}), or by using {@link
		 * Union#getVariant|getVariant} and examining the resulting {@link
		 * VariantLayout} instance.
		 *
		 * A variant compatible with a JavaScript object can be identified
		 * using {@link Union#getSourceVariant|getSourceVariant}.
		 *
		 * @param {(UnionDiscriminator|ExternalLayout|Layout)} discr - How to
		 * identify the layout used to interpret the union contents.  The
		 * parameter must be an instance of {@link UnionDiscriminator}, an
		 * {@link ExternalLayout} that satisfies {@link
		 * ExternalLayout#isCount|isCount()}, or {@link UInt} (or {@link
		 * UIntBE}).  When a non-external layout element is passed the layout
		 * appears at the start of the union.  In all cases the (synthesized)
		 * {@link UnionDiscriminator} instance is recorded as {@link
		 * Union#discriminator|discriminator}.
		 *
		 * @param {(Layout|null)} defaultLayout - initializer for {@link
		 * Union#defaultLayout|defaultLayout}.  If absent defaults to `null`.
		 * If `null` there is no default layout: the union has data-dependent
		 * length and attempts to decode or encode unrecognized variants will
		 * throw an exception.  A {@link Layout} instance must have a
		 * non-negative {@link Layout#span|span}, and if it lacks a {@link
		 * Layout#property|property} the {@link
		 * Union#defaultLayout|defaultLayout} will be a {@link
		 * Layout#replicate|replica} with property `content`.
		 *
		 * @param {string} [property] - initializer for {@link
		 * Layout#property|property}.
		 *
		 * @augments {Layout}
		 */
		class Union extends Layout$1 {
		  constructor(discr, defaultLayout, property) {
		    const upv = ((discr instanceof UInt)
		               || (discr instanceof UIntBE));
		    if (upv) {
		      discr = new UnionLayoutDiscriminator(new OffsetLayout(discr));
		    } else if ((discr instanceof ExternalLayout)
		               && discr.isCount()) {
		      discr = new UnionLayoutDiscriminator(discr);
		    } else if (!(discr instanceof UnionDiscriminator)) {
		      throw new TypeError('discr must be a UnionDiscriminator '
		                          + 'or an unsigned integer layout');
		    }
		    if (undefined === defaultLayout) {
		      defaultLayout = null;
		    }
		    if (!((null === defaultLayout)
		          || (defaultLayout instanceof Layout$1))) {
		      throw new TypeError('defaultLayout must be null or a Layout');
		    }
		    if (null !== defaultLayout) {
		      if (0 > defaultLayout.span) {
		        throw new Error('defaultLayout must have constant span');
		      }
		      if (undefined === defaultLayout.property) {
		        defaultLayout = defaultLayout.replicate('content');
		      }
		    }

		    /* The union span can be estimated only if there's a default
		     * layout.  The union spans its default layout, plus any prefix
		     * variant layout.  By construction both layouts, if present, have
		     * non-negative span. */
		    let span = -1;
		    if (defaultLayout) {
		      span = defaultLayout.span;
		      if ((0 <= span) && upv) {
		        span += discr.layout.span;
		      }
		    }
		    super(span, property);

		    /** The interface for the discriminator value in isolation.
		     *
		     * This a {@link UnionDiscriminator} either passed to the
		     * constructor or synthesized from the `discr` constructor
		     * argument.  {@link
		     * Union#usesPrefixDiscriminator|usesPrefixDiscriminator} will be
		     * `true` iff the `discr` parameter was a non-offset {@link
		     * Layout} instance. */
		    this.discriminator = discr;

		    /** `true` if the {@link Union#discriminator|discriminator} is the
		     * first field in the union.
		     *
		     * If `false` the discriminator is obtained from somewhere
		     * else. */
		    this.usesPrefixDiscriminator = upv;

		    /** The layout for non-discriminator content when the value of the
		     * discriminator is not recognized.
		     *
		     * This is the value passed to the constructor.  It is
		     * structurally equivalent to the second component of {@link
		     * Union#layout|layout} but may have a different property
		     * name. */
		    this.defaultLayout = defaultLayout;

		    /** A registry of allowed variants.
		     *
		     * The keys are unsigned integers which should be compatible with
		     * {@link Union.discriminator|discriminator}.  The property value
		     * is the corresponding {@link VariantLayout} instances assigned
		     * to this union by {@link Union#addVariant|addVariant}.
		     *
		     * **NOTE** The registry remains mutable so that variants can be
		     * {@link Union#addVariant|added} at any time.  Users should not
		     * manipulate the content of this property. */
		    this.registry = {};

		    /* Private variable used when invoking getSourceVariant */
		    let boundGetSourceVariant = this.defaultGetSourceVariant.bind(this);

		    /** Function to infer the variant selected by a source object.
		     *
		     * Defaults to {@link
		     * Union#defaultGetSourceVariant|defaultGetSourceVariant} but may
		     * be overridden using {@link
		     * Union#configGetSourceVariant|configGetSourceVariant}.
		     *
		     * @param {Object} src - as with {@link
		     * Union#defaultGetSourceVariant|defaultGetSourceVariant}.
		     *
		     * @returns {(undefined|VariantLayout)} The default variant
		     * (`undefined`) or first registered variant that uses a property
		     * available in `src`. */
		    this.getSourceVariant = function(src) {
		      return boundGetSourceVariant(src);
		    };

		    /** Function to override the implementation of {@link
		     * Union#getSourceVariant|getSourceVariant}.
		     *
		     * Use this if the desired variant cannot be identified using the
		     * algorithm of {@link
		     * Union#defaultGetSourceVariant|defaultGetSourceVariant}.
		     *
		     * **NOTE** The provided function will be invoked bound to this
		     * Union instance, providing local access to {@link
		     * Union#registry|registry}.
		     *
		     * @param {Function} gsv - a function that follows the API of
		     * {@link Union#defaultGetSourceVariant|defaultGetSourceVariant}. */
		    this.configGetSourceVariant = function(gsv) {
		      boundGetSourceVariant = gsv.bind(this);
		    };
		  }

		  /** @override */
		  getSpan(b, offset) {
		    if (0 <= this.span) {
		      return this.span;
		    }
		    if (undefined === offset) {
		      offset = 0;
		    }
		    /* Default layouts always have non-negative span, so we don't have
		     * one and we have to recognize the variant which will in turn
		     * determine the span. */
		    const vlo = this.getVariant(b, offset);
		    if (!vlo) {
		      throw new Error('unable to determine span for unrecognized variant');
		    }
		    return vlo.getSpan(b, offset);
		  }

		  /**
		   * Method to infer a registered Union variant compatible with `src`.
		   *
		   * The first satisified rule in the following sequence defines the
		   * return value:
		   * * If `src` has properties matching the Union discriminator and
		   *   the default layout, `undefined` is returned regardless of the
		   *   value of the discriminator property (this ensures the default
		   *   layout will be used);
		   * * If `src` has a property matching the Union discriminator, the
		   *   value of the discriminator identifies a registered variant, and
		   *   either (a) the variant has no layout, or (b) `src` has the
		   *   variant's property, then the variant is returned (because the
		   *   source satisfies the constraints of the variant it identifies);
		   * * If `src` does not have a property matching the Union
		   *   discriminator, but does have a property matching a registered
		   *   variant, then the variant is returned (because the source
		   *   matches a variant without an explicit conflict);
		   * * An error is thrown (because we either can't identify a variant,
		   *   or we were explicitly told the variant but can't satisfy it).
		   *
		   * @param {Object} src - an object presumed to be compatible with
		   * the content of the Union.
		   *
		   * @return {(undefined|VariantLayout)} - as described above.
		   *
		   * @throws {Error} - if `src` cannot be associated with a default or
		   * registered variant.
		   */
		  defaultGetSourceVariant(src) {
		    if (src.hasOwnProperty(this.discriminator.property)) {
		      if (this.defaultLayout
		          && src.hasOwnProperty(this.defaultLayout.property)) {
		        return undefined;
		      }
		      const vlo = this.registry[src[this.discriminator.property]];
		      if (vlo
		          && ((!vlo.layout)
		              || src.hasOwnProperty(vlo.property))) {
		        return vlo;
		      }
		    } else {
		      for (const tag in this.registry) {
		        const vlo = this.registry[tag];
		        if (src.hasOwnProperty(vlo.property)) {
		          return vlo;
		        }
		      }
		    }
		    throw new Error('unable to infer src variant');
		  }

		  /** Implement {@link Layout#decode|decode} for {@link Union}.
		   *
		   * If the variant is {@link Union#addVariant|registered} the return
		   * value is an instance of that variant, with no explicit
		   * discriminator.  Otherwise the {@link Union#defaultLayout|default
		   * layout} is used to decode the content. */
		  decode(b, offset) {
		    if (undefined === offset) {
		      offset = 0;
		    }
		    let dest;
		    const dlo = this.discriminator;
		    const discr = dlo.decode(b, offset);
		    let clo = this.registry[discr];
		    if (undefined === clo) {
		      let contentOffset = 0;
		      clo = this.defaultLayout;
		      if (this.usesPrefixDiscriminator) {
		        contentOffset = dlo.layout.span;
		      }
		      dest = this.makeDestinationObject();
		      dest[dlo.property] = discr;
		      dest[clo.property] = this.defaultLayout.decode(b, offset + contentOffset);
		    } else {
		      dest = clo.decode(b, offset);
		    }
		    return dest;
		  }

		  /** Implement {@link Layout#encode|encode} for {@link Union}.
		   *
		   * This API assumes the `src` object is consistent with the union's
		   * {@link Union#defaultLayout|default layout}.  To encode variants
		   * use the appropriate variant-specific {@link VariantLayout#encode}
		   * method. */
		  encode(src, b, offset) {
		    if (undefined === offset) {
		      offset = 0;
		    }
		    const vlo = this.getSourceVariant(src);
		    if (undefined === vlo) {
		      const dlo = this.discriminator;
		      const clo = this.defaultLayout;
		      let contentOffset = 0;
		      if (this.usesPrefixDiscriminator) {
		        contentOffset = dlo.layout.span;
		      }
		      dlo.encode(src[dlo.property], b, offset);
		      return contentOffset + clo.encode(src[clo.property], b,
		                                        offset + contentOffset);
		    }
		    return vlo.encode(src, b, offset);
		  }

		  /** Register a new variant structure within a union.  The newly
		   * created variant is returned.
		   *
		   * @param {Number} variant - initializer for {@link
		   * VariantLayout#variant|variant}.
		   *
		   * @param {Layout} layout - initializer for {@link
		   * VariantLayout#layout|layout}.
		   *
		   * @param {String} property - initializer for {@link
		   * Layout#property|property}.
		   *
		   * @return {VariantLayout} */
		  addVariant(variant, layout, property) {
		    const rv = new VariantLayout(this, variant, layout, property);
		    this.registry[variant] = rv;
		    return rv;
		  }

		  /**
		   * Get the layout associated with a registered variant.
		   *
		   * If `vb` does not produce a registered variant the function returns
		   * `undefined`.
		   *
		   * @param {(Number|Buffer)} vb - either the variant number, or a
		   * buffer from which the discriminator is to be read.
		   *
		   * @param {Number} offset - offset into `vb` for the start of the
		   * union.  Used only when `vb` is an instance of {Buffer}.
		   *
		   * @return {({VariantLayout}|undefined)}
		   */
		  getVariant(vb, offset) {
		    let variant = vb;
		    if (Buffer.isBuffer(vb)) {
		      if (undefined === offset) {
		        offset = 0;
		      }
		      variant = this.discriminator.decode(vb, offset);
		    }
		    return this.registry[variant];
		  }
		}

		/**
		 * Represent a specific variant within a containing union.
		 *
		 * **NOTE** The {@link Layout#span|span} of the variant may include
		 * the span of the {@link Union#discriminator|discriminator} used to
		 * identify it, but values read and written using the variant strictly
		 * conform to the content of {@link VariantLayout#layout|layout}.
		 *
		 * **NOTE** User code should not invoke this constructor directly.  Use
		 * the union {@link Union#addVariant|addVariant} helper method.
		 *
		 * @param {Union} union - initializer for {@link
		 * VariantLayout#union|union}.
		 *
		 * @param {Number} variant - initializer for {@link
		 * VariantLayout#variant|variant}.
		 *
		 * @param {Layout} [layout] - initializer for {@link
		 * VariantLayout#layout|layout}.  If absent the variant carries no
		 * data.
		 *
		 * @param {String} [property] - initializer for {@link
		 * Layout#property|property}.  Unlike many other layouts, variant
		 * layouts normally include a property name so they can be identified
		 * within their containing {@link Union}.  The property identifier may
		 * be absent only if `layout` is is absent.
		 *
		 * @augments {Layout}
		 */
		class VariantLayout extends Layout$1 {
		  constructor(union, variant, layout, property) {
		    if (!(union instanceof Union)) {
		      throw new TypeError('union must be a Union');
		    }
		    if ((!Number.isInteger(variant)) || (0 > variant)) {
		      throw new TypeError('variant must be a (non-negative) integer');
		    }
		    if (('string' === typeof layout)
		        && (undefined === property)) {
		      property = layout;
		      layout = null;
		    }
		    if (layout) {
		      if (!(layout instanceof Layout$1)) {
		        throw new TypeError('layout must be a Layout');
		      }
		      if ((null !== union.defaultLayout)
		          && (0 <= layout.span)
		          && (layout.span > union.defaultLayout.span)) {
		        throw new Error('variant span exceeds span of containing union');
		      }
		      if ('string' !== typeof property) {
		        throw new TypeError('variant must have a String property');
		      }
		    }
		    let span = union.span;
		    if (0 > union.span) {
		      span = layout ? layout.span : 0;
		      if ((0 <= span) && union.usesPrefixDiscriminator) {
		        span += union.discriminator.layout.span;
		      }
		    }
		    super(span, property);

		    /** The {@link Union} to which this variant belongs. */
		    this.union = union;

		    /** The unsigned integral value identifying this variant within
		     * the {@link Union#discriminator|discriminator} of the containing
		     * union. */
		    this.variant = variant;

		    /** The {@link Layout} to be used when reading/writing the
		     * non-discriminator part of the {@link
		     * VariantLayout#union|union}.  If `null` the variant carries no
		     * data. */
		    this.layout = layout || null;
		  }

		  /** @override */
		  getSpan(b, offset) {
		    if (0 <= this.span) {
		      /* Will be equal to the containing union span if that is not
		       * variable. */
		      return this.span;
		    }
		    if (undefined === offset) {
		      offset = 0;
		    }
		    let contentOffset = 0;
		    if (this.union.usesPrefixDiscriminator) {
		      contentOffset = this.union.discriminator.layout.span;
		    }
		    /* Span is defined solely by the variant (and prefix discriminator) */
		    return contentOffset + this.layout.getSpan(b, offset + contentOffset);
		  }

		  /** @override */
		  decode(b, offset) {
		    const dest = this.makeDestinationObject();
		    if (undefined === offset) {
		      offset = 0;
		    }
		    if (this !== this.union.getVariant(b, offset)) {
		      throw new Error('variant mismatch');
		    }
		    let contentOffset = 0;
		    if (this.union.usesPrefixDiscriminator) {
		      contentOffset = this.union.discriminator.layout.span;
		    }
		    if (this.layout) {
		      dest[this.property] = this.layout.decode(b, offset + contentOffset);
		    } else if (this.property) {
		      dest[this.property] = true;
		    } else if (this.union.usesPrefixDiscriminator) {
		      dest[this.union.discriminator.property] = this.variant;
		    }
		    return dest;
		  }

		  /** @override */
		  encode(src, b, offset) {
		    if (undefined === offset) {
		      offset = 0;
		    }
		    let contentOffset = 0;
		    if (this.union.usesPrefixDiscriminator) {
		      contentOffset = this.union.discriminator.layout.span;
		    }
		    if (this.layout
		        && (!src.hasOwnProperty(this.property))) {
		      throw new TypeError('variant lacks property ' + this.property);
		    }
		    this.union.discriminator.encode(this.variant, b, offset);
		    let span = contentOffset;
		    if (this.layout) {
		      this.layout.encode(src[this.property], b, offset + contentOffset);
		      span += this.layout.getSpan(b, offset + contentOffset);
		      if ((0 <= this.union.span)
		          && (span > this.union.span)) {
		        throw new Error('encoded variant overruns containing union');
		      }
		    }
		    return span;
		  }

		  /** Delegate {@link Layout#fromArray|fromArray} to {@link
		   * VariantLayout#layout|layout}. */
		  fromArray(values) {
		    if (this.layout) {
		      return this.layout.fromArray(values);
		    }
		  }
		}

		/** JavaScript chose to define bitwise operations as operating on
		 * signed 32-bit values in 2's complement form, meaning any integer
		 * with bit 31 set is going to look negative.  For right shifts that's
		 * not a problem, because `>>>` is a logical shift, but for every
		 * other bitwise operator we have to compensate for possible negative
		 * results. */
		function fixBitwiseResult(v) {
		  if (0 > v) {
		    v += 0x100000000;
		  }
		  return v;
		}

		/**
		 * Contain a sequence of bit fields as an unsigned integer.
		 *
		 * *Factory*: {@link module:Layout.bits|bits}
		 *
		 * This is a container element; within it there are {@link BitField}
		 * instances that provide the extracted properties.  The container
		 * simply defines the aggregate representation and its bit ordering.
		 * The representation is an object containing properties with numeric
		 * or {@link Boolean} values.
		 *
		 * {@link BitField}s are added with the {@link
		 * BitStructure#addField|addField} and {@link
		 * BitStructure#addBoolean|addBoolean} methods.

		 * @param {Layout} word - initializer for {@link
		 * BitStructure#word|word}.  The parameter must be an instance of
		 * {@link UInt} (or {@link UIntBE}) that is no more than 4 bytes wide.
		 *
		 * @param {bool} [msb] - `true` if the bit numbering starts at the
		 * most significant bit of the containing word; `false` (default) if
		 * it starts at the least significant bit of the containing word.  If
		 * the parameter at this position is a string and `property` is
		 * `undefined` the value of this argument will instead be used as the
		 * value of `property`.
		 *
		 * @param {string} [property] - initializer for {@link
		 * Layout#property|property}.
		 *
		 * @augments {Layout}
		 */
		class BitStructure extends Layout$1 {
		  constructor(word, msb, property) {
		    if (!((word instanceof UInt)
		          || (word instanceof UIntBE))) {
		      throw new TypeError('word must be a UInt or UIntBE layout');
		    }
		    if (('string' === typeof msb)
		        && (undefined === property)) {
		      property = msb;
		      msb = undefined;
		    }
		    if (4 < word.span) {
		      throw new RangeError('word cannot exceed 32 bits');
		    }
		    super(word.span, property);

		    /** The layout used for the packed value.  {@link BitField}
		     * instances are packed sequentially depending on {@link
		     * BitStructure#msb|msb}. */
		    this.word = word;

		    /** Whether the bit sequences are packed starting at the most
		     * significant bit growing down (`true`), or the least significant
		     * bit growing up (`false`).
		     *
		     * **NOTE** Regardless of this value, the least significant bit of
		     * any {@link BitField} value is the least significant bit of the
		     * corresponding section of the packed value. */
		    this.msb = !!msb;

		    /** The sequence of {@link BitField} layouts that comprise the
		     * packed structure.
		     *
		     * **NOTE** The array remains mutable to allow fields to be {@link
		     * BitStructure#addField|added} after construction.  Users should
		     * not manipulate the content of this property.*/
		    this.fields = [];

		    /* Storage for the value.  Capture a variable instead of using an
		     * instance property because we don't want anything to change the
		     * value without going through the mutator. */
		    let value = 0;
		    this._packedSetValue = function(v) {
		      value = fixBitwiseResult(v);
		      return this;
		    };
		    this._packedGetValue = function() {
		      return value;
		    };
		  }

		  /** @override */
		  decode(b, offset) {
		    const dest = this.makeDestinationObject();
		    if (undefined === offset) {
		      offset = 0;
		    }
		    const value = this.word.decode(b, offset);
		    this._packedSetValue(value);
		    for (const fd of this.fields) {
		      if (undefined !== fd.property) {
		        dest[fd.property] = fd.decode(value);
		      }
		    }
		    return dest;
		  }

		  /** Implement {@link Layout#encode|encode} for {@link BitStructure}.
		   *
		   * If `src` is missing a property for a member with a defined {@link
		   * Layout#property|property} the corresponding region of the packed
		   * value is left unmodified.  Unused bits are also left unmodified. */
		  encode(src, b, offset) {
		    if (undefined === offset) {
		      offset = 0;
		    }
		    const value = this.word.decode(b, offset);
		    this._packedSetValue(value);
		    for (const fd of this.fields) {
		      if (undefined !== fd.property) {
		        const fv = src[fd.property];
		        if (undefined !== fv) {
		          fd.encode(fv);
		        }
		      }
		    }
		    return this.word.encode(this._packedGetValue(), b, offset);
		  }

		  /** Register a new bitfield with a containing bit structure.  The
		   * resulting bitfield is returned.
		   *
		   * @param {Number} bits - initializer for {@link BitField#bits|bits}.
		   *
		   * @param {string} property - initializer for {@link
		   * Layout#property|property}.
		   *
		   * @return {BitField} */
		  addField(bits, property) {
		    const bf = new BitField(this, bits, property);
		    this.fields.push(bf);
		    return bf;
		  }

		  /** As with {@link BitStructure#addField|addField} for single-bit
		   * fields with `boolean` value representation.
		   *
		   * @param {string} property - initializer for {@link
		   * Layout#property|property}.
		   *
		   * @return {Boolean} */
		  addBoolean(property) {
		    // This is my Boolean, not the Javascript one.
		    // eslint-disable-next-line no-new-wrappers
		    const bf = new Boolean(this, property);
		    this.fields.push(bf);
		    return bf;
		  }

		  /**
		   * Get access to the bit field for a given property.
		   *
		   * @param {String} property - the bit field of interest.
		   *
		   * @return {BitField} - the field associated with `property`, or
		   * undefined if there is no such property.
		   */
		  fieldFor(property) {
		    if ('string' !== typeof property) {
		      throw new TypeError('property must be string');
		    }
		    for (const fd of this.fields) {
		      if (fd.property === property) {
		        return fd;
		      }
		    }
		  }
		}

		/**
		 * Represent a sequence of bits within a {@link BitStructure}.
		 *
		 * All bit field values are represented as unsigned integers.
		 *
		 * **NOTE** User code should not invoke this constructor directly.
		 * Use the container {@link BitStructure#addField|addField} helper
		 * method.
		 *
		 * **NOTE** BitField instances are not instances of {@link Layout}
		 * since {@link Layout#span|span} measures 8-bit units.
		 *
		 * @param {BitStructure} container - initializer for {@link
		 * BitField#container|container}.
		 *
		 * @param {Number} bits - initializer for {@link BitField#bits|bits}.
		 *
		 * @param {string} [property] - initializer for {@link
		 * Layout#property|property}.
		 */
		class BitField {
		  constructor(container, bits, property) {
		    if (!(container instanceof BitStructure)) {
		      throw new TypeError('container must be a BitStructure');
		    }
		    if ((!Number.isInteger(bits)) || (0 >= bits)) {
		      throw new TypeError('bits must be positive integer');
		    }
		    const totalBits = 8 * container.span;
		    const usedBits = container.fields.reduce((sum, fd) => sum + fd.bits, 0);
		    if ((bits + usedBits) > totalBits) {
		      throw new Error('bits too long for span remainder ('
		                      + (totalBits - usedBits) + ' of '
		                      + totalBits + ' remain)');
		    }

		    /** The {@link BitStructure} instance to which this bit field
		     * belongs. */
		    this.container = container;

		    /** The span of this value in bits. */
		    this.bits = bits;

		    /** A mask of {@link BitField#bits|bits} bits isolating value bits
		     * that fit within the field.
		     *
		     * That is, it masks a value that has not yet been shifted into
		     * position within its containing packed integer. */
		    this.valueMask = (1 << bits) - 1;
		    if (32 === bits) { // shifted value out of range
		      this.valueMask = 0xFFFFFFFF;
		    }

		    /** The offset of the value within the containing packed unsigned
		     * integer.  The least significant bit of the packed value is at
		     * offset zero, regardless of bit ordering used. */
		    this.start = usedBits;
		    if (this.container.msb) {
		      this.start = totalBits - usedBits - bits;
		    }

		    /** A mask of {@link BitField#bits|bits} isolating the field value
		     * within the containing packed unsigned integer. */
		    this.wordMask = fixBitwiseResult(this.valueMask << this.start);

		    /** The property name used when this bitfield is represented in an
		     * Object.
		     *
		     * Intended to be functionally equivalent to {@link
		     * Layout#property}.
		     *
		     * If left undefined the corresponding span of bits will be
		     * treated as padding: it will not be mutated by {@link
		     * Layout#encode|encode} nor represented as a property in the
		     * decoded Object. */
		    this.property = property;
		  }

		  /** Store a value into the corresponding subsequence of the containing
		   * bit field. */
		  decode() {
		    const word = this.container._packedGetValue();
		    const wordValue = fixBitwiseResult(word & this.wordMask);
		    const value = wordValue >>> this.start;
		    return value;
		  }

		  /** Store a value into the corresponding subsequence of the containing
		   * bit field.
		   *
		   * **NOTE** This is not a specialization of {@link
		   * Layout#encode|Layout.encode} and there is no return value. */
		  encode(value) {
		    if ((!Number.isInteger(value))
		        || (value !== fixBitwiseResult(value & this.valueMask))) {
		      throw new TypeError(nameWithProperty('BitField.encode', this)
		                          + ' value must be integer not exceeding ' + this.valueMask);
		    }
		    const word = this.container._packedGetValue();
		    const wordValue = fixBitwiseResult(value << this.start);
		    this.container._packedSetValue(fixBitwiseResult(word & ~this.wordMask)
		                                   | wordValue);
		  };
		}

		/**
		 * Represent a single bit within a {@link BitStructure} as a
		 * JavaScript boolean.
		 *
		 * **NOTE** User code should not invoke this constructor directly.
		 * Use the container {@link BitStructure#addBoolean|addBoolean} helper
		 * method.
		 *
		 * @param {BitStructure} container - initializer for {@link
		 * BitField#container|container}.
		 *
		 * @param {string} [property] - initializer for {@link
		 * Layout#property|property}.
		 *
		 * @augments {BitField}
		 */
		/* eslint-disable no-extend-native */
		class Boolean extends BitField {
		  constructor(container, property) {
		    super(container, 1, property);
		  }

		  /** Override {@link BitField#decode|decode} for {@link Boolean|Boolean}.
		   *
		   * @returns {boolean} */
		  decode(b, offset) {
		    return !!BitField.prototype.decode.call(this, b, offset);
		  }

		  /** @override */
		  encode(value) {
		    if ('boolean' === typeof value) {
		      // BitField requires integer values
		      value = +value;
		    }
		    return BitField.prototype.encode.call(this, value);
		  }
		}
		/* eslint-enable no-extend-native */

		/**
		 * Contain a fixed-length block of arbitrary data, represented as a
		 * Buffer.
		 *
		 * *Factory*: {@link module:Layout.blob|blob}
		 *
		 * @param {(Number|ExternalLayout)} length - initializes {@link
		 * Blob#length|length}.
		 *
		 * @param {String} [property] - initializer for {@link
		 * Layout#property|property}.
		 *
		 * @augments {Layout}
		 */
		class Blob extends Layout$1 {
		  constructor(length, property) {
		    if (!(((length instanceof ExternalLayout) && length.isCount())
		          || (Number.isInteger(length) && (0 <= length)))) {
		      throw new TypeError('length must be positive integer '
		                          + 'or an unsigned integer ExternalLayout');
		    }

		    let span = -1;
		    if (!(length instanceof ExternalLayout)) {
		      span = length;
		    }
		    super(span, property);

		    /** The number of bytes in the blob.
		     *
		     * This may be a non-negative integer, or an instance of {@link
		     * ExternalLayout} that satisfies {@link
		     * ExternalLayout#isCount|isCount()}. */
		    this.length = length;
		  }

		  /** @override */
		  getSpan(b, offset) {
		    let span = this.span;
		    if (0 > span) {
		      span = this.length.decode(b, offset);
		    }
		    return span;
		  }

		  /** @override */
		  decode(b, offset) {
		    if (undefined === offset) {
		      offset = 0;
		    }
		    let span = this.span;
		    if (0 > span) {
		      span = this.length.decode(b, offset);
		    }
		    return b.slice(offset, offset + span);
		  }

		  /** Implement {@link Layout#encode|encode} for {@link Blob}.
		   *
		   * **NOTE** If {@link Layout#count|count} is an instance of {@link
		   * ExternalLayout} then the length of `src` will be encoded as the
		   * count after `src` is encoded. */
		  encode(src, b, offset) {
		    let span = this.length;
		    if (this.length instanceof ExternalLayout) {
		      span = src.length;
		    }
		    if (!(Buffer.isBuffer(src)
		          && (span === src.length))) {
		      throw new TypeError(nameWithProperty('Blob.encode', this)
		                          + ' requires (length ' + span + ') Buffer as src');
		    }
		    if ((offset + span) > b.length) {
		      throw new RangeError('encoding overruns Buffer');
		    }
		    b.write(src.toString('hex'), offset, span, 'hex');
		    if (this.length instanceof ExternalLayout) {
		      this.length.encode(span, b, offset);
		    }
		    return span;
		  }
		}

		/**
		 * Contain a `NUL`-terminated UTF8 string.
		 *
		 * *Factory*: {@link module:Layout.cstr|cstr}
		 *
		 * **NOTE** Any UTF8 string that incorporates a zero-valued byte will
		 * not be correctly decoded by this layout.
		 *
		 * @param {String} [property] - initializer for {@link
		 * Layout#property|property}.
		 *
		 * @augments {Layout}
		 */
		class CString extends Layout$1 {
		  constructor(property) {
		    super(-1, property);
		  }

		  /** @override */
		  getSpan(b, offset) {
		    if (!Buffer.isBuffer(b)) {
		      throw new TypeError('b must be a Buffer');
		    }
		    if (undefined === offset) {
		      offset = 0;
		    }
		    let idx = offset;
		    while ((idx < b.length) && (0 !== b[idx])) {
		      idx += 1;
		    }
		    return 1 + idx - offset;
		  }

		  /** @override */
		  decode(b, offset, dest) {
		    if (undefined === offset) {
		      offset = 0;
		    }
		    let span = this.getSpan(b, offset);
		    return b.slice(offset, offset + span - 1).toString('utf-8');
		  }

		  /** @override */
		  encode(src, b, offset) {
		    if (undefined === offset) {
		      offset = 0;
		    }
		    /* Must force this to a string, lest it be a number and the
		     * "utf8-encoding" below actually allocate a buffer of length
		     * src */
		    if ('string' !== typeof src) {
		      src = src.toString();
		    }
		    const srcb = new Buffer(src, 'utf8');
		    const span = srcb.length;
		    if ((offset + span) > b.length) {
		      throw new RangeError('encoding overruns Buffer');
		    }
		    srcb.copy(b, offset);
		    b[offset + span] = 0;
		    return span + 1;
		  }
		}

		/**
		 * Contain a UTF8 string with implicit length.
		 *
		 * *Factory*: {@link module:Layout.utf8|utf8}
		 *
		 * **NOTE** Because the length is implicit in the size of the buffer
		 * this layout should be used only in isolation, or in a situation
		 * where the length can be expressed by operating on a slice of the
		 * containing buffer.
		 *
		 * @param {Number} [maxSpan] - the maximum length allowed for encoded
		 * string content.  If not provided there is no bound on the allowed
		 * content.
		 *
		 * @param {String} [property] - initializer for {@link
		 * Layout#property|property}.
		 *
		 * @augments {Layout}
		 */
		class UTF8 extends Layout$1 {
		  constructor(maxSpan, property) {
		    if (('string' === typeof maxSpan)
		        && (undefined === property)) {
		      property = maxSpan;
		      maxSpan = undefined;
		    }
		    if (undefined === maxSpan) {
		      maxSpan = -1;
		    } else if (!Number.isInteger(maxSpan)) {
		      throw new TypeError('maxSpan must be an integer');
		    }

		    super(-1, property);

		    /** The maximum span of the layout in bytes.
		     *
		     * Positive values are generally expected.  Zero is abnormal.
		     * Attempts to encode or decode a value that exceeds this length
		     * will throw a `RangeError`.
		     *
		     * A negative value indicates that there is no bound on the length
		     * of the content. */
		    this.maxSpan = maxSpan;
		  }

		  /** @override */
		  getSpan(b, offset) {
		    if (!Buffer.isBuffer(b)) {
		      throw new TypeError('b must be a Buffer');
		    }
		    if (undefined === offset) {
		      offset = 0;
		    }
		    return b.length - offset;
		  }

		  /** @override */
		  decode(b, offset, dest) {
		    if (undefined === offset) {
		      offset = 0;
		    }
		    let span = this.getSpan(b, offset);
		    if ((0 <= this.maxSpan)
		        && (this.maxSpan < span)) {
		      throw new RangeError('text length exceeds maxSpan');
		    }
		    return b.slice(offset, offset + span).toString('utf-8');
		  }

		  /** @override */
		  encode(src, b, offset) {
		    if (undefined === offset) {
		      offset = 0;
		    }
		    /* Must force this to a string, lest it be a number and the
		     * "utf8-encoding" below actually allocate a buffer of length
		     * src */
		    if ('string' !== typeof src) {
		      src = src.toString();
		    }
		    const srcb = new Buffer(src, 'utf8');
		    const span = srcb.length;
		    if ((0 <= this.maxSpan)
		        && (this.maxSpan < span)) {
		      throw new RangeError('text length exceeds maxSpan');
		    }
		    if ((offset + span) > b.length) {
		      throw new RangeError('encoding overruns Buffer');
		    }
		    srcb.copy(b, offset);
		    return span;
		  }
		}

		/**
		 * Contain a constant value.
		 *
		 * This layout may be used in cases where a JavaScript value can be
		 * inferred without an expression in the binary encoding.  An example
		 * would be a {@link VariantLayout|variant layout} where the content
		 * is implied by the union {@link Union#discriminator|discriminator}.
		 *
		 * @param {Object|Number|String} value - initializer for {@link
		 * Constant#value|value}.  If the value is an object (or array) and
		 * the application intends the object to remain unchanged regardless
		 * of what is done to values decoded by this layout, the value should
		 * be frozen prior passing it to this constructor.
		 *
		 * @param {String} [property] - initializer for {@link
		 * Layout#property|property}.
		 *
		 * @augments {Layout}
		 */
		class Constant extends Layout$1 {
		  constructor(value, property) {
		    super(0, property);

		    /** The value produced by this constant when the layout is {@link
		     * Constant#decode|decoded}.
		     *
		     * Any JavaScript value including `null` and `undefined` is
		     * permitted.
		     *
		     * **WARNING** If `value` passed in the constructor was not
		     * frozen, it is possible for users of decoded values to change
		     * the content of the value. */
		    this.value = value;
		  }

		  /** @override */
		  decode(b, offset, dest) {
		    return this.value;
		  }

		  /** @override */
		  encode(src, b, offset) {
		    /* Constants take no space */
		    return 0;
		  }
		}

		Layout.ExternalLayout = ExternalLayout;
		Layout.GreedyCount = GreedyCount;
		Layout.OffsetLayout = OffsetLayout;
		Layout.UInt = UInt;
		Layout.UIntBE = UIntBE;
		Layout.Int = Int;
		Layout.IntBE = IntBE;
		Layout.Float = Float;
		Layout.FloatBE = FloatBE;
		Layout.Double = Double;
		Layout.DoubleBE = DoubleBE;
		Layout.Sequence = Sequence;
		Layout.Structure = Structure;
		Layout.UnionDiscriminator = UnionDiscriminator;
		Layout.UnionLayoutDiscriminator = UnionLayoutDiscriminator;
		Layout.Union = Union;
		Layout.VariantLayout = VariantLayout;
		Layout.BitStructure = BitStructure;
		Layout.BitField = BitField;
		Layout.Boolean = Boolean;
		Layout.Blob = Blob;
		Layout.CString = CString;
		Layout.UTF8 = UTF8;
		Layout.Constant = Constant;

		/** Factory for {@link GreedyCount}. */
		Layout.greedy = ((elementSpan, property) => new GreedyCount(elementSpan, property));

		/** Factory for {@link OffsetLayout}. */
		Layout.offset = ((layout, offset, property) => new OffsetLayout(layout, offset, property));

		/** Factory for {@link UInt|unsigned int layouts} spanning one
		 * byte. */
		Layout.u8 = (property => new UInt(1, property));

		/** Factory for {@link UInt|little-endian unsigned int layouts}
		 * spanning two bytes. */
		Layout.u16 = (property => new UInt(2, property));

		/** Factory for {@link UInt|little-endian unsigned int layouts}
		 * spanning three bytes. */
		Layout.u24 = (property => new UInt(3, property));

		/** Factory for {@link UInt|little-endian unsigned int layouts}
		 * spanning four bytes. */
		Layout.u32 = (property => new UInt(4, property));

		/** Factory for {@link UInt|little-endian unsigned int layouts}
		 * spanning five bytes. */
		Layout.u40 = (property => new UInt(5, property));

		/** Factory for {@link UInt|little-endian unsigned int layouts}
		 * spanning six bytes. */
		Layout.u48 = (property => new UInt(6, property));

		/** Factory for {@link NearUInt64|little-endian unsigned int
		 * layouts} interpreted as Numbers. */
		Layout.nu64 = (property => new NearUInt64(property));

		/** Factory for {@link UInt|big-endian unsigned int layouts}
		 * spanning two bytes. */
		Layout.u16be = (property => new UIntBE(2, property));

		/** Factory for {@link UInt|big-endian unsigned int layouts}
		 * spanning three bytes. */
		Layout.u24be = (property => new UIntBE(3, property));

		/** Factory for {@link UInt|big-endian unsigned int layouts}
		 * spanning four bytes. */
		Layout.u32be = (property => new UIntBE(4, property));

		/** Factory for {@link UInt|big-endian unsigned int layouts}
		 * spanning five bytes. */
		Layout.u40be = (property => new UIntBE(5, property));

		/** Factory for {@link UInt|big-endian unsigned int layouts}
		 * spanning six bytes. */
		Layout.u48be = (property => new UIntBE(6, property));

		/** Factory for {@link NearUInt64BE|big-endian unsigned int
		 * layouts} interpreted as Numbers. */
		Layout.nu64be = (property => new NearUInt64BE(property));

		/** Factory for {@link Int|signed int layouts} spanning one
		 * byte. */
		Layout.s8 = (property => new Int(1, property));

		/** Factory for {@link Int|little-endian signed int layouts}
		 * spanning two bytes. */
		Layout.s16 = (property => new Int(2, property));

		/** Factory for {@link Int|little-endian signed int layouts}
		 * spanning three bytes. */
		Layout.s24 = (property => new Int(3, property));

		/** Factory for {@link Int|little-endian signed int layouts}
		 * spanning four bytes. */
		Layout.s32 = (property => new Int(4, property));

		/** Factory for {@link Int|little-endian signed int layouts}
		 * spanning five bytes. */
		Layout.s40 = (property => new Int(5, property));

		/** Factory for {@link Int|little-endian signed int layouts}
		 * spanning six bytes. */
		Layout.s48 = (property => new Int(6, property));

		/** Factory for {@link NearInt64|little-endian signed int layouts}
		 * interpreted as Numbers. */
		Layout.ns64 = (property => new NearInt64(property));

		/** Factory for {@link Int|big-endian signed int layouts}
		 * spanning two bytes. */
		Layout.s16be = (property => new IntBE(2, property));

		/** Factory for {@link Int|big-endian signed int layouts}
		 * spanning three bytes. */
		Layout.s24be = (property => new IntBE(3, property));

		/** Factory for {@link Int|big-endian signed int layouts}
		 * spanning four bytes. */
		Layout.s32be = (property => new IntBE(4, property));

		/** Factory for {@link Int|big-endian signed int layouts}
		 * spanning five bytes. */
		Layout.s40be = (property => new IntBE(5, property));

		/** Factory for {@link Int|big-endian signed int layouts}
		 * spanning six bytes. */
		Layout.s48be = (property => new IntBE(6, property));

		/** Factory for {@link NearInt64BE|big-endian signed int layouts}
		 * interpreted as Numbers. */
		Layout.ns64be = (property => new NearInt64BE(property));

		/** Factory for {@link Float|little-endian 32-bit floating point} values. */
		Layout.f32 = (property => new Float(property));

		/** Factory for {@link FloatBE|big-endian 32-bit floating point} values. */
		Layout.f32be = (property => new FloatBE(property));

		/** Factory for {@link Double|little-endian 64-bit floating point} values. */
		Layout.f64 = (property => new Double(property));

		/** Factory for {@link DoubleBE|big-endian 64-bit floating point} values. */
		Layout.f64be = (property => new DoubleBE(property));

		/** Factory for {@link Structure} values. */
		Layout.struct = ((fields, property, decodePrefixes) => new Structure(fields, property, decodePrefixes));

		/** Factory for {@link BitStructure} values. */
		Layout.bits = ((word, msb, property) => new BitStructure(word, msb, property));

		/** Factory for {@link Sequence} values. */
		Layout.seq = ((elementLayout, count, property) => new Sequence(elementLayout, count, property));

		/** Factory for {@link Union} values. */
		Layout.union = ((discr, defaultLayout, property) => new Union(discr, defaultLayout, property));

		/** Factory for {@link UnionLayoutDiscriminator} values. */
		Layout.unionLayoutDiscriminator = ((layout, property) => new UnionLayoutDiscriminator(layout, property));

		/** Factory for {@link Blob} values. */
		Layout.blob = ((length, property) => new Blob(length, property));

		/** Factory for {@link CString} values. */
		Layout.cstr = (property => new CString(property));

		/** Factory for {@link UTF8} values. */
		Layout.utf8 = ((maxSpan, property) => new UTF8(maxSpan, property));

		/** Factory for {@link Constant} values. */
		Layout.const = ((value, property) => new Constant(value, property));
		return Layout;
	}

	var LayoutExports = /*@__PURE__*/ requireLayout();

	class BNLayout extends LayoutExports.Layout {
	    constructor(span, signed, property) {
	        super(span, property);
	        this.blob = LayoutExports.blob(span);
	        this.signed = signed;
	    }
	    decode(b, offset = 0) {
	        const num = new BN(this.blob.decode(b, offset), 10, 'le');
	        if (this.signed) {
	            return num.fromTwos(this.span * 8).clone();
	        }
	        return num;
	    }
	    encode(src, b, offset = 0) {
	        if (this.signed) {
	            src = src.toTwos(this.span * 8);
	        }
	        return this.blob.encode(src.toArrayLike(Buffer, 'le', this.span), b, offset);
	    }
	}
	function u64(property) {
	    return new BNLayout(8, false, property);
	}
	class WrappedLayout extends LayoutExports.Layout {
	    constructor(layout, decoder, encoder, property) {
	        super(layout.span, property);
	        this.layout = layout;
	        this.decoder = decoder;
	        this.encoder = encoder;
	    }
	    decode(b, offset) {
	        return this.decoder(this.layout.decode(b, offset));
	    }
	    encode(src, b, offset) {
	        return this.layout.encode(this.encoder(src), b, offset);
	    }
	    getSpan(b, offset) {
	        return this.layout.getSpan(b, offset);
	    }
	}
	function publicKey(property) {
	    return new WrappedLayout(LayoutExports.blob(32), (b) => new PublicKey(b), (key) => key.toBuffer(), property);
	}
	class OptionLayout extends LayoutExports.Layout {
	    constructor(layout, property) {
	        super(-1, property);
	        this.layout = layout;
	        this.discriminator = LayoutExports.u8();
	    }
	    encode(src, b, offset = 0) {
	        if (src === null || src === undefined) {
	            return this.discriminator.encode(0, b, offset);
	        }
	        this.discriminator.encode(1, b, offset);
	        return this.layout.encode(src, b, offset + 1) + 1;
	    }
	    decode(b, offset = 0) {
	        const discriminator = this.discriminator.decode(b, offset);
	        if (discriminator === 0) {
	            return null;
	        }
	        else if (discriminator === 1) {
	            return this.layout.decode(b, offset + 1);
	        }
	        throw new Error('Invalid option ' + this.property);
	    }
	    getSpan(b, offset = 0) {
	        const discriminator = this.discriminator.decode(b, offset);
	        if (discriminator === 0) {
	            return 1;
	        }
	        else if (discriminator === 1) {
	            return this.layout.getSpan(b, offset + 1) + 1;
	        }
	        throw new Error('Invalid option ' + this.property);
	    }
	}
	function option(layout, property) {
	    return new OptionLayout(layout, property);
	}
	function vec(elementLayout, property) {
	    const length = LayoutExports.u32('length');
	    const layout = LayoutExports.struct([
	        length,
	        LayoutExports.seq(elementLayout, LayoutExports.offset(length, -length.span), 'values'),
	    ]);
	    return new WrappedLayout(layout, ({ values }) => values, (values) => ({ values }), property);
	}

	const feeFields = [u64('denominator'), u64('numerator')];
	var AccountType;
	(function (AccountType) {
	    AccountType[AccountType["Uninitialized"] = 0] = "Uninitialized";
	    AccountType[AccountType["StakePool"] = 1] = "StakePool";
	    AccountType[AccountType["ValidatorList"] = 2] = "ValidatorList";
	})(AccountType || (AccountType = {}));
	const BigNumFromString = coerce(instance(BN), string(), (value) => {
	    if (typeof value === 'string')
	        return new BN(value, 10);
	    throw new Error('invalid big num');
	});
	const PublicKeyFromString = coerce(instance(PublicKey), string(), (value) => new PublicKey(value));
	class FutureEpochLayout extends LayoutExports.Layout {
	    constructor(layout, property) {
	        super(-1, property);
	        this.layout = layout;
	        this.discriminator = LayoutExports.u8();
	    }
	    encode(src, b, offset = 0) {
	        if (src === null || src === undefined) {
	            return this.discriminator.encode(0, b, offset);
	        }
	        // This isn't right, but we don't typically encode outside of tests
	        this.discriminator.encode(2, b, offset);
	        return this.layout.encode(src, b, offset + 1) + 1;
	    }
	    decode(b, offset = 0) {
	        const discriminator = this.discriminator.decode(b, offset);
	        if (discriminator === 0) {
	            return null;
	        }
	        else if (discriminator === 1 || discriminator === 2) {
	            return this.layout.decode(b, offset + 1);
	        }
	        throw new Error('Invalid future epoch ' + this.property);
	    }
	    getSpan(b, offset = 0) {
	        const discriminator = this.discriminator.decode(b, offset);
	        if (discriminator === 0) {
	            return 1;
	        }
	        else if (discriminator === 1 || discriminator === 2) {
	            return this.layout.getSpan(b, offset + 1) + 1;
	        }
	        throw new Error('Invalid future epoch ' + this.property);
	    }
	}
	function futureEpoch(layout, property) {
	    return new FutureEpochLayout(layout, property);
	}
	const StakeAccountType = enums(['uninitialized', 'initialized', 'delegated', 'rewardsPool']);
	const StakeMeta = type({
	    rentExemptReserve: BigNumFromString,
	    authorized: type({
	        staker: PublicKeyFromString,
	        withdrawer: PublicKeyFromString,
	    }),
	    lockup: type({
	        unixTimestamp: number(),
	        epoch: number(),
	        custodian: PublicKeyFromString,
	    }),
	});
	const StakeAccountInfo = type({
	    meta: StakeMeta,
	    stake: nullable(type({
	        delegation: type({
	            voter: PublicKeyFromString,
	            stake: BigNumFromString,
	            activationEpoch: BigNumFromString,
	            deactivationEpoch: BigNumFromString,
	            warmupCooldownRate: number(),
	        }),
	        creditsObserved: number(),
	    })),
	});
	const StakeAccount = type({
	    type: StakeAccountType,
	    info: optional(StakeAccountInfo),
	});
	const StakePoolLayout = LayoutExports.struct([
	    LayoutExports.u8('accountType'),
	    publicKey('manager'),
	    publicKey('staker'),
	    publicKey('stakeDepositAuthority'),
	    LayoutExports.u8('stakeWithdrawBumpSeed'),
	    publicKey('validatorList'),
	    publicKey('reserveStake'),
	    publicKey('poolMint'),
	    publicKey('managerFeeAccount'),
	    publicKey('tokenProgramId'),
	    u64('totalLamports'),
	    u64('poolTokenSupply'),
	    u64('lastUpdateEpoch'),
	    LayoutExports.struct([u64('unixTimestamp'), u64('epoch'), publicKey('custodian')], 'lockup'),
	    LayoutExports.struct(feeFields, 'epochFee'),
	    futureEpoch(LayoutExports.struct(feeFields), 'nextEpochFee'),
	    option(publicKey(), 'preferredDepositValidatorVoteAddress'),
	    option(publicKey(), 'preferredWithdrawValidatorVoteAddress'),
	    LayoutExports.struct(feeFields, 'stakeDepositFee'),
	    LayoutExports.struct(feeFields, 'stakeWithdrawalFee'),
	    futureEpoch(LayoutExports.struct(feeFields), 'nextStakeWithdrawalFee'),
	    LayoutExports.u8('stakeReferralFee'),
	    option(publicKey(), 'solDepositAuthority'),
	    LayoutExports.struct(feeFields, 'solDepositFee'),
	    LayoutExports.u8('solReferralFee'),
	    option(publicKey(), 'solWithdrawAuthority'),
	    LayoutExports.struct(feeFields, 'solWithdrawalFee'),
	    futureEpoch(LayoutExports.struct(feeFields), 'nextSolWithdrawalFee'),
	    u64('lastEpochPoolTokenSupply'),
	    u64('lastEpochTotalLamports'),
	]);
	var ValidatorStakeInfoStatus;
	(function (ValidatorStakeInfoStatus) {
	    ValidatorStakeInfoStatus[ValidatorStakeInfoStatus["Active"] = 0] = "Active";
	    ValidatorStakeInfoStatus[ValidatorStakeInfoStatus["DeactivatingTransient"] = 1] = "DeactivatingTransient";
	    ValidatorStakeInfoStatus[ValidatorStakeInfoStatus["ReadyForRemoval"] = 2] = "ReadyForRemoval";
	})(ValidatorStakeInfoStatus || (ValidatorStakeInfoStatus = {}));
	const ValidatorStakeInfoLayout = LayoutExports.struct([
	    /// Amount of active stake delegated to this validator
	    /// Note that if `last_update_epoch` does not match the current epoch then
	    /// this field may not be accurate
	    u64('activeStakeLamports'),
	    /// Amount of transient stake delegated to this validator
	    /// Note that if `last_update_epoch` does not match the current epoch then
	    /// this field may not be accurate
	    u64('transientStakeLamports'),
	    /// Last epoch the active and transient stake lamports fields were updated
	    u64('lastUpdateEpoch'),
	    /// Start of the validator transient account seed suffixes
	    u64('transientSeedSuffixStart'),
	    /// End of the validator transient account seed suffixes
	    u64('transientSeedSuffixEnd'),
	    /// Status of the validator stake account
	    LayoutExports.u8('status'),
	    /// Validator vote account address
	    publicKey('voteAccountAddress'),
	]);
	const ValidatorListLayout = LayoutExports.struct([
	    LayoutExports.u8('accountType'),
	    LayoutExports.u32('maxValidators'),
	    vec(ValidatorStakeInfoLayout, 'validators'),
	]);

	async function getValidatorListAccount(connection, pubkey) {
	    const account = await connection.getAccountInfo(pubkey);
	    if (!account) {
	        throw new Error('Invalid validator list account');
	    }
	    return {
	        pubkey,
	        account: {
	            data: ValidatorListLayout.decode(account === null || account === void 0 ? void 0 : account.data),
	            executable: account.executable,
	            lamports: account.lamports,
	            owner: account.owner,
	        },
	    };
	}
	async function prepareWithdrawAccounts(connection, stakePool, stakePoolAddress, amount, compareFn, skipFee) {
	    var _a, _b;
	    const validatorListAcc = await connection.getAccountInfo(stakePool.validatorList);
	    const validatorList = ValidatorListLayout.decode(validatorListAcc === null || validatorListAcc === void 0 ? void 0 : validatorListAcc.data);
	    if (!(validatorList === null || validatorList === void 0 ? void 0 : validatorList.validators) || (validatorList === null || validatorList === void 0 ? void 0 : validatorList.validators.length) == 0) {
	        throw new Error('No accounts found');
	    }
	    const minBalanceForRentExemption = await connection.getMinimumBalanceForRentExemption(StakeProgram.space);
	    const minBalance = new BN(minBalanceForRentExemption + MINIMUM_ACTIVE_STAKE);
	    let accounts = [];
	    // Prepare accounts
	    for (const validator of validatorList.validators) {
	        if (validator.status !== ValidatorStakeInfoStatus.Active) {
	            continue;
	        }
	        const stakeAccountAddress = await findStakeProgramAddress(STAKE_POOL_PROGRAM_ID, validator.voteAccountAddress, stakePoolAddress);
	        if (!validator.activeStakeLamports.isZero()) {
	            const isPreferred = (_a = stakePool === null || stakePool === void 0 ? void 0 : stakePool.preferredWithdrawValidatorVoteAddress) === null || _a === void 0 ? void 0 : _a.equals(validator.voteAccountAddress);
	            accounts.push({
	                type: isPreferred ? 'preferred' : 'active',
	                voteAddress: validator.voteAccountAddress,
	                stakeAddress: stakeAccountAddress,
	                lamports: validator.activeStakeLamports,
	            });
	        }
	        const transientStakeLamports = validator.transientStakeLamports.sub(minBalance);
	        if (transientStakeLamports.gt(new BN(0))) {
	            const transientStakeAccountAddress = await findTransientStakeProgramAddress(STAKE_POOL_PROGRAM_ID, validator.voteAccountAddress, stakePoolAddress, validator.transientSeedSuffixStart);
	            accounts.push({
	                type: 'transient',
	                voteAddress: validator.voteAccountAddress,
	                stakeAddress: transientStakeAccountAddress,
	                lamports: transientStakeLamports,
	            });
	        }
	    }
	    // Sort from highest to lowest balance
	    accounts = accounts.sort(compareFn ? compareFn : (a, b) => b.lamports.sub(a.lamports).toNumber());
	    const reserveStake = await connection.getAccountInfo(stakePool.reserveStake);
	    const reserveStakeBalance = new BN(((_b = reserveStake === null || reserveStake === void 0 ? void 0 : reserveStake.lamports) !== null && _b !== void 0 ? _b : 0) - minBalanceForRentExemption);
	    if (reserveStakeBalance.gt(new BN(0))) {
	        accounts.push({
	            type: 'reserve',
	            stakeAddress: stakePool.reserveStake,
	            lamports: reserveStakeBalance,
	        });
	    }
	    // Prepare the list of accounts to withdraw from
	    const withdrawFrom = [];
	    let remainingAmount = new BN(amount);
	    const fee = stakePool.stakeWithdrawalFee;
	    const inverseFee = {
	        numerator: fee.denominator.sub(fee.numerator),
	        denominator: fee.denominator,
	    };
	    for (const type of ['preferred', 'active', 'transient', 'reserve']) {
	        const filteredAccounts = accounts.filter((a) => a.type == type);
	        for (const { stakeAddress, voteAddress, lamports } of filteredAccounts) {
	            if (lamports.lte(minBalance) && type == 'transient') {
	                continue;
	            }
	            let availableForWithdrawal = calcPoolTokensForDeposit(stakePool, lamports);
	            if (!skipFee && !inverseFee.numerator.isZero()) {
	                availableForWithdrawal = availableForWithdrawal
	                    .mul(inverseFee.denominator)
	                    .div(inverseFee.numerator);
	            }
	            const poolAmount = BN.min(availableForWithdrawal, remainingAmount);
	            if (poolAmount.lte(new BN(0))) {
	                continue;
	            }
	            // Those accounts will be withdrawn completely with `claim` instruction
	            withdrawFrom.push({ stakeAddress, voteAddress, poolAmount });
	            remainingAmount = remainingAmount.sub(poolAmount);
	            if (remainingAmount.isZero()) {
	                break;
	            }
	        }
	        if (remainingAmount.isZero()) {
	            break;
	        }
	    }
	    // Not enough stake to withdraw the specified amount
	    if (remainingAmount.gt(new BN(0))) {
	        throw new Error(`No stake accounts found in this pool with enough balance to withdraw ${lamportsToSol(amount)} pool tokens.`);
	    }
	    return withdrawFrom;
	}
	/**
	 * Calculate the pool tokens that should be minted for a deposit of `stakeLamports`
	 */
	function calcPoolTokensForDeposit(stakePool, stakeLamports) {
	    if (stakePool.poolTokenSupply.isZero() || stakePool.totalLamports.isZero()) {
	        return stakeLamports;
	    }
	    const numerator = stakeLamports.mul(stakePool.poolTokenSupply);
	    return numerator.div(stakePool.totalLamports);
	}
	/**
	 * Calculate lamports amount on withdrawal
	 */
	function calcLamportsWithdrawAmount(stakePool, poolTokens) {
	    const numerator = poolTokens.mul(stakePool.totalLamports);
	    const denominator = stakePool.poolTokenSupply;
	    if (numerator.lt(denominator)) {
	        return new BN(0);
	    }
	    return numerator.div(denominator);
	}
	function newStakeAccount(feePayer, instructions, lamports) {
	    // Account for tokens not specified, creating one
	    const stakeReceiverKeypair = Keypair.generate();
	    console.log(`Creating account to receive stake ${stakeReceiverKeypair.publicKey}`);
	    instructions.push(
	    // Creating new account
	    SystemProgram.createAccount({
	        fromPubkey: feePayer,
	        newAccountPubkey: stakeReceiverKeypair.publicKey,
	        lamports,
	        space: StakeProgram.space,
	        programId: StakeProgram.programId,
	    }));
	    return stakeReceiverKeypair;
	}

	/**
	 * Populate a buffer of instruction data using an InstructionType
	 * @internal
	 */
	function encodeData(type, fields) {
	    const allocLength = type.layout.span;
	    const data = bufferExports.Buffer.alloc(allocLength);
	    const layoutFields = Object.assign({ instruction: type.index }, fields);
	    type.layout.encode(layoutFields, data);
	    return data;
	}
	/**
	 * Decode instruction data buffer using an InstructionType
	 * @internal
	 */
	function decodeData(type, buffer) {
	    let data;
	    try {
	        data = type.layout.decode(buffer);
	    }
	    catch (err) {
	        throw new Error('invalid instruction; ' + err);
	    }
	    if (data.instruction !== type.index) {
	        throw new Error(`invalid instruction; instruction index mismatch ${data.instruction} != ${type.index}`);
	    }
	    return data;
	}

	function arrayChunk(array, size) {
	    const result = [];
	    for (let i = 0; i < array.length; i += size) {
	        result.push(array.slice(i, i + size));
	    }
	    return result;
	}

	// 'UpdateTokenMetadata' and 'CreateTokenMetadata' have dynamic layouts
	const MOVE_STAKE_LAYOUT = LayoutExports$1.struct([
	    LayoutExports$1.u8('instruction'),
	    LayoutExports$1.ns64('lamports'),
	    LayoutExports$1.ns64('transientStakeSeed'),
	]);
	const UPDATE_VALIDATOR_LIST_BALANCE_LAYOUT = LayoutExports$1.struct([
	    LayoutExports$1.u8('instruction'),
	    LayoutExports$1.u32('startIndex'),
	    LayoutExports$1.u8('noMerge'),
	]);
	function tokenMetadataLayout(instruction, nameLength, symbolLength, uriLength) {
	    if (nameLength > METADATA_MAX_NAME_LENGTH) {
	        throw 'maximum token name length is 32 characters';
	    }
	    if (symbolLength > METADATA_MAX_SYMBOL_LENGTH) {
	        throw 'maximum token symbol length is 10 characters';
	    }
	    if (uriLength > METADATA_MAX_URI_LENGTH) {
	        throw 'maximum token uri length is 200 characters';
	    }
	    return {
	        index: instruction,
	        layout: LayoutExports$1.struct([
	            LayoutExports$1.u8('instruction'),
	            LayoutExports$1.u32('nameLen'),
	            LayoutExports$1.blob(nameLength, 'name'),
	            LayoutExports$1.u32('symbolLen'),
	            LayoutExports$1.blob(symbolLength, 'symbol'),
	            LayoutExports$1.u32('uriLen'),
	            LayoutExports$1.blob(uriLength, 'uri'),
	        ]),
	    };
	}
	/**
	 * An enumeration of valid stake InstructionType's
	 * @internal
	 */
	const STAKE_POOL_INSTRUCTION_LAYOUTS = Object.freeze({
	    AddValidatorToPool: {
	        index: 1,
	        layout: LayoutExports$1.struct([LayoutExports$1.u8('instruction'), LayoutExports$1.u32('seed')]),
	    },
	    RemoveValidatorFromPool: {
	        index: 2,
	        layout: LayoutExports$1.struct([LayoutExports$1.u8('instruction')]),
	    },
	    DecreaseValidatorStake: {
	        index: 3,
	        layout: MOVE_STAKE_LAYOUT,
	    },
	    IncreaseValidatorStake: {
	        index: 4,
	        layout: MOVE_STAKE_LAYOUT,
	    },
	    UpdateValidatorListBalance: {
	        index: 6,
	        layout: UPDATE_VALIDATOR_LIST_BALANCE_LAYOUT,
	    },
	    UpdateStakePoolBalance: {
	        index: 7,
	        layout: LayoutExports$1.struct([LayoutExports$1.u8('instruction')]),
	    },
	    CleanupRemovedValidatorEntries: {
	        index: 8,
	        layout: LayoutExports$1.struct([LayoutExports$1.u8('instruction')]),
	    },
	    DepositStake: {
	        index: 9,
	        layout: LayoutExports$1.struct([LayoutExports$1.u8('instruction')]),
	    },
	    /// Withdraw the token from the pool at the current ratio.
	    WithdrawStake: {
	        index: 10,
	        layout: LayoutExports$1.struct([
	            LayoutExports$1.u8('instruction'),
	            LayoutExports$1.ns64('poolTokens'),
	        ]),
	    },
	    /// Deposit SOL directly into the pool's reserve account. The output is a "pool" token
	    /// representing ownership into the pool. Inputs are converted to the current ratio.
	    DepositSol: {
	        index: 14,
	        layout: LayoutExports$1.struct([
	            LayoutExports$1.u8('instruction'),
	            LayoutExports$1.ns64('lamports'),
	        ]),
	    },
	    /// Withdraw SOL directly from the pool's reserve account. Fails if the
	    /// reserve does not have enough SOL.
	    WithdrawSol: {
	        index: 16,
	        layout: LayoutExports$1.struct([
	            LayoutExports$1.u8('instruction'),
	            LayoutExports$1.ns64('poolTokens'),
	        ]),
	    },
	    IncreaseAdditionalValidatorStake: {
	        index: 19,
	        layout: LayoutExports$1.struct([
	            LayoutExports$1.u8('instruction'),
	            LayoutExports$1.ns64('lamports'),
	            LayoutExports$1.ns64('transientStakeSeed'),
	            LayoutExports$1.ns64('ephemeralStakeSeed'),
	        ]),
	    },
	    DecreaseAdditionalValidatorStake: {
	        index: 20,
	        layout: LayoutExports$1.struct([
	            LayoutExports$1.u8('instruction'),
	            LayoutExports$1.ns64('lamports'),
	            LayoutExports$1.ns64('transientStakeSeed'),
	            LayoutExports$1.ns64('ephemeralStakeSeed'),
	        ]),
	    },
	    DecreaseValidatorStakeWithReserve: {
	        index: 21,
	        layout: MOVE_STAKE_LAYOUT,
	    },
	    Redelegate: {
	        index: 22,
	        layout: LayoutExports$1.struct([LayoutExports$1.u8('instruction')]),
	    },
	});
	/**
	 * Stake Pool Instruction class
	 */
	class StakePoolInstruction {
	    /**
	     * Creates instruction to add a validator into the stake pool.
	     */
	    static addValidatorToPool(params) {
	        const { stakePool, staker, reserveStake, withdrawAuthority, validatorList, validatorStake, validatorVote, seed, } = params;
	        const type = STAKE_POOL_INSTRUCTION_LAYOUTS.AddValidatorToPool;
	        const data = encodeData(type, { seed: seed == undefined ? 0 : seed });
	        const keys = [
	            { pubkey: stakePool, isSigner: false, isWritable: true },
	            { pubkey: staker, isSigner: true, isWritable: false },
	            { pubkey: reserveStake, isSigner: false, isWritable: true },
	            { pubkey: withdrawAuthority, isSigner: false, isWritable: false },
	            { pubkey: validatorList, isSigner: false, isWritable: true },
	            { pubkey: validatorStake, isSigner: false, isWritable: true },
	            { pubkey: validatorVote, isSigner: false, isWritable: false },
	            { pubkey: SYSVAR_RENT_PUBKEY, isSigner: false, isWritable: false },
	            { pubkey: SYSVAR_CLOCK_PUBKEY, isSigner: false, isWritable: false },
	            { pubkey: SYSVAR_STAKE_HISTORY_PUBKEY, isSigner: false, isWritable: false },
	            { pubkey: STAKE_CONFIG_ID, isSigner: false, isWritable: false },
	            { pubkey: SystemProgram.programId, isSigner: false, isWritable: false },
	            { pubkey: StakeProgram.programId, isSigner: false, isWritable: false },
	        ];
	        return new TransactionInstruction({
	            programId: STAKE_POOL_PROGRAM_ID,
	            keys,
	            data,
	        });
	    }
	    /**
	     * Creates instruction to remove a validator from the stake pool.
	     */
	    static removeValidatorFromPool(params) {
	        const { stakePool, staker, withdrawAuthority, validatorList, validatorStake, transientStake } = params;
	        const type = STAKE_POOL_INSTRUCTION_LAYOUTS.RemoveValidatorFromPool;
	        const data = encodeData(type);
	        const keys = [
	            { pubkey: stakePool, isSigner: false, isWritable: true },
	            { pubkey: staker, isSigner: true, isWritable: false },
	            { pubkey: withdrawAuthority, isSigner: false, isWritable: false },
	            { pubkey: validatorList, isSigner: false, isWritable: true },
	            { pubkey: validatorStake, isSigner: false, isWritable: true },
	            { pubkey: transientStake, isSigner: false, isWritable: true },
	            { pubkey: SYSVAR_CLOCK_PUBKEY, isSigner: false, isWritable: false },
	            { pubkey: StakeProgram.programId, isSigner: false, isWritable: false },
	        ];
	        return new TransactionInstruction({
	            programId: STAKE_POOL_PROGRAM_ID,
	            keys,
	            data,
	        });
	    }
	    /**
	     * Creates instruction to update a set of validators in the stake pool.
	     */
	    static updateValidatorListBalance(params) {
	        const { stakePool, withdrawAuthority, validatorList, reserveStake, startIndex, noMerge, validatorAndTransientStakePairs, } = params;
	        const type = STAKE_POOL_INSTRUCTION_LAYOUTS.UpdateValidatorListBalance;
	        const data = encodeData(type, { startIndex, noMerge: noMerge ? 1 : 0 });
	        const keys = [
	            { pubkey: stakePool, isSigner: false, isWritable: false },
	            { pubkey: withdrawAuthority, isSigner: false, isWritable: false },
	            { pubkey: validatorList, isSigner: false, isWritable: true },
	            { pubkey: reserveStake, isSigner: false, isWritable: true },
	            { pubkey: SYSVAR_CLOCK_PUBKEY, isSigner: false, isWritable: false },
	            { pubkey: SYSVAR_STAKE_HISTORY_PUBKEY, isSigner: false, isWritable: false },
	            { pubkey: StakeProgram.programId, isSigner: false, isWritable: false },
	            ...validatorAndTransientStakePairs.map((pubkey) => ({
	                pubkey,
	                isSigner: false,
	                isWritable: true,
	            })),
	        ];
	        return new TransactionInstruction({
	            programId: STAKE_POOL_PROGRAM_ID,
	            keys,
	            data,
	        });
	    }
	    /**
	     * Creates instruction to update the overall stake pool balance.
	     */
	    static updateStakePoolBalance(params) {
	        const { stakePool, withdrawAuthority, validatorList, reserveStake, managerFeeAccount, poolMint, } = params;
	        const type = STAKE_POOL_INSTRUCTION_LAYOUTS.UpdateStakePoolBalance;
	        const data = encodeData(type);
	        const keys = [
	            { pubkey: stakePool, isSigner: false, isWritable: true },
	            { pubkey: withdrawAuthority, isSigner: false, isWritable: false },
	            { pubkey: validatorList, isSigner: false, isWritable: true },
	            { pubkey: reserveStake, isSigner: false, isWritable: false },
	            { pubkey: managerFeeAccount, isSigner: false, isWritable: true },
	            { pubkey: poolMint, isSigner: false, isWritable: true },
	            { pubkey: TOKEN_PROGRAM_ID, isSigner: false, isWritable: false },
	        ];
	        return new TransactionInstruction({
	            programId: STAKE_POOL_PROGRAM_ID,
	            keys,
	            data,
	        });
	    }
	    /**
	     * Creates instruction to cleanup removed validator entries.
	     */
	    static cleanupRemovedValidatorEntries(params) {
	        const { stakePool, validatorList } = params;
	        const type = STAKE_POOL_INSTRUCTION_LAYOUTS.CleanupRemovedValidatorEntries;
	        const data = encodeData(type);
	        const keys = [
	            { pubkey: stakePool, isSigner: false, isWritable: false },
	            { pubkey: validatorList, isSigner: false, isWritable: true },
	        ];
	        return new TransactionInstruction({
	            programId: STAKE_POOL_PROGRAM_ID,
	            keys,
	            data,
	        });
	    }
	    /**
	     * Creates `IncreaseValidatorStake` instruction (rebalance from reserve account to
	     * transient account)
	     */
	    static increaseValidatorStake(params) {
	        const { stakePool, staker, withdrawAuthority, validatorList, reserveStake, transientStake, validatorStake, validatorVote, lamports, transientStakeSeed, } = params;
	        const type = STAKE_POOL_INSTRUCTION_LAYOUTS.IncreaseValidatorStake;
	        const data = encodeData(type, { lamports, transientStakeSeed });
	        const keys = [
	            { pubkey: stakePool, isSigner: false, isWritable: false },
	            { pubkey: staker, isSigner: true, isWritable: false },
	            { pubkey: withdrawAuthority, isSigner: false, isWritable: false },
	            { pubkey: validatorList, isSigner: false, isWritable: true },
	            { pubkey: reserveStake, isSigner: false, isWritable: true },
	            { pubkey: transientStake, isSigner: false, isWritable: true },
	            { pubkey: validatorStake, isSigner: false, isWritable: false },
	            { pubkey: validatorVote, isSigner: false, isWritable: false },
	            { pubkey: SYSVAR_CLOCK_PUBKEY, isSigner: false, isWritable: false },
	            { pubkey: SYSVAR_RENT_PUBKEY, isSigner: false, isWritable: false },
	            { pubkey: SYSVAR_STAKE_HISTORY_PUBKEY, isSigner: false, isWritable: false },
	            { pubkey: STAKE_CONFIG_ID, isSigner: false, isWritable: false },
	            { pubkey: SystemProgram.programId, isSigner: false, isWritable: false },
	            { pubkey: StakeProgram.programId, isSigner: false, isWritable: false },
	        ];
	        return new TransactionInstruction({
	            programId: STAKE_POOL_PROGRAM_ID,
	            keys,
	            data,
	        });
	    }
	    /**
	     * Creates `IncreaseAdditionalValidatorStake` instruction (rebalance from reserve account to
	     * transient account)
	     */
	    static increaseAdditionalValidatorStake(params) {
	        const { stakePool, staker, withdrawAuthority, validatorList, reserveStake, transientStake, validatorStake, validatorVote, lamports, transientStakeSeed, ephemeralStake, ephemeralStakeSeed, } = params;
	        const type = STAKE_POOL_INSTRUCTION_LAYOUTS.IncreaseAdditionalValidatorStake;
	        const data = encodeData(type, { lamports, transientStakeSeed, ephemeralStakeSeed });
	        const keys = [
	            { pubkey: stakePool, isSigner: false, isWritable: false },
	            { pubkey: staker, isSigner: true, isWritable: false },
	            { pubkey: withdrawAuthority, isSigner: false, isWritable: false },
	            { pubkey: validatorList, isSigner: false, isWritable: true },
	            { pubkey: reserveStake, isSigner: false, isWritable: true },
	            { pubkey: ephemeralStake, isSigner: false, isWritable: true },
	            { pubkey: transientStake, isSigner: false, isWritable: true },
	            { pubkey: validatorStake, isSigner: false, isWritable: false },
	            { pubkey: validatorVote, isSigner: false, isWritable: false },
	            { pubkey: SYSVAR_CLOCK_PUBKEY, isSigner: false, isWritable: false },
	            { pubkey: SYSVAR_STAKE_HISTORY_PUBKEY, isSigner: false, isWritable: false },
	            { pubkey: STAKE_CONFIG_ID, isSigner: false, isWritable: false },
	            { pubkey: SystemProgram.programId, isSigner: false, isWritable: false },
	            { pubkey: StakeProgram.programId, isSigner: false, isWritable: false },
	        ];
	        return new TransactionInstruction({
	            programId: STAKE_POOL_PROGRAM_ID,
	            keys,
	            data,
	        });
	    }
	    /**
	     * Creates `DecreaseValidatorStake` instruction (rebalance from validator account to
	     * transient account)
	     */
	    static decreaseValidatorStake(params) {
	        const { stakePool, staker, withdrawAuthority, validatorList, validatorStake, transientStake, lamports, transientStakeSeed, } = params;
	        const type = STAKE_POOL_INSTRUCTION_LAYOUTS.DecreaseValidatorStake;
	        const data = encodeData(type, { lamports, transientStakeSeed });
	        const keys = [
	            { pubkey: stakePool, isSigner: false, isWritable: false },
	            { pubkey: staker, isSigner: true, isWritable: false },
	            { pubkey: withdrawAuthority, isSigner: false, isWritable: false },
	            { pubkey: validatorList, isSigner: false, isWritable: true },
	            { pubkey: validatorStake, isSigner: false, isWritable: true },
	            { pubkey: transientStake, isSigner: false, isWritable: true },
	            { pubkey: SYSVAR_CLOCK_PUBKEY, isSigner: false, isWritable: false },
	            { pubkey: SYSVAR_RENT_PUBKEY, isSigner: false, isWritable: false },
	            { pubkey: SystemProgram.programId, isSigner: false, isWritable: false },
	            { pubkey: StakeProgram.programId, isSigner: false, isWritable: false },
	        ];
	        return new TransactionInstruction({
	            programId: STAKE_POOL_PROGRAM_ID,
	            keys,
	            data,
	        });
	    }
	    /**
	     * Creates `DecreaseValidatorStakeWithReserve` instruction (rebalance from
	     * validator account to transient account)
	     */
	    static decreaseValidatorStakeWithReserve(params) {
	        const { stakePool, staker, withdrawAuthority, validatorList, reserveStake, validatorStake, transientStake, lamports, transientStakeSeed, } = params;
	        const type = STAKE_POOL_INSTRUCTION_LAYOUTS.DecreaseValidatorStakeWithReserve;
	        const data = encodeData(type, { lamports, transientStakeSeed });
	        const keys = [
	            { pubkey: stakePool, isSigner: false, isWritable: false },
	            { pubkey: staker, isSigner: true, isWritable: false },
	            { pubkey: withdrawAuthority, isSigner: false, isWritable: false },
	            { pubkey: validatorList, isSigner: false, isWritable: true },
	            { pubkey: reserveStake, isSigner: false, isWritable: true },
	            { pubkey: validatorStake, isSigner: false, isWritable: true },
	            { pubkey: transientStake, isSigner: false, isWritable: true },
	            { pubkey: SYSVAR_CLOCK_PUBKEY, isSigner: false, isWritable: false },
	            { pubkey: SYSVAR_STAKE_HISTORY_PUBKEY, isSigner: false, isWritable: false },
	            { pubkey: SystemProgram.programId, isSigner: false, isWritable: false },
	            { pubkey: StakeProgram.programId, isSigner: false, isWritable: false },
	        ];
	        return new TransactionInstruction({
	            programId: STAKE_POOL_PROGRAM_ID,
	            keys,
	            data,
	        });
	    }
	    /**
	     * Creates `DecreaseAdditionalValidatorStake` instruction (rebalance from
	     * validator account to transient account)
	     */
	    static decreaseAdditionalValidatorStake(params) {
	        const { stakePool, staker, withdrawAuthority, validatorList, reserveStake, validatorStake, transientStake, lamports, transientStakeSeed, ephemeralStakeSeed, ephemeralStake, } = params;
	        const type = STAKE_POOL_INSTRUCTION_LAYOUTS.DecreaseAdditionalValidatorStake;
	        const data = encodeData(type, { lamports, transientStakeSeed, ephemeralStakeSeed });
	        const keys = [
	            { pubkey: stakePool, isSigner: false, isWritable: false },
	            { pubkey: staker, isSigner: true, isWritable: false },
	            { pubkey: withdrawAuthority, isSigner: false, isWritable: false },
	            { pubkey: validatorList, isSigner: false, isWritable: true },
	            { pubkey: reserveStake, isSigner: false, isWritable: true },
	            { pubkey: validatorStake, isSigner: false, isWritable: true },
	            { pubkey: ephemeralStake, isSigner: false, isWritable: true },
	            { pubkey: transientStake, isSigner: false, isWritable: true },
	            { pubkey: SYSVAR_CLOCK_PUBKEY, isSigner: false, isWritable: false },
	            { pubkey: SYSVAR_STAKE_HISTORY_PUBKEY, isSigner: false, isWritable: false },
	            { pubkey: SystemProgram.programId, isSigner: false, isWritable: false },
	            { pubkey: StakeProgram.programId, isSigner: false, isWritable: false },
	        ];
	        return new TransactionInstruction({
	            programId: STAKE_POOL_PROGRAM_ID,
	            keys,
	            data,
	        });
	    }
	    /**
	     * Creates a transaction instruction to deposit a stake account into a stake pool.
	     */
	    static depositStake(params) {
	        const { stakePool, validatorList, depositAuthority, withdrawAuthority, depositStake, validatorStake, reserveStake, destinationPoolAccount, managerFeeAccount, referralPoolAccount, poolMint, } = params;
	        const type = STAKE_POOL_INSTRUCTION_LAYOUTS.DepositStake;
	        const data = encodeData(type);
	        const keys = [
	            { pubkey: stakePool, isSigner: false, isWritable: true },
	            { pubkey: validatorList, isSigner: false, isWritable: true },
	            { pubkey: depositAuthority, isSigner: false, isWritable: false },
	            { pubkey: withdrawAuthority, isSigner: false, isWritable: false },
	            { pubkey: depositStake, isSigner: false, isWritable: true },
	            { pubkey: validatorStake, isSigner: false, isWritable: true },
	            { pubkey: reserveStake, isSigner: false, isWritable: true },
	            { pubkey: destinationPoolAccount, isSigner: false, isWritable: true },
	            { pubkey: managerFeeAccount, isSigner: false, isWritable: true },
	            { pubkey: referralPoolAccount, isSigner: false, isWritable: true },
	            { pubkey: poolMint, isSigner: false, isWritable: true },
	            { pubkey: SYSVAR_CLOCK_PUBKEY, isSigner: false, isWritable: false },
	            { pubkey: SYSVAR_STAKE_HISTORY_PUBKEY, isSigner: false, isWritable: false },
	            { pubkey: TOKEN_PROGRAM_ID, isSigner: false, isWritable: false },
	            { pubkey: StakeProgram.programId, isSigner: false, isWritable: false },
	        ];
	        return new TransactionInstruction({
	            programId: STAKE_POOL_PROGRAM_ID,
	            keys,
	            data,
	        });
	    }
	    /**
	     * Creates a transaction instruction to deposit SOL into a stake pool.
	     */
	    static depositSol(params) {
	        const { stakePool, withdrawAuthority, depositAuthority, reserveStake, fundingAccount, destinationPoolAccount, managerFeeAccount, referralPoolAccount, poolMint, lamports, } = params;
	        const type = STAKE_POOL_INSTRUCTION_LAYOUTS.DepositSol;
	        const data = encodeData(type, { lamports });
	        const keys = [
	            { pubkey: stakePool, isSigner: false, isWritable: true },
	            { pubkey: withdrawAuthority, isSigner: false, isWritable: false },
	            { pubkey: reserveStake, isSigner: false, isWritable: true },
	            { pubkey: fundingAccount, isSigner: true, isWritable: true },
	            { pubkey: destinationPoolAccount, isSigner: false, isWritable: true },
	            { pubkey: managerFeeAccount, isSigner: false, isWritable: true },
	            { pubkey: referralPoolAccount, isSigner: false, isWritable: true },
	            { pubkey: poolMint, isSigner: false, isWritable: true },
	            { pubkey: SystemProgram.programId, isSigner: false, isWritable: false },
	            { pubkey: TOKEN_PROGRAM_ID, isSigner: false, isWritable: false },
	        ];
	        if (depositAuthority) {
	            keys.push({
	                pubkey: depositAuthority,
	                isSigner: true,
	                isWritable: false,
	            });
	        }
	        return new TransactionInstruction({
	            programId: STAKE_POOL_PROGRAM_ID,
	            keys,
	            data,
	        });
	    }
	    /**
	     * Creates a transaction instruction to withdraw active stake from a stake pool.
	     */
	    static withdrawStake(params) {
	        const { stakePool, validatorList, withdrawAuthority, validatorStake, destinationStake, destinationStakeAuthority, sourceTransferAuthority, sourcePoolAccount, managerFeeAccount, poolMint, poolTokens, } = params;
	        const type = STAKE_POOL_INSTRUCTION_LAYOUTS.WithdrawStake;
	        const data = encodeData(type, { poolTokens });
	        const keys = [
	            { pubkey: stakePool, isSigner: false, isWritable: true },
	            { pubkey: validatorList, isSigner: false, isWritable: true },
	            { pubkey: withdrawAuthority, isSigner: false, isWritable: false },
	            { pubkey: validatorStake, isSigner: false, isWritable: true },
	            { pubkey: destinationStake, isSigner: false, isWritable: true },
	            { pubkey: destinationStakeAuthority, isSigner: false, isWritable: false },
	            { pubkey: sourceTransferAuthority, isSigner: true, isWritable: false },
	            { pubkey: sourcePoolAccount, isSigner: false, isWritable: true },
	            { pubkey: managerFeeAccount, isSigner: false, isWritable: true },
	            { pubkey: poolMint, isSigner: false, isWritable: true },
	            { pubkey: SYSVAR_CLOCK_PUBKEY, isSigner: false, isWritable: false },
	            { pubkey: TOKEN_PROGRAM_ID, isSigner: false, isWritable: false },
	            { pubkey: StakeProgram.programId, isSigner: false, isWritable: false },
	        ];
	        return new TransactionInstruction({
	            programId: STAKE_POOL_PROGRAM_ID,
	            keys,
	            data,
	        });
	    }
	    /**
	     * Creates a transaction instruction to withdraw SOL from a stake pool.
	     */
	    static withdrawSol(params) {
	        const { stakePool, withdrawAuthority, sourceTransferAuthority, sourcePoolAccount, reserveStake, destinationSystemAccount, managerFeeAccount, solWithdrawAuthority, poolMint, poolTokens, } = params;
	        const type = STAKE_POOL_INSTRUCTION_LAYOUTS.WithdrawSol;
	        const data = encodeData(type, { poolTokens });
	        const keys = [
	            { pubkey: stakePool, isSigner: false, isWritable: true },
	            { pubkey: withdrawAuthority, isSigner: false, isWritable: false },
	            { pubkey: sourceTransferAuthority, isSigner: true, isWritable: false },
	            { pubkey: sourcePoolAccount, isSigner: false, isWritable: true },
	            { pubkey: reserveStake, isSigner: false, isWritable: true },
	            { pubkey: destinationSystemAccount, isSigner: false, isWritable: true },
	            { pubkey: managerFeeAccount, isSigner: false, isWritable: true },
	            { pubkey: poolMint, isSigner: false, isWritable: true },
	            { pubkey: SYSVAR_CLOCK_PUBKEY, isSigner: false, isWritable: false },
	            { pubkey: SYSVAR_STAKE_HISTORY_PUBKEY, isSigner: false, isWritable: false },
	            { pubkey: StakeProgram.programId, isSigner: false, isWritable: false },
	            { pubkey: TOKEN_PROGRAM_ID, isSigner: false, isWritable: false },
	        ];
	        if (solWithdrawAuthority) {
	            keys.push({
	                pubkey: solWithdrawAuthority,
	                isSigner: true,
	                isWritable: false,
	            });
	        }
	        return new TransactionInstruction({
	            programId: STAKE_POOL_PROGRAM_ID,
	            keys,
	            data,
	        });
	    }
	    /**
	     * Creates an instruction to create metadata
	     * using the mpl token metadata program for the pool token
	     */
	    static createTokenMetadata(params) {
	        const { stakePool, withdrawAuthority, tokenMetadata, manager, payer, poolMint, name, symbol, uri, } = params;
	        const keys = [
	            { pubkey: stakePool, isSigner: false, isWritable: false },
	            { pubkey: manager, isSigner: true, isWritable: false },
	            { pubkey: withdrawAuthority, isSigner: false, isWritable: false },
	            { pubkey: poolMint, isSigner: false, isWritable: false },
	            { pubkey: payer, isSigner: true, isWritable: true },
	            { pubkey: tokenMetadata, isSigner: false, isWritable: true },
	            { pubkey: METADATA_PROGRAM_ID, isSigner: false, isWritable: false },
	            { pubkey: SystemProgram.programId, isSigner: false, isWritable: false },
	            { pubkey: SYSVAR_RENT_PUBKEY, isSigner: false, isWritable: false },
	        ];
	        const type = tokenMetadataLayout(17, name.length, symbol.length, uri.length);
	        const data = encodeData(type, {
	            nameLen: name.length,
	            name: Buffer.from(name),
	            symbolLen: symbol.length,
	            symbol: Buffer.from(symbol),
	            uriLen: uri.length,
	            uri: Buffer.from(uri),
	        });
	        return new TransactionInstruction({
	            programId: STAKE_POOL_PROGRAM_ID,
	            keys,
	            data,
	        });
	    }
	    /**
	     * Creates an instruction to update metadata
	     * in the mpl token metadata program account for the pool token
	     */
	    static updateTokenMetadata(params) {
	        const { stakePool, withdrawAuthority, tokenMetadata, manager, name, symbol, uri } = params;
	        const keys = [
	            { pubkey: stakePool, isSigner: false, isWritable: false },
	            { pubkey: manager, isSigner: true, isWritable: false },
	            { pubkey: withdrawAuthority, isSigner: false, isWritable: false },
	            { pubkey: tokenMetadata, isSigner: false, isWritable: true },
	            { pubkey: METADATA_PROGRAM_ID, isSigner: false, isWritable: false },
	        ];
	        const type = tokenMetadataLayout(18, name.length, symbol.length, uri.length);
	        const data = encodeData(type, {
	            nameLen: name.length,
	            name: Buffer.from(name),
	            symbolLen: symbol.length,
	            symbol: Buffer.from(symbol),
	            uriLen: uri.length,
	            uri: Buffer.from(uri),
	        });
	        return new TransactionInstruction({
	            programId: STAKE_POOL_PROGRAM_ID,
	            keys,
	            data,
	        });
	    }
	    /**
	     * Decode a deposit stake pool instruction and retrieve the instruction params.
	     */
	    static decodeDepositStake(instruction) {
	        this.checkProgramId(instruction.programId);
	        this.checkKeyLength(instruction.keys, 11);
	        decodeData(STAKE_POOL_INSTRUCTION_LAYOUTS.DepositStake, instruction.data);
	        return {
	            stakePool: instruction.keys[0].pubkey,
	            validatorList: instruction.keys[1].pubkey,
	            depositAuthority: instruction.keys[2].pubkey,
	            withdrawAuthority: instruction.keys[3].pubkey,
	            depositStake: instruction.keys[4].pubkey,
	            validatorStake: instruction.keys[5].pubkey,
	            reserveStake: instruction.keys[6].pubkey,
	            destinationPoolAccount: instruction.keys[7].pubkey,
	            managerFeeAccount: instruction.keys[8].pubkey,
	            referralPoolAccount: instruction.keys[9].pubkey,
	            poolMint: instruction.keys[10].pubkey,
	        };
	    }
	    /**
	     * Decode a deposit sol instruction and retrieve the instruction params.
	     */
	    static decodeDepositSol(instruction) {
	        this.checkProgramId(instruction.programId);
	        this.checkKeyLength(instruction.keys, 9);
	        const { amount } = decodeData(STAKE_POOL_INSTRUCTION_LAYOUTS.DepositSol, instruction.data);
	        return {
	            stakePool: instruction.keys[0].pubkey,
	            depositAuthority: instruction.keys[1].pubkey,
	            withdrawAuthority: instruction.keys[2].pubkey,
	            reserveStake: instruction.keys[3].pubkey,
	            fundingAccount: instruction.keys[4].pubkey,
	            destinationPoolAccount: instruction.keys[5].pubkey,
	            managerFeeAccount: instruction.keys[6].pubkey,
	            referralPoolAccount: instruction.keys[7].pubkey,
	            poolMint: instruction.keys[8].pubkey,
	            lamports: amount,
	        };
	    }
	    /**
	     * @internal
	     */
	    static checkProgramId(programId) {
	        if (!programId.equals(StakeProgram.programId)) {
	            throw new Error('Invalid instruction; programId is not StakeProgram');
	        }
	    }
	    /**
	     * @internal
	     */
	    static checkKeyLength(keys, expectedLength) {
	        if (keys.length < expectedLength) {
	            throw new Error(`Invalid instruction; found ${keys.length} keys, expected at least ${expectedLength}`);
	        }
	    }
	}

	/**
	 * Retrieves and deserializes a StakePool account using a web3js connection and the stake pool address.
	 * @param connection: An active web3js connection.
	 * @param stakePoolAddress: The public key (address) of the stake pool account.
	 */
	async function getStakePoolAccount(connection, stakePoolAddress) {
	    const account = await connection.getAccountInfo(stakePoolAddress);
	    if (!account) {
	        throw new Error('Invalid stake pool account');
	    }
	    return {
	        pubkey: stakePoolAddress,
	        account: {
	            data: StakePoolLayout.decode(account.data),
	            executable: account.executable,
	            lamports: account.lamports,
	            owner: account.owner,
	        },
	    };
	}
	/**
	 * Retrieves and deserializes a Stake account using a web3js connection and the stake address.
	 * @param connection: An active web3js connection.
	 * @param stakeAccount: The public key (address) of the stake account.
	 */
	async function getStakeAccount(connection, stakeAccount) {
	    const result = (await connection.getParsedAccountInfo(stakeAccount)).value;
	    if (!result || !('parsed' in result.data)) {
	        throw new Error('Invalid stake account');
	    }
	    const program = result.data.program;
	    if (program != 'stake') {
	        throw new Error('Not a stake account');
	    }
	    const parsed = create(result.data.parsed, StakeAccount);
	    return parsed;
	}
	/**
	 * Retrieves all StakePool and ValidatorList accounts that are running a particular StakePool program.
	 * @param connection: An active web3js connection.
	 * @param stakePoolProgramAddress: The public key (address) of the StakePool program.
	 */
	async function getStakePoolAccounts(connection, stakePoolProgramAddress) {
	    const response = await connection.getProgramAccounts(stakePoolProgramAddress);
	    return response
	        .map((a) => {
	        try {
	            if (a.account.data.readUInt8() === 1) {
	                const data = StakePoolLayout.decode(a.account.data);
	                return {
	                    pubkey: a.pubkey,
	                    account: {
	                        data,
	                        executable: a.account.executable,
	                        lamports: a.account.lamports,
	                        owner: a.account.owner,
	                    },
	                };
	            }
	            else if (a.account.data.readUInt8() === 2) {
	                const data = ValidatorListLayout.decode(a.account.data);
	                return {
	                    pubkey: a.pubkey,
	                    account: {
	                        data,
	                        executable: a.account.executable,
	                        lamports: a.account.lamports,
	                        owner: a.account.owner,
	                    },
	                };
	            }
	            else {
	                console.error(`Could not decode. StakePoolAccount Enum is ${a.account.data.readUInt8()}, expected 1 or 2!`);
	                return undefined;
	            }
	        }
	        catch (error) {
	            console.error('Could not decode account. Error:', error);
	            return undefined;
	        }
	    })
	        .filter((a) => a !== undefined);
	}
	/**
	 * Creates instructions required to deposit stake to stake pool.
	 */
	async function depositStake(connection, stakePoolAddress, authorizedPubkey, validatorVote, depositStake, poolTokenReceiverAccount) {
	    const stakePool = await getStakePoolAccount(connection, stakePoolAddress);
	    const withdrawAuthority = await findWithdrawAuthorityProgramAddress(STAKE_POOL_PROGRAM_ID, stakePoolAddress);
	    const validatorStake = await findStakeProgramAddress(STAKE_POOL_PROGRAM_ID, validatorVote, stakePoolAddress);
	    const instructions = [];
	    const signers = [];
	    const poolMint = stakePool.account.data.poolMint;
	    // Create token account if not specified
	    if (!poolTokenReceiverAccount) {
	        const associatedAddress = getAssociatedTokenAddressSync(poolMint, authorizedPubkey);
	        instructions.push(createAssociatedTokenAccountIdempotentInstruction(authorizedPubkey, associatedAddress, authorizedPubkey, poolMint));
	        poolTokenReceiverAccount = associatedAddress;
	    }
	    instructions.push(...StakeProgram.authorize({
	        stakePubkey: depositStake,
	        authorizedPubkey,
	        newAuthorizedPubkey: stakePool.account.data.stakeDepositAuthority,
	        stakeAuthorizationType: StakeAuthorizationLayout.Staker,
	    }).instructions);
	    instructions.push(...StakeProgram.authorize({
	        stakePubkey: depositStake,
	        authorizedPubkey,
	        newAuthorizedPubkey: stakePool.account.data.stakeDepositAuthority,
	        stakeAuthorizationType: StakeAuthorizationLayout.Withdrawer,
	    }).instructions);
	    instructions.push(StakePoolInstruction.depositStake({
	        stakePool: stakePoolAddress,
	        validatorList: stakePool.account.data.validatorList,
	        depositAuthority: stakePool.account.data.stakeDepositAuthority,
	        reserveStake: stakePool.account.data.reserveStake,
	        managerFeeAccount: stakePool.account.data.managerFeeAccount,
	        referralPoolAccount: poolTokenReceiverAccount,
	        destinationPoolAccount: poolTokenReceiverAccount,
	        withdrawAuthority,
	        depositStake,
	        validatorStake,
	        poolMint,
	    }));
	    return {
	        instructions,
	        signers,
	    };
	}
	/**
	 * Creates instructions required to deposit sol to stake pool.
	 */
	async function depositSol(connection, stakePoolAddress, from, lamports, destinationTokenAccount, referrerTokenAccount, depositAuthority) {
	    const fromBalance = await connection.getBalance(from, 'confirmed');
	    if (fromBalance < lamports) {
	        throw new Error(`Not enough SOL to deposit into pool. Maximum deposit amount is ${lamportsToSol(fromBalance)} SOL.`);
	    }
	    const stakePoolAccount = await getStakePoolAccount(connection, stakePoolAddress);
	    const stakePool = stakePoolAccount.account.data;
	    // Ephemeral SOL account just to do the transfer
	    const userSolTransfer = new Keypair();
	    const signers = [userSolTransfer];
	    const instructions = [];
	    // Create the ephemeral SOL account
	    instructions.push(SystemProgram.transfer({
	        fromPubkey: from,
	        toPubkey: userSolTransfer.publicKey,
	        lamports,
	    }));
	    // Create token account if not specified
	    if (!destinationTokenAccount) {
	        const associatedAddress = getAssociatedTokenAddressSync(stakePool.poolMint, from);
	        instructions.push(createAssociatedTokenAccountIdempotentInstruction(from, associatedAddress, from, stakePool.poolMint));
	        destinationTokenAccount = associatedAddress;
	    }
	    const withdrawAuthority = await findWithdrawAuthorityProgramAddress(STAKE_POOL_PROGRAM_ID, stakePoolAddress);
	    instructions.push(StakePoolInstruction.depositSol({
	        stakePool: stakePoolAddress,
	        reserveStake: stakePool.reserveStake,
	        fundingAccount: userSolTransfer.publicKey,
	        destinationPoolAccount: destinationTokenAccount,
	        managerFeeAccount: stakePool.managerFeeAccount,
	        referralPoolAccount: referrerTokenAccount !== null && referrerTokenAccount !== void 0 ? referrerTokenAccount : destinationTokenAccount,
	        poolMint: stakePool.poolMint,
	        lamports,
	        withdrawAuthority,
	        depositAuthority,
	    }));
	    return {
	        instructions,
	        signers,
	    };
	}
	/**
	 * Creates instructions required to withdraw stake from a stake pool.
	 */
	async function withdrawStake(connection, stakePoolAddress, tokenOwner, amount, useReserve = false, voteAccountAddress, stakeReceiver, poolTokenAccount, validatorComparator) {
	    var _c, _d, _e, _f;
	    const stakePool = await getStakePoolAccount(connection, stakePoolAddress);
	    const poolAmount = new BN(solToLamports(amount));
	    if (!poolTokenAccount) {
	        poolTokenAccount = getAssociatedTokenAddressSync(stakePool.account.data.poolMint, tokenOwner);
	    }
	    const tokenAccount = await getAccount(connection, poolTokenAccount);
	    // Check withdrawFrom balance
	    if (tokenAccount.amount < poolAmount.toNumber()) {
	        throw new Error(`Not enough token balance to withdraw ${lamportsToSol(poolAmount)} pool tokens.
        Maximum withdraw amount is ${lamportsToSol(tokenAccount.amount)} pool tokens.`);
	    }
	    const stakeAccountRentExemption = await connection.getMinimumBalanceForRentExemption(StakeProgram.space);
	    const withdrawAuthority = await findWithdrawAuthorityProgramAddress(STAKE_POOL_PROGRAM_ID, stakePoolAddress);
	    let stakeReceiverAccount = null;
	    if (stakeReceiver) {
	        stakeReceiverAccount = await getStakeAccount(connection, stakeReceiver);
	    }
	    const withdrawAccounts = [];
	    if (useReserve) {
	        withdrawAccounts.push({
	            stakeAddress: stakePool.account.data.reserveStake,
	            voteAddress: undefined,
	            poolAmount,
	        });
	    }
	    else if (stakeReceiverAccount && (stakeReceiverAccount === null || stakeReceiverAccount === void 0 ? void 0 : stakeReceiverAccount.type) == 'delegated') {
	        const voteAccount = (_d = (_c = stakeReceiverAccount.info) === null || _c === void 0 ? void 0 : _c.stake) === null || _d === void 0 ? void 0 : _d.delegation.voter;
	        if (!voteAccount)
	            throw new Error(`Invalid stake receiver ${stakeReceiver} delegation`);
	        const validatorListAccount = await connection.getAccountInfo(stakePool.account.data.validatorList);
	        const validatorList = ValidatorListLayout.decode(validatorListAccount === null || validatorListAccount === void 0 ? void 0 : validatorListAccount.data);
	        const isValidVoter = validatorList.validators.find((val) => val.voteAccountAddress.equals(voteAccount));
	        if (voteAccountAddress && voteAccountAddress !== voteAccount) {
	            throw new Error(`Provided withdrawal vote account ${voteAccountAddress} does not match delegation on stake receiver account ${voteAccount},
      remove this flag or provide a different stake account delegated to ${voteAccountAddress}`);
	        }
	        if (isValidVoter) {
	            const stakeAccountAddress = await findStakeProgramAddress(STAKE_POOL_PROGRAM_ID, voteAccount, stakePoolAddress);
	            const stakeAccount = await connection.getAccountInfo(stakeAccountAddress);
	            if (!stakeAccount) {
	                throw new Error(`Preferred withdraw valdator's stake account is invalid`);
	            }
	            const availableForWithdrawal = calcLamportsWithdrawAmount(stakePool.account.data, new BN(stakeAccount.lamports - MINIMUM_ACTIVE_STAKE - stakeAccountRentExemption));
	            if (availableForWithdrawal.lt(poolAmount)) {
	                throw new Error(`Not enough lamports available for withdrawal from ${stakeAccountAddress},
            ${poolAmount} asked, ${availableForWithdrawal} available.`);
	            }
	            withdrawAccounts.push({
	                stakeAddress: stakeAccountAddress,
	                voteAddress: voteAccount,
	                poolAmount,
	            });
	        }
	        else {
	            throw new Error(`Provided stake account is delegated to a vote account ${voteAccount} which does not exist in the stake pool`);
	        }
	    }
	    else if (voteAccountAddress) {
	        const stakeAccountAddress = await findStakeProgramAddress(STAKE_POOL_PROGRAM_ID, voteAccountAddress, stakePoolAddress);
	        const stakeAccount = await connection.getAccountInfo(stakeAccountAddress);
	        if (!stakeAccount) {
	            throw new Error('Invalid Stake Account');
	        }
	        const availableLamports = new BN(stakeAccount.lamports - MINIMUM_ACTIVE_STAKE - stakeAccountRentExemption);
	        if (availableLamports.lt(new BN(0))) {
	            throw new Error('Invalid Stake Account');
	        }
	        const availableForWithdrawal = calcLamportsWithdrawAmount(stakePool.account.data, availableLamports);
	        if (availableForWithdrawal.lt(poolAmount)) {
	            // noinspection ExceptionCaughtLocallyJS
	            throw new Error(`Not enough lamports available for withdrawal from ${stakeAccountAddress},
          ${poolAmount} asked, ${availableForWithdrawal} available.`);
	        }
	        withdrawAccounts.push({
	            stakeAddress: stakeAccountAddress,
	            voteAddress: voteAccountAddress,
	            poolAmount,
	        });
	    }
	    else {
	        // Get the list of accounts to withdraw from
	        withdrawAccounts.push(...(await prepareWithdrawAccounts(connection, stakePool.account.data, stakePoolAddress, poolAmount, validatorComparator, poolTokenAccount.equals(stakePool.account.data.managerFeeAccount))));
	    }
	    // Construct transaction to withdraw from withdrawAccounts account list
	    const instructions = [];
	    const userTransferAuthority = Keypair.generate();
	    const signers = [userTransferAuthority];
	    instructions.push(createApproveInstruction(poolTokenAccount, userTransferAuthority.publicKey, tokenOwner, poolAmount.toNumber()));
	    let totalRentFreeBalances = 0;
	    // Max 5 accounts to prevent an error: "Transaction too large"
	    const maxWithdrawAccounts = 5;
	    let i = 0;
	    // Go through prepared accounts and withdraw/claim them
	    for (const withdrawAccount of withdrawAccounts) {
	        if (i > maxWithdrawAccounts) {
	            break;
	        }
	        // Convert pool tokens amount to lamports
	        const solWithdrawAmount = calcLamportsWithdrawAmount(stakePool.account.data, withdrawAccount.poolAmount);
	        let infoMsg = `Withdrawing ◎${solWithdrawAmount},
      from stake account ${(_e = withdrawAccount.stakeAddress) === null || _e === void 0 ? void 0 : _e.toBase58()}`;
	        if (withdrawAccount.voteAddress) {
	            infoMsg = `${infoMsg}, delegated to ${(_f = withdrawAccount.voteAddress) === null || _f === void 0 ? void 0 : _f.toBase58()}`;
	        }
	        console.info(infoMsg);
	        let stakeToReceive;
	        if (!stakeReceiver || (stakeReceiverAccount && stakeReceiverAccount.type === 'delegated')) {
	            const stakeKeypair = newStakeAccount(tokenOwner, instructions, stakeAccountRentExemption);
	            signers.push(stakeKeypair);
	            totalRentFreeBalances += stakeAccountRentExemption;
	            stakeToReceive = stakeKeypair.publicKey;
	        }
	        else {
	            stakeToReceive = stakeReceiver;
	        }
	        instructions.push(StakePoolInstruction.withdrawStake({
	            stakePool: stakePoolAddress,
	            validatorList: stakePool.account.data.validatorList,
	            validatorStake: withdrawAccount.stakeAddress,
	            destinationStake: stakeToReceive,
	            destinationStakeAuthority: tokenOwner,
	            sourceTransferAuthority: userTransferAuthority.publicKey,
	            sourcePoolAccount: poolTokenAccount,
	            managerFeeAccount: stakePool.account.data.managerFeeAccount,
	            poolMint: stakePool.account.data.poolMint,
	            poolTokens: withdrawAccount.poolAmount.toNumber(),
	            withdrawAuthority,
	        }));
	        i++;
	    }
	    if (stakeReceiver && stakeReceiverAccount && stakeReceiverAccount.type === 'delegated') {
	        signers.forEach((newStakeKeypair) => {
	            instructions.concat(StakeProgram.merge({
	                stakePubkey: stakeReceiver,
	                sourceStakePubKey: newStakeKeypair.publicKey,
	                authorizedPubkey: tokenOwner,
	            }).instructions);
	        });
	    }
	    return {
	        instructions,
	        signers,
	        stakeReceiver,
	        totalRentFreeBalances,
	    };
	}
	/**
	 * Creates instructions required to withdraw SOL directly from a stake pool.
	 */
	async function withdrawSol(connection, stakePoolAddress, tokenOwner, solReceiver, amount, solWithdrawAuthority) {
	    const stakePool = await getStakePoolAccount(connection, stakePoolAddress);
	    const poolAmount = solToLamports(amount);
	    const poolTokenAccount = getAssociatedTokenAddressSync(stakePool.account.data.poolMint, tokenOwner);
	    const tokenAccount = await getAccount(connection, poolTokenAccount);
	    // Check withdrawFrom balance
	    if (tokenAccount.amount < poolAmount) {
	        throw new Error(`Not enough token balance to withdraw ${lamportsToSol(poolAmount)} pool tokens.
          Maximum withdraw amount is ${lamportsToSol(tokenAccount.amount)} pool tokens.`);
	    }
	    // Construct transaction to withdraw from withdrawAccounts account list
	    const instructions = [];
	    const userTransferAuthority = Keypair.generate();
	    const signers = [userTransferAuthority];
	    instructions.push(createApproveInstruction(poolTokenAccount, userTransferAuthority.publicKey, tokenOwner, poolAmount));
	    const poolWithdrawAuthority = await findWithdrawAuthorityProgramAddress(STAKE_POOL_PROGRAM_ID, stakePoolAddress);
	    if (solWithdrawAuthority) {
	        const expectedSolWithdrawAuthority = stakePool.account.data.solWithdrawAuthority;
	        if (!expectedSolWithdrawAuthority) {
	            throw new Error('SOL withdraw authority specified in arguments but stake pool has none');
	        }
	        if (solWithdrawAuthority.toBase58() != expectedSolWithdrawAuthority.toBase58()) {
	            throw new Error(`Invalid deposit withdraw specified, expected ${expectedSolWithdrawAuthority.toBase58()}, received ${solWithdrawAuthority.toBase58()}`);
	        }
	    }
	    const withdrawTransaction = StakePoolInstruction.withdrawSol({
	        stakePool: stakePoolAddress,
	        withdrawAuthority: poolWithdrawAuthority,
	        reserveStake: stakePool.account.data.reserveStake,
	        sourcePoolAccount: poolTokenAccount,
	        sourceTransferAuthority: userTransferAuthority.publicKey,
	        destinationSystemAccount: solReceiver,
	        managerFeeAccount: stakePool.account.data.managerFeeAccount,
	        poolMint: stakePool.account.data.poolMint,
	        poolTokens: poolAmount,
	        solWithdrawAuthority,
	    });
	    instructions.push(withdrawTransaction);
	    return {
	        instructions,
	        signers,
	    };
	}
	async function addValidatorToPool(connection, stakePoolAddress, validatorVote, seed) {
	    const stakePoolAccount = await getStakePoolAccount(connection, stakePoolAddress);
	    const stakePool = stakePoolAccount.account.data;
	    const { reserveStake, staker, validatorList } = stakePool;
	    const validatorListAccount = await getValidatorListAccount(connection, validatorList);
	    const validatorInfo = validatorListAccount.account.data.validators.find((v) => v.voteAccountAddress.toBase58() == validatorVote.toBase58());
	    if (validatorInfo) {
	        throw new Error('Vote account is already in validator list');
	    }
	    const withdrawAuthority = await findWithdrawAuthorityProgramAddress(STAKE_POOL_PROGRAM_ID, stakePoolAddress);
	    const validatorStake = await findStakeProgramAddress(STAKE_POOL_PROGRAM_ID, validatorVote, stakePoolAddress, seed);
	    const instructions = [
	        StakePoolInstruction.addValidatorToPool({
	            stakePool: stakePoolAddress,
	            staker: staker,
	            reserveStake: reserveStake,
	            withdrawAuthority: withdrawAuthority,
	            validatorList: validatorList,
	            validatorStake: validatorStake,
	            validatorVote: validatorVote,
	        }),
	    ];
	    return {
	        instructions,
	    };
	}
	async function removeValidatorFromPool(connection, stakePoolAddress, validatorVote, seed) {
	    const stakePoolAccount = await getStakePoolAccount(connection, stakePoolAddress);
	    const stakePool = stakePoolAccount.account.data;
	    const { staker, validatorList } = stakePool;
	    const validatorListAccount = await getValidatorListAccount(connection, validatorList);
	    const validatorInfo = validatorListAccount.account.data.validators.find((v) => v.voteAccountAddress.toBase58() == validatorVote.toBase58());
	    if (!validatorInfo) {
	        throw new Error('Vote account is not already in validator list');
	    }
	    const withdrawAuthority = await findWithdrawAuthorityProgramAddress(STAKE_POOL_PROGRAM_ID, stakePoolAddress);
	    const validatorStake = await findStakeProgramAddress(STAKE_POOL_PROGRAM_ID, validatorVote, stakePoolAddress, seed);
	    const transientStakeSeed = validatorInfo.transientSeedSuffixStart;
	    const transientStake = await findTransientStakeProgramAddress(STAKE_POOL_PROGRAM_ID, validatorInfo.voteAccountAddress, stakePoolAddress, transientStakeSeed);
	    const instructions = [
	        StakePoolInstruction.removeValidatorFromPool({
	            stakePool: stakePoolAddress,
	            staker: staker,
	            withdrawAuthority,
	            validatorList,
	            validatorStake,
	            transientStake,
	        }),
	    ];
	    return {
	        instructions,
	    };
	}
	/**
	 * Creates instructions required to increase validator stake.
	 */
	async function increaseValidatorStake(connection, stakePoolAddress, validatorVote, lamports, ephemeralStakeSeed) {
	    const stakePool = await getStakePoolAccount(connection, stakePoolAddress);
	    const validatorList = await getValidatorListAccount(connection, stakePool.account.data.validatorList);
	    const validatorInfo = validatorList.account.data.validators.find((v) => v.voteAccountAddress.toBase58() == validatorVote.toBase58());
	    if (!validatorInfo) {
	        throw new Error('Vote account not found in validator list');
	    }
	    const withdrawAuthority = await findWithdrawAuthorityProgramAddress(STAKE_POOL_PROGRAM_ID, stakePoolAddress);
	    // Bump transient seed suffix by one to avoid reuse when not using the increaseAdditionalStake instruction
	    const transientStakeSeed = ephemeralStakeSeed == undefined
	        ? validatorInfo.transientSeedSuffixStart.addn(1)
	        : validatorInfo.transientSeedSuffixStart;
	    const transientStake = await findTransientStakeProgramAddress(STAKE_POOL_PROGRAM_ID, validatorInfo.voteAccountAddress, stakePoolAddress, transientStakeSeed);
	    const validatorStake = await findStakeProgramAddress(STAKE_POOL_PROGRAM_ID, validatorInfo.voteAccountAddress, stakePoolAddress);
	    const instructions = [];
	    if (ephemeralStakeSeed != undefined) {
	        const ephemeralStake = await findEphemeralStakeProgramAddress(STAKE_POOL_PROGRAM_ID, stakePoolAddress, new BN(ephemeralStakeSeed));
	        instructions.push(StakePoolInstruction.increaseAdditionalValidatorStake({
	            stakePool: stakePoolAddress,
	            staker: stakePool.account.data.staker,
	            validatorList: stakePool.account.data.validatorList,
	            reserveStake: stakePool.account.data.reserveStake,
	            transientStakeSeed: transientStakeSeed.toNumber(),
	            withdrawAuthority,
	            transientStake,
	            validatorStake,
	            validatorVote,
	            lamports,
	            ephemeralStake,
	            ephemeralStakeSeed,
	        }));
	    }
	    else {
	        instructions.push(StakePoolInstruction.increaseValidatorStake({
	            stakePool: stakePoolAddress,
	            staker: stakePool.account.data.staker,
	            validatorList: stakePool.account.data.validatorList,
	            reserveStake: stakePool.account.data.reserveStake,
	            transientStakeSeed: transientStakeSeed.toNumber(),
	            withdrawAuthority,
	            transientStake,
	            validatorStake,
	            validatorVote,
	            lamports,
	        }));
	    }
	    return {
	        instructions,
	    };
	}
	/**
	 * Creates instructions required to decrease validator stake.
	 */
	async function decreaseValidatorStake(connection, stakePoolAddress, validatorVote, lamports, ephemeralStakeSeed) {
	    const stakePool = await getStakePoolAccount(connection, stakePoolAddress);
	    const validatorList = await getValidatorListAccount(connection, stakePool.account.data.validatorList);
	    const validatorInfo = validatorList.account.data.validators.find((v) => v.voteAccountAddress.toBase58() == validatorVote.toBase58());
	    if (!validatorInfo) {
	        throw new Error('Vote account not found in validator list');
	    }
	    const withdrawAuthority = await findWithdrawAuthorityProgramAddress(STAKE_POOL_PROGRAM_ID, stakePoolAddress);
	    const validatorStake = await findStakeProgramAddress(STAKE_POOL_PROGRAM_ID, validatorInfo.voteAccountAddress, stakePoolAddress);
	    // Bump transient seed suffix by one to avoid reuse when not using the decreaseAdditionalStake instruction
	    const transientStakeSeed = ephemeralStakeSeed == undefined
	        ? validatorInfo.transientSeedSuffixStart.addn(1)
	        : validatorInfo.transientSeedSuffixStart;
	    const transientStake = await findTransientStakeProgramAddress(STAKE_POOL_PROGRAM_ID, validatorInfo.voteAccountAddress, stakePoolAddress, transientStakeSeed);
	    const instructions = [];
	    if (ephemeralStakeSeed != undefined) {
	        const ephemeralStake = await findEphemeralStakeProgramAddress(STAKE_POOL_PROGRAM_ID, stakePoolAddress, new BN(ephemeralStakeSeed));
	        instructions.push(StakePoolInstruction.decreaseAdditionalValidatorStake({
	            stakePool: stakePoolAddress,
	            staker: stakePool.account.data.staker,
	            validatorList: stakePool.account.data.validatorList,
	            reserveStake: stakePool.account.data.reserveStake,
	            transientStakeSeed: transientStakeSeed.toNumber(),
	            withdrawAuthority,
	            validatorStake,
	            transientStake,
	            lamports,
	            ephemeralStake,
	            ephemeralStakeSeed,
	        }));
	    }
	    else {
	        instructions.push(StakePoolInstruction.decreaseValidatorStakeWithReserve({
	            stakePool: stakePoolAddress,
	            staker: stakePool.account.data.staker,
	            validatorList: stakePool.account.data.validatorList,
	            reserveStake: stakePool.account.data.reserveStake,
	            transientStakeSeed: transientStakeSeed.toNumber(),
	            withdrawAuthority,
	            validatorStake,
	            transientStake,
	            lamports,
	        }));
	    }
	    return {
	        instructions,
	    };
	}
	/**
	 * Creates instructions required to completely update a stake pool after epoch change.
	 */
	async function updateStakePool(connection, stakePool, noMerge = false) {
	    const stakePoolAddress = stakePool.pubkey;
	    const validatorList = await getValidatorListAccount(connection, stakePool.account.data.validatorList);
	    const withdrawAuthority = await findWithdrawAuthorityProgramAddress(STAKE_POOL_PROGRAM_ID, stakePoolAddress);
	    const updateListInstructions = [];
	    const instructions = [];
	    let startIndex = 0;
	    const validatorChunks = arrayChunk(validatorList.account.data.validators, MAX_VALIDATORS_TO_UPDATE);
	    for (const validatorChunk of validatorChunks) {
	        const validatorAndTransientStakePairs = [];
	        for (const validator of validatorChunk) {
	            const validatorStake = await findStakeProgramAddress(STAKE_POOL_PROGRAM_ID, validator.voteAccountAddress, stakePoolAddress);
	            validatorAndTransientStakePairs.push(validatorStake);
	            const transientStake = await findTransientStakeProgramAddress(STAKE_POOL_PROGRAM_ID, validator.voteAccountAddress, stakePoolAddress, validator.transientSeedSuffixStart);
	            validatorAndTransientStakePairs.push(transientStake);
	        }
	        updateListInstructions.push(StakePoolInstruction.updateValidatorListBalance({
	            stakePool: stakePoolAddress,
	            validatorList: stakePool.account.data.validatorList,
	            reserveStake: stakePool.account.data.reserveStake,
	            validatorAndTransientStakePairs,
	            withdrawAuthority,
	            startIndex,
	            noMerge,
	        }));
	        startIndex += MAX_VALIDATORS_TO_UPDATE;
	    }
	    instructions.push(StakePoolInstruction.updateStakePoolBalance({
	        stakePool: stakePoolAddress,
	        validatorList: stakePool.account.data.validatorList,
	        reserveStake: stakePool.account.data.reserveStake,
	        managerFeeAccount: stakePool.account.data.managerFeeAccount,
	        poolMint: stakePool.account.data.poolMint,
	        withdrawAuthority,
	    }));
	    instructions.push(StakePoolInstruction.cleanupRemovedValidatorEntries({
	        stakePool: stakePoolAddress,
	        validatorList: stakePool.account.data.validatorList,
	    }));
	    return {
	        updateListInstructions,
	        finalInstructions: instructions,
	    };
	}
	/**
	 * Retrieves detailed information about the StakePool.
	 */
	async function stakePoolInfo(connection, stakePoolAddress) {
	    var _c, _d;
	    const stakePool = await getStakePoolAccount(connection, stakePoolAddress);
	    const reserveAccountStakeAddress = stakePool.account.data.reserveStake;
	    const totalLamports = stakePool.account.data.totalLamports;
	    const lastUpdateEpoch = stakePool.account.data.lastUpdateEpoch;
	    const validatorList = await getValidatorListAccount(connection, stakePool.account.data.validatorList);
	    const maxNumberOfValidators = validatorList.account.data.maxValidators;
	    const currentNumberOfValidators = validatorList.account.data.validators.length;
	    const epochInfo = await connection.getEpochInfo();
	    const reserveStake = await connection.getAccountInfo(reserveAccountStakeAddress);
	    const withdrawAuthority = await findWithdrawAuthorityProgramAddress(STAKE_POOL_PROGRAM_ID, stakePoolAddress);
	    const minimumReserveStakeBalance = await connection.getMinimumBalanceForRentExemption(StakeProgram.space);
	    const stakeAccounts = await Promise.all(validatorList.account.data.validators.map(async (validator) => {
	        const stakeAccountAddress = await findStakeProgramAddress(STAKE_POOL_PROGRAM_ID, validator.voteAccountAddress, stakePoolAddress);
	        const transientStakeAccountAddress = await findTransientStakeProgramAddress(STAKE_POOL_PROGRAM_ID, validator.voteAccountAddress, stakePoolAddress, validator.transientSeedSuffixStart);
	        const updateRequired = !validator.lastUpdateEpoch.eqn(epochInfo.epoch);
	        return {
	            voteAccountAddress: validator.voteAccountAddress.toBase58(),
	            stakeAccountAddress: stakeAccountAddress.toBase58(),
	            validatorActiveStakeLamports: validator.activeStakeLamports.toString(),
	            validatorLastUpdateEpoch: validator.lastUpdateEpoch.toString(),
	            validatorLamports: validator.activeStakeLamports
	                .add(validator.transientStakeLamports)
	                .toString(),
	            validatorTransientStakeAccountAddress: transientStakeAccountAddress.toBase58(),
	            validatorTransientStakeLamports: validator.transientStakeLamports.toString(),
	            updateRequired,
	        };
	    }));
	    const totalPoolTokens = lamportsToSol(stakePool.account.data.poolTokenSupply);
	    const updateRequired = !lastUpdateEpoch.eqn(epochInfo.epoch);
	    return {
	        address: stakePoolAddress.toBase58(),
	        poolWithdrawAuthority: withdrawAuthority.toBase58(),
	        manager: stakePool.account.data.manager.toBase58(),
	        staker: stakePool.account.data.staker.toBase58(),
	        stakeDepositAuthority: stakePool.account.data.stakeDepositAuthority.toBase58(),
	        stakeWithdrawBumpSeed: stakePool.account.data.stakeWithdrawBumpSeed,
	        maxValidators: maxNumberOfValidators,
	        validatorList: validatorList.account.data.validators.map((validator) => {
	            return {
	                activeStakeLamports: validator.activeStakeLamports.toString(),
	                transientStakeLamports: validator.transientStakeLamports.toString(),
	                lastUpdateEpoch: validator.lastUpdateEpoch.toString(),
	                transientSeedSuffixStart: validator.transientSeedSuffixStart.toString(),
	                transientSeedSuffixEnd: validator.transientSeedSuffixEnd.toString(),
	                status: validator.status.toString(),
	                voteAccountAddress: validator.voteAccountAddress.toString(),
	            };
	        }), // CliStakePoolValidator
	        validatorListStorageAccount: stakePool.account.data.validatorList.toBase58(),
	        reserveStake: stakePool.account.data.reserveStake.toBase58(),
	        poolMint: stakePool.account.data.poolMint.toBase58(),
	        managerFeeAccount: stakePool.account.data.managerFeeAccount.toBase58(),
	        tokenProgramId: stakePool.account.data.tokenProgramId.toBase58(),
	        totalLamports: stakePool.account.data.totalLamports.toString(),
	        poolTokenSupply: stakePool.account.data.poolTokenSupply.toString(),
	        lastUpdateEpoch: stakePool.account.data.lastUpdateEpoch.toString(),
	        lockup: stakePool.account.data.lockup, // pub lockup: CliStakePoolLockup
	        epochFee: stakePool.account.data.epochFee,
	        nextEpochFee: stakePool.account.data.nextEpochFee,
	        preferredDepositValidatorVoteAddress: stakePool.account.data.preferredDepositValidatorVoteAddress,
	        preferredWithdrawValidatorVoteAddress: stakePool.account.data.preferredWithdrawValidatorVoteAddress,
	        stakeDepositFee: stakePool.account.data.stakeDepositFee,
	        stakeWithdrawalFee: stakePool.account.data.stakeWithdrawalFee,
	        // CliStakePool the same
	        nextStakeWithdrawalFee: stakePool.account.data.nextStakeWithdrawalFee,
	        stakeReferralFee: stakePool.account.data.stakeReferralFee,
	        solDepositAuthority: (_c = stakePool.account.data.solDepositAuthority) === null || _c === void 0 ? void 0 : _c.toBase58(),
	        solDepositFee: stakePool.account.data.solDepositFee,
	        solReferralFee: stakePool.account.data.solReferralFee,
	        solWithdrawAuthority: (_d = stakePool.account.data.solWithdrawAuthority) === null || _d === void 0 ? void 0 : _d.toBase58(),
	        solWithdrawalFee: stakePool.account.data.solWithdrawalFee,
	        nextSolWithdrawalFee: stakePool.account.data.nextSolWithdrawalFee,
	        lastEpochPoolTokenSupply: stakePool.account.data.lastEpochPoolTokenSupply.toString(),
	        lastEpochTotalLamports: stakePool.account.data.lastEpochTotalLamports.toString(),
	        details: {
	            reserveStakeLamports: reserveStake === null || reserveStake === void 0 ? void 0 : reserveStake.lamports,
	            reserveAccountStakeAddress: reserveAccountStakeAddress.toBase58(),
	            minimumReserveStakeBalance,
	            stakeAccounts,
	            totalLamports,
	            totalPoolTokens,
	            currentNumberOfValidators,
	            maxNumberOfValidators,
	            updateRequired,
	        }, // CliStakePoolDetails
	    };
	}
	/**
	 * Creates instructions required to create pool token metadata.
	 */
	async function createPoolTokenMetadata(connection, stakePoolAddress, payer, name, symbol, uri) {
	    const stakePool = await getStakePoolAccount(connection, stakePoolAddress);
	    const withdrawAuthority = await findWithdrawAuthorityProgramAddress(STAKE_POOL_PROGRAM_ID, stakePoolAddress);
	    const tokenMetadata = findMetadataAddress(stakePool.account.data.poolMint);
	    const manager = stakePool.account.data.manager;
	    const instructions = [];
	    instructions.push(StakePoolInstruction.createTokenMetadata({
	        stakePool: stakePoolAddress,
	        poolMint: stakePool.account.data.poolMint,
	        payer,
	        manager,
	        tokenMetadata,
	        withdrawAuthority,
	        name,
	        symbol,
	        uri,
	    }));
	    return {
	        instructions,
	    };
	}
	/**
	 * Creates instructions required to update pool token metadata.
	 */
	async function updatePoolTokenMetadata(connection, stakePoolAddress, name, symbol, uri) {
	    const stakePool = await getStakePoolAccount(connection, stakePoolAddress);
	    const withdrawAuthority = await findWithdrawAuthorityProgramAddress(STAKE_POOL_PROGRAM_ID, stakePoolAddress);
	    const tokenMetadata = findMetadataAddress(stakePool.account.data.poolMint);
	    const instructions = [];
	    instructions.push(StakePoolInstruction.updateTokenMetadata({
	        stakePool: stakePoolAddress,
	        manager: stakePool.account.data.manager,
	        tokenMetadata,
	        withdrawAuthority,
	        name,
	        symbol,
	        uri,
	    }));
	    return {
	        instructions,
	    };
	}

	exports.STAKE_POOL_INSTRUCTION_LAYOUTS = STAKE_POOL_INSTRUCTION_LAYOUTS;
	exports.STAKE_POOL_PROGRAM_ID = STAKE_POOL_PROGRAM_ID;
	exports.StakePoolInstruction = StakePoolInstruction;
	exports.StakePoolLayout = StakePoolLayout;
	exports.ValidatorListLayout = ValidatorListLayout;
	exports.ValidatorStakeInfoLayout = ValidatorStakeInfoLayout;
	exports.addValidatorToPool = addValidatorToPool;
	exports.createPoolTokenMetadata = createPoolTokenMetadata;
	exports.decreaseValidatorStake = decreaseValidatorStake;
	exports.depositSol = depositSol;
	exports.depositStake = depositStake;
	exports.getStakeAccount = getStakeAccount;
	exports.getStakePoolAccount = getStakePoolAccount;
	exports.getStakePoolAccounts = getStakePoolAccounts;
	exports.increaseValidatorStake = increaseValidatorStake;
	exports.removeValidatorFromPool = removeValidatorFromPool;
	exports.stakePoolInfo = stakePoolInfo;
	exports.tokenMetadataLayout = tokenMetadataLayout;
	exports.updatePoolTokenMetadata = updatePoolTokenMetadata;
	exports.updateStakePool = updateStakePool;
	exports.withdrawSol = withdrawSol;
	exports.withdrawStake = withdrawStake;

	return exports;

})({});
//# sourceMappingURL=index.iife.js.map

Выполнить команду


Для локальной разработки. Не используйте в интернете!