PHP WebShell

Текущая директория: /usr/lib/node_modules/bitgo/node_modules/avalanche/node_modules/@ethersproject/signing-key/lib.esm

Просмотр файла: elliptic.js

import BN from 'bn.js';
import hash from 'hash.js';

var commonjsGlobal = typeof globalThis !== 'undefined' ? globalThis : typeof window !== 'undefined' ? window : typeof global !== 'undefined' ? global : typeof self !== 'undefined' ? self : {};

function getDefaultExportFromCjs (x) {
	return x && x.__esModule && Object.prototype.hasOwnProperty.call(x, 'default') ? x['default'] : x;
}

function createCommonjsModule(fn, basedir, module) {
	return module = {
		path: basedir,
		exports: {},
		require: function (path, base) {
			return commonjsRequire(path, (base === undefined || base === null) ? module.path : base);
		}
	}, fn(module, module.exports), module.exports;
}

function getDefaultExportFromNamespaceIfPresent (n) {
	return n && Object.prototype.hasOwnProperty.call(n, 'default') ? n['default'] : n;
}

function getDefaultExportFromNamespaceIfNotNamed (n) {
	return n && Object.prototype.hasOwnProperty.call(n, 'default') && Object.keys(n).length === 1 ? n['default'] : n;
}

function getAugmentedNamespace(n) {
	if (n.__esModule) return n;
	var a = Object.defineProperty({}, '__esModule', {value: true});
	Object.keys(n).forEach(function (k) {
		var d = Object.getOwnPropertyDescriptor(n, k);
		Object.defineProperty(a, k, d.get ? d : {
			enumerable: true,
			get: function () {
				return n[k];
			}
		});
	});
	return a;
}

function commonjsRequire () {
	throw new Error('Dynamic requires are not currently supported by @rollup/plugin-commonjs');
}

var minimalisticAssert = assert;

function assert(val, msg) {
  if (!val)
    throw new Error(msg || 'Assertion failed');
}

assert.equal = function assertEqual(l, r, msg) {
  if (l != r)
    throw new Error(msg || ('Assertion failed: ' + l + ' != ' + r));
};

var utils_1 = createCommonjsModule(function (module, exports) {
'use strict';

var utils = exports;

function toArray(msg, enc) {
  if (Array.isArray(msg))
    return msg.slice();
  if (!msg)
    return [];
  var res = [];
  if (typeof msg !== 'string') {
    for (var i = 0; i < msg.length; i++)
      res[i] = msg[i] | 0;
    return res;
  }
  if (enc === 'hex') {
    msg = msg.replace(/[^a-z0-9]+/ig, '');
    if (msg.length % 2 !== 0)
      msg = '0' + msg;
    for (var i = 0; i < msg.length; i += 2)
      res.push(parseInt(msg[i] + msg[i + 1], 16));
  } else {
    for (var i = 0; i < msg.length; i++) {
      var c = msg.charCodeAt(i);
      var hi = c >> 8;
      var lo = c & 0xff;
      if (hi)
        res.push(hi, lo);
      else
        res.push(lo);
    }
  }
  return res;
}
utils.toArray = toArray;

function zero2(word) {
  if (word.length === 1)
    return '0' + word;
  else
    return word;
}
utils.zero2 = zero2;

function toHex(msg) {
  var res = '';
  for (var i = 0; i < msg.length; i++)
    res += zero2(msg[i].toString(16));
  return res;
}
utils.toHex = toHex;

utils.encode = function encode(arr, enc) {
  if (enc === 'hex')
    return toHex(arr);
  else
    return arr;
};
});

var utils_1$1 = createCommonjsModule(function (module, exports) {
'use strict';

var utils = exports;




utils.assert = minimalisticAssert;
utils.toArray = utils_1.toArray;
utils.zero2 = utils_1.zero2;
utils.toHex = utils_1.toHex;
utils.encode = utils_1.encode;

// Represent num in a w-NAF form
function getNAF(num, w, bits) {
  var naf = new Array(Math.max(num.bitLength(), bits) + 1);
  naf.fill(0);

  var ws = 1 << (w + 1);
  var k = num.clone();

  for (var i = 0; i < naf.length; i++) {
    var z;
    var mod = k.andln(ws - 1);
    if (k.isOdd()) {
      if (mod > (ws >> 1) - 1)
        z = (ws >> 1) - mod;
      else
        z = mod;
      k.isubn(z);
    } else {
      z = 0;
    }

    naf[i] = z;
    k.iushrn(1);
  }

  return naf;
}
utils.getNAF = getNAF;

// Represent k1, k2 in a Joint Sparse Form
function getJSF(k1, k2) {
  var jsf = [
    [],
    [],
  ];

  k1 = k1.clone();
  k2 = k2.clone();
  var d1 = 0;
  var d2 = 0;
  var m8;
  while (k1.cmpn(-d1) > 0 || k2.cmpn(-d2) > 0) {
    // First phase
    var m14 = (k1.andln(3) + d1) & 3;
    var m24 = (k2.andln(3) + d2) & 3;
    if (m14 === 3)
      m14 = -1;
    if (m24 === 3)
      m24 = -1;
    var u1;
    if ((m14 & 1) === 0) {
      u1 = 0;
    } else {
      m8 = (k1.andln(7) + d1) & 7;
      if ((m8 === 3 || m8 === 5) && m24 === 2)
        u1 = -m14;
      else
        u1 = m14;
    }
    jsf[0].push(u1);

    var u2;
    if ((m24 & 1) === 0) {
      u2 = 0;
    } else {
      m8 = (k2.andln(7) + d2) & 7;
      if ((m8 === 3 || m8 === 5) && m14 === 2)
        u2 = -m24;
      else
        u2 = m24;
    }
    jsf[1].push(u2);

    // Second phase
    if (2 * d1 === u1 + 1)
      d1 = 1 - d1;
    if (2 * d2 === u2 + 1)
      d2 = 1 - d2;
    k1.iushrn(1);
    k2.iushrn(1);
  }

  return jsf;
}
utils.getJSF = getJSF;

function cachedProperty(obj, name, computer) {
  var key = '_' + name;
  obj.prototype[name] = function cachedProperty() {
    return this[key] !== undefined ? this[key] :
      this[key] = computer.call(this);
  };
}
utils.cachedProperty = cachedProperty;

function parseBytes(bytes) {
  return typeof bytes === 'string' ? utils.toArray(bytes, 'hex') :
    bytes;
}
utils.parseBytes = parseBytes;

function intFromLE(bytes) {
  return new BN(bytes, 'hex', 'le');
}
utils.intFromLE = intFromLE;
});

'use strict';



var getNAF = utils_1$1.getNAF;
var getJSF = utils_1$1.getJSF;
var assert$1 = utils_1$1.assert;

function BaseCurve(type, conf) {
  this.type = type;
  this.p = new BN(conf.p, 16);

  // Use Montgomery, when there is no fast reduction for the prime
  this.red = conf.prime ? BN.red(conf.prime) : BN.mont(this.p);

  // Useful for many curves
  this.zero = new BN(0).toRed(this.red);
  this.one = new BN(1).toRed(this.red);
  this.two = new BN(2).toRed(this.red);

  // Curve configuration, optional
  this.n = conf.n && new BN(conf.n, 16);
  this.g = conf.g && this.pointFromJSON(conf.g, conf.gRed);

  // Temporary arrays
  this._wnafT1 = new Array(4);
  this._wnafT2 = new Array(4);
  this._wnafT3 = new Array(4);
  this._wnafT4 = new Array(4);

  this._bitLength = this.n ? this.n.bitLength() : 0;

  // Generalized Greg Maxwell's trick
  var adjustCount = this.n && this.p.div(this.n);
  if (!adjustCount || adjustCount.cmpn(100) > 0) {
    this.redN = null;
  } else {
    this._maxwellTrick = true;
    this.redN = this.n.toRed(this.red);
  }
}
var base = BaseCurve;

BaseCurve.prototype.point = function point() {
  throw new Error('Not implemented');
};

BaseCurve.prototype.validate = function validate() {
  throw new Error('Not implemented');
};

BaseCurve.prototype._fixedNafMul = function _fixedNafMul(p, k) {
  assert$1(p.precomputed);
  var doubles = p._getDoubles();

  var naf = getNAF(k, 1, this._bitLength);
  var I = (1 << (doubles.step + 1)) - (doubles.step % 2 === 0 ? 2 : 1);
  I /= 3;

  // Translate into more windowed form
  var repr = [];
  var j;
  var nafW;
  for (j = 0; j < naf.length; j += doubles.step) {
    nafW = 0;
    for (var l = j + doubles.step - 1; l >= j; l--)
      nafW = (nafW << 1) + naf[l];
    repr.push(nafW);
  }

  var a = this.jpoint(null, null, null);
  var b = this.jpoint(null, null, null);
  for (var i = I; i > 0; i--) {
    for (j = 0; j < repr.length; j++) {
      nafW = repr[j];
      if (nafW === i)
        b = b.mixedAdd(doubles.points[j]);
      else if (nafW === -i)
        b = b.mixedAdd(doubles.points[j].neg());
    }
    a = a.add(b);
  }
  return a.toP();
};

BaseCurve.prototype._wnafMul = function _wnafMul(p, k) {
  var w = 4;

  // Precompute window
  var nafPoints = p._getNAFPoints(w);
  w = nafPoints.wnd;
  var wnd = nafPoints.points;

  // Get NAF form
  var naf = getNAF(k, w, this._bitLength);

  // Add `this`*(N+1) for every w-NAF index
  var acc = this.jpoint(null, null, null);
  for (var i = naf.length - 1; i >= 0; i--) {
    // Count zeroes
    for (var l = 0; i >= 0 && naf[i] === 0; i--)
      l++;
    if (i >= 0)
      l++;
    acc = acc.dblp(l);

    if (i < 0)
      break;
    var z = naf[i];
    assert$1(z !== 0);
    if (p.type === 'affine') {
      // J +- P
      if (z > 0)
        acc = acc.mixedAdd(wnd[(z - 1) >> 1]);
      else
        acc = acc.mixedAdd(wnd[(-z - 1) >> 1].neg());
    } else {
      // J +- J
      if (z > 0)
        acc = acc.add(wnd[(z - 1) >> 1]);
      else
        acc = acc.add(wnd[(-z - 1) >> 1].neg());
    }
  }
  return p.type === 'affine' ? acc.toP() : acc;
};

BaseCurve.prototype._wnafMulAdd = function _wnafMulAdd(defW,
  points,
  coeffs,
  len,
  jacobianResult) {
  var wndWidth = this._wnafT1;
  var wnd = this._wnafT2;
  var naf = this._wnafT3;

  // Fill all arrays
  var max = 0;
  var i;
  var j;
  var p;
  for (i = 0; i < len; i++) {
    p = points[i];
    var nafPoints = p._getNAFPoints(defW);
    wndWidth[i] = nafPoints.wnd;
    wnd[i] = nafPoints.points;
  }

  // Comb small window NAFs
  for (i = len - 1; i >= 1; i -= 2) {
    var a = i - 1;
    var b = i;
    if (wndWidth[a] !== 1 || wndWidth[b] !== 1) {
      naf[a] = getNAF(coeffs[a], wndWidth[a], this._bitLength);
      naf[b] = getNAF(coeffs[b], wndWidth[b], this._bitLength);
      max = Math.max(naf[a].length, max);
      max = Math.max(naf[b].length, max);
      continue;
    }

    var comb = [
      points[a], /* 1 */
      null, /* 3 */
      null, /* 5 */
      points[b], /* 7 */
    ];

    // Try to avoid Projective points, if possible
    if (points[a].y.cmp(points[b].y) === 0) {
      comb[1] = points[a].add(points[b]);
      comb[2] = points[a].toJ().mixedAdd(points[b].neg());
    } else if (points[a].y.cmp(points[b].y.redNeg()) === 0) {
      comb[1] = points[a].toJ().mixedAdd(points[b]);
      comb[2] = points[a].add(points[b].neg());
    } else {
      comb[1] = points[a].toJ().mixedAdd(points[b]);
      comb[2] = points[a].toJ().mixedAdd(points[b].neg());
    }

    var index = [
      -3, /* -1 -1 */
      -1, /* -1 0 */
      -5, /* -1 1 */
      -7, /* 0 -1 */
      0, /* 0 0 */
      7, /* 0 1 */
      5, /* 1 -1 */
      1, /* 1 0 */
      3,  /* 1 1 */
    ];

    var jsf = getJSF(coeffs[a], coeffs[b]);
    max = Math.max(jsf[0].length, max);
    naf[a] = new Array(max);
    naf[b] = new Array(max);
    for (j = 0; j < max; j++) {
      var ja = jsf[0][j] | 0;
      var jb = jsf[1][j] | 0;

      naf[a][j] = index[(ja + 1) * 3 + (jb + 1)];
      naf[b][j] = 0;
      wnd[a] = comb;
    }
  }

  var acc = this.jpoint(null, null, null);
  var tmp = this._wnafT4;
  for (i = max; i >= 0; i--) {
    var k = 0;

    while (i >= 0) {
      var zero = true;
      for (j = 0; j < len; j++) {
        tmp[j] = naf[j][i] | 0;
        if (tmp[j] !== 0)
          zero = false;
      }
      if (!zero)
        break;
      k++;
      i--;
    }
    if (i >= 0)
      k++;
    acc = acc.dblp(k);
    if (i < 0)
      break;

    for (j = 0; j < len; j++) {
      var z = tmp[j];
      p;
      if (z === 0)
        continue;
      else if (z > 0)
        p = wnd[j][(z - 1) >> 1];
      else if (z < 0)
        p = wnd[j][(-z - 1) >> 1].neg();

      if (p.type === 'affine')
        acc = acc.mixedAdd(p);
      else
        acc = acc.add(p);
    }
  }
  // Zeroify references
  for (i = 0; i < len; i++)
    wnd[i] = null;

  if (jacobianResult)
    return acc;
  else
    return acc.toP();
};

function BasePoint(curve, type) {
  this.curve = curve;
  this.type = type;
  this.precomputed = null;
}
BaseCurve.BasePoint = BasePoint;

BasePoint.prototype.eq = function eq(/*other*/) {
  throw new Error('Not implemented');
};

BasePoint.prototype.validate = function validate() {
  return this.curve.validate(this);
};

BaseCurve.prototype.decodePoint = function decodePoint(bytes, enc) {
  bytes = utils_1$1.toArray(bytes, enc);

  var len = this.p.byteLength();

  // uncompressed, hybrid-odd, hybrid-even
  if ((bytes[0] === 0x04 || bytes[0] === 0x06 || bytes[0] === 0x07) &&
      bytes.length - 1 === 2 * len) {
    if (bytes[0] === 0x06)
      assert$1(bytes[bytes.length - 1] % 2 === 0);
    else if (bytes[0] === 0x07)
      assert$1(bytes[bytes.length - 1] % 2 === 1);

    var res =  this.point(bytes.slice(1, 1 + len),
      bytes.slice(1 + len, 1 + 2 * len));

    return res;
  } else if ((bytes[0] === 0x02 || bytes[0] === 0x03) &&
              bytes.length - 1 === len) {
    return this.pointFromX(bytes.slice(1, 1 + len), bytes[0] === 0x03);
  }
  throw new Error('Unknown point format');
};

BasePoint.prototype.encodeCompressed = function encodeCompressed(enc) {
  return this.encode(enc, true);
};

BasePoint.prototype._encode = function _encode(compact) {
  var len = this.curve.p.byteLength();
  var x = this.getX().toArray('be', len);

  if (compact)
    return [ this.getY().isEven() ? 0x02 : 0x03 ].concat(x);

  return [ 0x04 ].concat(x, this.getY().toArray('be', len));
};

BasePoint.prototype.encode = function encode(enc, compact) {
  return utils_1$1.encode(this._encode(compact), enc);
};

BasePoint.prototype.precompute = function precompute(power) {
  if (this.precomputed)
    return this;

  var precomputed = {
    doubles: null,
    naf: null,
    beta: null,
  };
  precomputed.naf = this._getNAFPoints(8);
  precomputed.doubles = this._getDoubles(4, power);
  precomputed.beta = this._getBeta();
  this.precomputed = precomputed;

  return this;
};

BasePoint.prototype._hasDoubles = function _hasDoubles(k) {
  if (!this.precomputed)
    return false;

  var doubles = this.precomputed.doubles;
  if (!doubles)
    return false;

  return doubles.points.length >= Math.ceil((k.bitLength() + 1) / doubles.step);
};

BasePoint.prototype._getDoubles = function _getDoubles(step, power) {
  if (this.precomputed && this.precomputed.doubles)
    return this.precomputed.doubles;

  var doubles = [ this ];
  var acc = this;
  for (var i = 0; i < power; i += step) {
    for (var j = 0; j < step; j++)
      acc = acc.dbl();
    doubles.push(acc);
  }
  return {
    step: step,
    points: doubles,
  };
};

BasePoint.prototype._getNAFPoints = function _getNAFPoints(wnd) {
  if (this.precomputed && this.precomputed.naf)
    return this.precomputed.naf;

  var res = [ this ];
  var max = (1 << wnd) - 1;
  var dbl = max === 1 ? null : this.dbl();
  for (var i = 1; i < max; i++)
    res[i] = res[i - 1].add(dbl);
  return {
    wnd: wnd,
    points: res,
  };
};

BasePoint.prototype._getBeta = function _getBeta() {
  return null;
};

BasePoint.prototype.dblp = function dblp(k) {
  var r = this;
  for (var i = 0; i < k; i++)
    r = r.dbl();
  return r;
};

var inherits_browser = createCommonjsModule(function (module) {
if (typeof Object.create === 'function') {
  // implementation from standard node.js 'util' module
  module.exports = function inherits(ctor, superCtor) {
    if (superCtor) {
      ctor.super_ = superCtor;
      ctor.prototype = Object.create(superCtor.prototype, {
        constructor: {
          value: ctor,
          enumerable: false,
          writable: true,
          configurable: true
        }
      });
    }
  };
} else {
  // old school shim for old browsers
  module.exports = function inherits(ctor, superCtor) {
    if (superCtor) {
      ctor.super_ = superCtor;
      var TempCtor = function () {};
      TempCtor.prototype = superCtor.prototype;
      ctor.prototype = new TempCtor();
      ctor.prototype.constructor = ctor;
    }
  };
}
});

'use strict';






var assert$2 = utils_1$1.assert;

function ShortCurve(conf) {
  base.call(this, 'short', conf);

  this.a = new BN(conf.a, 16).toRed(this.red);
  this.b = new BN(conf.b, 16).toRed(this.red);
  this.tinv = this.two.redInvm();

  this.zeroA = this.a.fromRed().cmpn(0) === 0;
  this.threeA = this.a.fromRed().sub(this.p).cmpn(-3) === 0;

  // If the curve is endomorphic, precalculate beta and lambda
  this.endo = this._getEndomorphism(conf);
  this._endoWnafT1 = new Array(4);
  this._endoWnafT2 = new Array(4);
}
inherits_browser(ShortCurve, base);
var short_1 = ShortCurve;

ShortCurve.prototype._getEndomorphism = function _getEndomorphism(conf) {
  // No efficient endomorphism
  if (!this.zeroA || !this.g || !this.n || this.p.modn(3) !== 1)
    return;

  // Compute beta and lambda, that lambda * P = (beta * Px; Py)
  var beta;
  var lambda;
  if (conf.beta) {
    beta = new BN(conf.beta, 16).toRed(this.red);
  } else {
    var betas = this._getEndoRoots(this.p);
    // Choose the smallest beta
    beta = betas[0].cmp(betas[1]) < 0 ? betas[0] : betas[1];
    beta = beta.toRed(this.red);
  }
  if (conf.lambda) {
    lambda = new BN(conf.lambda, 16);
  } else {
    // Choose the lambda that is matching selected beta
    var lambdas = this._getEndoRoots(this.n);
    if (this.g.mul(lambdas[0]).x.cmp(this.g.x.redMul(beta)) === 0) {
      lambda = lambdas[0];
    } else {
      lambda = lambdas[1];
      assert$2(this.g.mul(lambda).x.cmp(this.g.x.redMul(beta)) === 0);
    }
  }

  // Get basis vectors, used for balanced length-two representation
  var basis;
  if (conf.basis) {
    basis = conf.basis.map(function(vec) {
      return {
        a: new BN(vec.a, 16),
        b: new BN(vec.b, 16),
      };
    });
  } else {
    basis = this._getEndoBasis(lambda);
  }

  return {
    beta: beta,
    lambda: lambda,
    basis: basis,
  };
};

ShortCurve.prototype._getEndoRoots = function _getEndoRoots(num) {
  // Find roots of for x^2 + x + 1 in F
  // Root = (-1 +- Sqrt(-3)) / 2
  //
  var red = num === this.p ? this.red : BN.mont(num);
  var tinv = new BN(2).toRed(red).redInvm();
  var ntinv = tinv.redNeg();

  var s = new BN(3).toRed(red).redNeg().redSqrt().redMul(tinv);

  var l1 = ntinv.redAdd(s).fromRed();
  var l2 = ntinv.redSub(s).fromRed();
  return [ l1, l2 ];
};

ShortCurve.prototype._getEndoBasis = function _getEndoBasis(lambda) {
  // aprxSqrt >= sqrt(this.n)
  var aprxSqrt = this.n.ushrn(Math.floor(this.n.bitLength() / 2));

  // 3.74
  // Run EGCD, until r(L + 1) < aprxSqrt
  var u = lambda;
  var v = this.n.clone();
  var x1 = new BN(1);
  var y1 = new BN(0);
  var x2 = new BN(0);
  var y2 = new BN(1);

  // NOTE: all vectors are roots of: a + b * lambda = 0 (mod n)
  var a0;
  var b0;
  // First vector
  var a1;
  var b1;
  // Second vector
  var a2;
  var b2;

  var prevR;
  var i = 0;
  var r;
  var x;
  while (u.cmpn(0) !== 0) {
    var q = v.div(u);
    r = v.sub(q.mul(u));
    x = x2.sub(q.mul(x1));
    var y = y2.sub(q.mul(y1));

    if (!a1 && r.cmp(aprxSqrt) < 0) {
      a0 = prevR.neg();
      b0 = x1;
      a1 = r.neg();
      b1 = x;
    } else if (a1 && ++i === 2) {
      break;
    }
    prevR = r;

    v = u;
    u = r;
    x2 = x1;
    x1 = x;
    y2 = y1;
    y1 = y;
  }
  a2 = r.neg();
  b2 = x;

  var len1 = a1.sqr().add(b1.sqr());
  var len2 = a2.sqr().add(b2.sqr());
  if (len2.cmp(len1) >= 0) {
    a2 = a0;
    b2 = b0;
  }

  // Normalize signs
  if (a1.negative) {
    a1 = a1.neg();
    b1 = b1.neg();
  }
  if (a2.negative) {
    a2 = a2.neg();
    b2 = b2.neg();
  }

  return [
    { a: a1, b: b1 },
    { a: a2, b: b2 },
  ];
};

ShortCurve.prototype._endoSplit = function _endoSplit(k) {
  var basis = this.endo.basis;
  var v1 = basis[0];
  var v2 = basis[1];

  var c1 = v2.b.mul(k).divRound(this.n);
  var c2 = v1.b.neg().mul(k).divRound(this.n);

  var p1 = c1.mul(v1.a);
  var p2 = c2.mul(v2.a);
  var q1 = c1.mul(v1.b);
  var q2 = c2.mul(v2.b);

  // Calculate answer
  var k1 = k.sub(p1).sub(p2);
  var k2 = q1.add(q2).neg();
  return { k1: k1, k2: k2 };
};

ShortCurve.prototype.pointFromX = function pointFromX(x, odd) {
  x = new BN(x, 16);
  if (!x.red)
    x = x.toRed(this.red);

  var y2 = x.redSqr().redMul(x).redIAdd(x.redMul(this.a)).redIAdd(this.b);
  var y = y2.redSqrt();
  if (y.redSqr().redSub(y2).cmp(this.zero) !== 0)
    throw new Error('invalid point');

  // XXX Is there any way to tell if the number is odd without converting it
  // to non-red form?
  var isOdd = y.fromRed().isOdd();
  if (odd && !isOdd || !odd && isOdd)
    y = y.redNeg();

  return this.point(x, y);
};

ShortCurve.prototype.validate = function validate(point) {
  if (point.inf)
    return true;

  var x = point.x;
  var y = point.y;

  var ax = this.a.redMul(x);
  var rhs = x.redSqr().redMul(x).redIAdd(ax).redIAdd(this.b);
  return y.redSqr().redISub(rhs).cmpn(0) === 0;
};

ShortCurve.prototype._endoWnafMulAdd =
    function _endoWnafMulAdd(points, coeffs, jacobianResult) {
      var npoints = this._endoWnafT1;
      var ncoeffs = this._endoWnafT2;
      for (var i = 0; i < points.length; i++) {
        var split = this._endoSplit(coeffs[i]);
        var p = points[i];
        var beta = p._getBeta();

        if (split.k1.negative) {
          split.k1.ineg();
          p = p.neg(true);
        }
        if (split.k2.negative) {
          split.k2.ineg();
          beta = beta.neg(true);
        }

        npoints[i * 2] = p;
        npoints[i * 2 + 1] = beta;
        ncoeffs[i * 2] = split.k1;
        ncoeffs[i * 2 + 1] = split.k2;
      }
      var res = this._wnafMulAdd(1, npoints, ncoeffs, i * 2, jacobianResult);

      // Clean-up references to points and coefficients
      for (var j = 0; j < i * 2; j++) {
        npoints[j] = null;
        ncoeffs[j] = null;
      }
      return res;
    };

function Point(curve, x, y, isRed) {
  base.BasePoint.call(this, curve, 'affine');
  if (x === null && y === null) {
    this.x = null;
    this.y = null;
    this.inf = true;
  } else {
    this.x = new BN(x, 16);
    this.y = new BN(y, 16);
    // Force redgomery representation when loading from JSON
    if (isRed) {
      this.x.forceRed(this.curve.red);
      this.y.forceRed(this.curve.red);
    }
    if (!this.x.red)
      this.x = this.x.toRed(this.curve.red);
    if (!this.y.red)
      this.y = this.y.toRed(this.curve.red);
    this.inf = false;
  }
}
inherits_browser(Point, base.BasePoint);

ShortCurve.prototype.point = function point(x, y, isRed) {
  return new Point(this, x, y, isRed);
};

ShortCurve.prototype.pointFromJSON = function pointFromJSON(obj, red) {
  return Point.fromJSON(this, obj, red);
};

Point.prototype._getBeta = function _getBeta() {
  if (!this.curve.endo)
    return;

  var pre = this.precomputed;
  if (pre && pre.beta)
    return pre.beta;

  var beta = this.curve.point(this.x.redMul(this.curve.endo.beta), this.y);
  if (pre) {
    var curve = this.curve;
    var endoMul = function(p) {
      return curve.point(p.x.redMul(curve.endo.beta), p.y);
    };
    pre.beta = beta;
    beta.precomputed = {
      beta: null,
      naf: pre.naf && {
        wnd: pre.naf.wnd,
        points: pre.naf.points.map(endoMul),
      },
      doubles: pre.doubles && {
        step: pre.doubles.step,
        points: pre.doubles.points.map(endoMul),
      },
    };
  }
  return beta;
};

Point.prototype.toJSON = function toJSON() {
  if (!this.precomputed)
    return [ this.x, this.y ];

  return [ this.x, this.y, this.precomputed && {
    doubles: this.precomputed.doubles && {
      step: this.precomputed.doubles.step,
      points: this.precomputed.doubles.points.slice(1),
    },
    naf: this.precomputed.naf && {
      wnd: this.precomputed.naf.wnd,
      points: this.precomputed.naf.points.slice(1),
    },
  } ];
};

Point.fromJSON = function fromJSON(curve, obj, red) {
  if (typeof obj === 'string')
    obj = JSON.parse(obj);
  var res = curve.point(obj[0], obj[1], red);
  if (!obj[2])
    return res;

  function obj2point(obj) {
    return curve.point(obj[0], obj[1], red);
  }

  var pre = obj[2];
  res.precomputed = {
    beta: null,
    doubles: pre.doubles && {
      step: pre.doubles.step,
      points: [ res ].concat(pre.doubles.points.map(obj2point)),
    },
    naf: pre.naf && {
      wnd: pre.naf.wnd,
      points: [ res ].concat(pre.naf.points.map(obj2point)),
    },
  };
  return res;
};

Point.prototype.inspect = function inspect() {
  if (this.isInfinity())
    return '<EC Point Infinity>';
  return '<EC Point x: ' + this.x.fromRed().toString(16, 2) +
      ' y: ' + this.y.fromRed().toString(16, 2) + '>';
};

Point.prototype.isInfinity = function isInfinity() {
  return this.inf;
};

Point.prototype.add = function add(p) {
  // O + P = P
  if (this.inf)
    return p;

  // P + O = P
  if (p.inf)
    return this;

  // P + P = 2P
  if (this.eq(p))
    return this.dbl();

  // P + (-P) = O
  if (this.neg().eq(p))
    return this.curve.point(null, null);

  // P + Q = O
  if (this.x.cmp(p.x) === 0)
    return this.curve.point(null, null);

  var c = this.y.redSub(p.y);
  if (c.cmpn(0) !== 0)
    c = c.redMul(this.x.redSub(p.x).redInvm());
  var nx = c.redSqr().redISub(this.x).redISub(p.x);
  var ny = c.redMul(this.x.redSub(nx)).redISub(this.y);
  return this.curve.point(nx, ny);
};

Point.prototype.dbl = function dbl() {
  if (this.inf)
    return this;

  // 2P = O
  var ys1 = this.y.redAdd(this.y);
  if (ys1.cmpn(0) === 0)
    return this.curve.point(null, null);

  var a = this.curve.a;

  var x2 = this.x.redSqr();
  var dyinv = ys1.redInvm();
  var c = x2.redAdd(x2).redIAdd(x2).redIAdd(a).redMul(dyinv);

  var nx = c.redSqr().redISub(this.x.redAdd(this.x));
  var ny = c.redMul(this.x.redSub(nx)).redISub(this.y);
  return this.curve.point(nx, ny);
};

Point.prototype.getX = function getX() {
  return this.x.fromRed();
};

Point.prototype.getY = function getY() {
  return this.y.fromRed();
};

Point.prototype.mul = function mul(k) {
  k = new BN(k, 16);
  if (this.isInfinity())
    return this;
  else if (this._hasDoubles(k))
    return this.curve._fixedNafMul(this, k);
  else if (this.curve.endo)
    return this.curve._endoWnafMulAdd([ this ], [ k ]);
  else
    return this.curve._wnafMul(this, k);
};

Point.prototype.mulAdd = function mulAdd(k1, p2, k2) {
  var points = [ this, p2 ];
  var coeffs = [ k1, k2 ];
  if (this.curve.endo)
    return this.curve._endoWnafMulAdd(points, coeffs);
  else
    return this.curve._wnafMulAdd(1, points, coeffs, 2);
};

Point.prototype.jmulAdd = function jmulAdd(k1, p2, k2) {
  var points = [ this, p2 ];
  var coeffs = [ k1, k2 ];
  if (this.curve.endo)
    return this.curve._endoWnafMulAdd(points, coeffs, true);
  else
    return this.curve._wnafMulAdd(1, points, coeffs, 2, true);
};

Point.prototype.eq = function eq(p) {
  return this === p ||
         this.inf === p.inf &&
             (this.inf || this.x.cmp(p.x) === 0 && this.y.cmp(p.y) === 0);
};

Point.prototype.neg = function neg(_precompute) {
  if (this.inf)
    return this;

  var res = this.curve.point(this.x, this.y.redNeg());
  if (_precompute && this.precomputed) {
    var pre = this.precomputed;
    var negate = function(p) {
      return p.neg();
    };
    res.precomputed = {
      naf: pre.naf && {
        wnd: pre.naf.wnd,
        points: pre.naf.points.map(negate),
      },
      doubles: pre.doubles && {
        step: pre.doubles.step,
        points: pre.doubles.points.map(negate),
      },
    };
  }
  return res;
};

Point.prototype.toJ = function toJ() {
  if (this.inf)
    return this.curve.jpoint(null, null, null);

  var res = this.curve.jpoint(this.x, this.y, this.curve.one);
  return res;
};

function JPoint(curve, x, y, z) {
  base.BasePoint.call(this, curve, 'jacobian');
  if (x === null && y === null && z === null) {
    this.x = this.curve.one;
    this.y = this.curve.one;
    this.z = new BN(0);
  } else {
    this.x = new BN(x, 16);
    this.y = new BN(y, 16);
    this.z = new BN(z, 16);
  }
  if (!this.x.red)
    this.x = this.x.toRed(this.curve.red);
  if (!this.y.red)
    this.y = this.y.toRed(this.curve.red);
  if (!this.z.red)
    this.z = this.z.toRed(this.curve.red);

  this.zOne = this.z === this.curve.one;
}
inherits_browser(JPoint, base.BasePoint);

ShortCurve.prototype.jpoint = function jpoint(x, y, z) {
  return new JPoint(this, x, y, z);
};

JPoint.prototype.toP = function toP() {
  if (this.isInfinity())
    return this.curve.point(null, null);

  var zinv = this.z.redInvm();
  var zinv2 = zinv.redSqr();
  var ax = this.x.redMul(zinv2);
  var ay = this.y.redMul(zinv2).redMul(zinv);

  return this.curve.point(ax, ay);
};

JPoint.prototype.neg = function neg() {
  return this.curve.jpoint(this.x, this.y.redNeg(), this.z);
};

JPoint.prototype.add = function add(p) {
  // O + P = P
  if (this.isInfinity())
    return p;

  // P + O = P
  if (p.isInfinity())
    return this;

  // 12M + 4S + 7A
  var pz2 = p.z.redSqr();
  var z2 = this.z.redSqr();
  var u1 = this.x.redMul(pz2);
  var u2 = p.x.redMul(z2);
  var s1 = this.y.redMul(pz2.redMul(p.z));
  var s2 = p.y.redMul(z2.redMul(this.z));

  var h = u1.redSub(u2);
  var r = s1.redSub(s2);
  if (h.cmpn(0) === 0) {
    if (r.cmpn(0) !== 0)
      return this.curve.jpoint(null, null, null);
    else
      return this.dbl();
  }

  var h2 = h.redSqr();
  var h3 = h2.redMul(h);
  var v = u1.redMul(h2);

  var nx = r.redSqr().redIAdd(h3).redISub(v).redISub(v);
  var ny = r.redMul(v.redISub(nx)).redISub(s1.redMul(h3));
  var nz = this.z.redMul(p.z).redMul(h);

  return this.curve.jpoint(nx, ny, nz);
};

JPoint.prototype.mixedAdd = function mixedAdd(p) {
  // O + P = P
  if (this.isInfinity())
    return p.toJ();

  // P + O = P
  if (p.isInfinity())
    return this;

  // 8M + 3S + 7A
  var z2 = this.z.redSqr();
  var u1 = this.x;
  var u2 = p.x.redMul(z2);
  var s1 = this.y;
  var s2 = p.y.redMul(z2).redMul(this.z);

  var h = u1.redSub(u2);
  var r = s1.redSub(s2);
  if (h.cmpn(0) === 0) {
    if (r.cmpn(0) !== 0)
      return this.curve.jpoint(null, null, null);
    else
      return this.dbl();
  }

  var h2 = h.redSqr();
  var h3 = h2.redMul(h);
  var v = u1.redMul(h2);

  var nx = r.redSqr().redIAdd(h3).redISub(v).redISub(v);
  var ny = r.redMul(v.redISub(nx)).redISub(s1.redMul(h3));
  var nz = this.z.redMul(h);

  return this.curve.jpoint(nx, ny, nz);
};

JPoint.prototype.dblp = function dblp(pow) {
  if (pow === 0)
    return this;
  if (this.isInfinity())
    return this;
  if (!pow)
    return this.dbl();

  var i;
  if (this.curve.zeroA || this.curve.threeA) {
    var r = this;
    for (i = 0; i < pow; i++)
      r = r.dbl();
    return r;
  }

  // 1M + 2S + 1A + N * (4S + 5M + 8A)
  // N = 1 => 6M + 6S + 9A
  var a = this.curve.a;
  var tinv = this.curve.tinv;

  var jx = this.x;
  var jy = this.y;
  var jz = this.z;
  var jz4 = jz.redSqr().redSqr();

  // Reuse results
  var jyd = jy.redAdd(jy);
  for (i = 0; i < pow; i++) {
    var jx2 = jx.redSqr();
    var jyd2 = jyd.redSqr();
    var jyd4 = jyd2.redSqr();
    var c = jx2.redAdd(jx2).redIAdd(jx2).redIAdd(a.redMul(jz4));

    var t1 = jx.redMul(jyd2);
    var nx = c.redSqr().redISub(t1.redAdd(t1));
    var t2 = t1.redISub(nx);
    var dny = c.redMul(t2);
    dny = dny.redIAdd(dny).redISub(jyd4);
    var nz = jyd.redMul(jz);
    if (i + 1 < pow)
      jz4 = jz4.redMul(jyd4);

    jx = nx;
    jz = nz;
    jyd = dny;
  }

  return this.curve.jpoint(jx, jyd.redMul(tinv), jz);
};

JPoint.prototype.dbl = function dbl() {
  if (this.isInfinity())
    return this;

  if (this.curve.zeroA)
    return this._zeroDbl();
  else if (this.curve.threeA)
    return this._threeDbl();
  else
    return this._dbl();
};

JPoint.prototype._zeroDbl = function _zeroDbl() {
  var nx;
  var ny;
  var nz;
  // Z = 1
  if (this.zOne) {
    // hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html
    //     #doubling-mdbl-2007-bl
    // 1M + 5S + 14A

    // XX = X1^2
    var xx = this.x.redSqr();
    // YY = Y1^2
    var yy = this.y.redSqr();
    // YYYY = YY^2
    var yyyy = yy.redSqr();
    // S = 2 * ((X1 + YY)^2 - XX - YYYY)
    var s = this.x.redAdd(yy).redSqr().redISub(xx).redISub(yyyy);
    s = s.redIAdd(s);
    // M = 3 * XX + a; a = 0
    var m = xx.redAdd(xx).redIAdd(xx);
    // T = M ^ 2 - 2*S
    var t = m.redSqr().redISub(s).redISub(s);

    // 8 * YYYY
    var yyyy8 = yyyy.redIAdd(yyyy);
    yyyy8 = yyyy8.redIAdd(yyyy8);
    yyyy8 = yyyy8.redIAdd(yyyy8);

    // X3 = T
    nx = t;
    // Y3 = M * (S - T) - 8 * YYYY
    ny = m.redMul(s.redISub(t)).redISub(yyyy8);
    // Z3 = 2*Y1
    nz = this.y.redAdd(this.y);
  } else {
    // hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html
    //     #doubling-dbl-2009-l
    // 2M + 5S + 13A

    // A = X1^2
    var a = this.x.redSqr();
    // B = Y1^2
    var b = this.y.redSqr();
    // C = B^2
    var c = b.redSqr();
    // D = 2 * ((X1 + B)^2 - A - C)
    var d = this.x.redAdd(b).redSqr().redISub(a).redISub(c);
    d = d.redIAdd(d);
    // E = 3 * A
    var e = a.redAdd(a).redIAdd(a);
    // F = E^2
    var f = e.redSqr();

    // 8 * C
    var c8 = c.redIAdd(c);
    c8 = c8.redIAdd(c8);
    c8 = c8.redIAdd(c8);

    // X3 = F - 2 * D
    nx = f.redISub(d).redISub(d);
    // Y3 = E * (D - X3) - 8 * C
    ny = e.redMul(d.redISub(nx)).redISub(c8);
    // Z3 = 2 * Y1 * Z1
    nz = this.y.redMul(this.z);
    nz = nz.redIAdd(nz);
  }

  return this.curve.jpoint(nx, ny, nz);
};

JPoint.prototype._threeDbl = function _threeDbl() {
  var nx;
  var ny;
  var nz;
  // Z = 1
  if (this.zOne) {
    // hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html
    //     #doubling-mdbl-2007-bl
    // 1M + 5S + 15A

    // XX = X1^2
    var xx = this.x.redSqr();
    // YY = Y1^2
    var yy = this.y.redSqr();
    // YYYY = YY^2
    var yyyy = yy.redSqr();
    // S = 2 * ((X1 + YY)^2 - XX - YYYY)
    var s = this.x.redAdd(yy).redSqr().redISub(xx).redISub(yyyy);
    s = s.redIAdd(s);
    // M = 3 * XX + a
    var m = xx.redAdd(xx).redIAdd(xx).redIAdd(this.curve.a);
    // T = M^2 - 2 * S
    var t = m.redSqr().redISub(s).redISub(s);
    // X3 = T
    nx = t;
    // Y3 = M * (S - T) - 8 * YYYY
    var yyyy8 = yyyy.redIAdd(yyyy);
    yyyy8 = yyyy8.redIAdd(yyyy8);
    yyyy8 = yyyy8.redIAdd(yyyy8);
    ny = m.redMul(s.redISub(t)).redISub(yyyy8);
    // Z3 = 2 * Y1
    nz = this.y.redAdd(this.y);
  } else {
    // hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
    // 3M + 5S

    // delta = Z1^2
    var delta = this.z.redSqr();
    // gamma = Y1^2
    var gamma = this.y.redSqr();
    // beta = X1 * gamma
    var beta = this.x.redMul(gamma);
    // alpha = 3 * (X1 - delta) * (X1 + delta)
    var alpha = this.x.redSub(delta).redMul(this.x.redAdd(delta));
    alpha = alpha.redAdd(alpha).redIAdd(alpha);
    // X3 = alpha^2 - 8 * beta
    var beta4 = beta.redIAdd(beta);
    beta4 = beta4.redIAdd(beta4);
    var beta8 = beta4.redAdd(beta4);
    nx = alpha.redSqr().redISub(beta8);
    // Z3 = (Y1 + Z1)^2 - gamma - delta
    nz = this.y.redAdd(this.z).redSqr().redISub(gamma).redISub(delta);
    // Y3 = alpha * (4 * beta - X3) - 8 * gamma^2
    var ggamma8 = gamma.redSqr();
    ggamma8 = ggamma8.redIAdd(ggamma8);
    ggamma8 = ggamma8.redIAdd(ggamma8);
    ggamma8 = ggamma8.redIAdd(ggamma8);
    ny = alpha.redMul(beta4.redISub(nx)).redISub(ggamma8);
  }

  return this.curve.jpoint(nx, ny, nz);
};

JPoint.prototype._dbl = function _dbl() {
  var a = this.curve.a;

  // 4M + 6S + 10A
  var jx = this.x;
  var jy = this.y;
  var jz = this.z;
  var jz4 = jz.redSqr().redSqr();

  var jx2 = jx.redSqr();
  var jy2 = jy.redSqr();

  var c = jx2.redAdd(jx2).redIAdd(jx2).redIAdd(a.redMul(jz4));

  var jxd4 = jx.redAdd(jx);
  jxd4 = jxd4.redIAdd(jxd4);
  var t1 = jxd4.redMul(jy2);
  var nx = c.redSqr().redISub(t1.redAdd(t1));
  var t2 = t1.redISub(nx);

  var jyd8 = jy2.redSqr();
  jyd8 = jyd8.redIAdd(jyd8);
  jyd8 = jyd8.redIAdd(jyd8);
  jyd8 = jyd8.redIAdd(jyd8);
  var ny = c.redMul(t2).redISub(jyd8);
  var nz = jy.redAdd(jy).redMul(jz);

  return this.curve.jpoint(nx, ny, nz);
};

JPoint.prototype.trpl = function trpl() {
  if (!this.curve.zeroA)
    return this.dbl().add(this);

  // hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#tripling-tpl-2007-bl
  // 5M + 10S + ...

  // XX = X1^2
  var xx = this.x.redSqr();
  // YY = Y1^2
  var yy = this.y.redSqr();
  // ZZ = Z1^2
  var zz = this.z.redSqr();
  // YYYY = YY^2
  var yyyy = yy.redSqr();
  // M = 3 * XX + a * ZZ2; a = 0
  var m = xx.redAdd(xx).redIAdd(xx);
  // MM = M^2
  var mm = m.redSqr();
  // E = 6 * ((X1 + YY)^2 - XX - YYYY) - MM
  var e = this.x.redAdd(yy).redSqr().redISub(xx).redISub(yyyy);
  e = e.redIAdd(e);
  e = e.redAdd(e).redIAdd(e);
  e = e.redISub(mm);
  // EE = E^2
  var ee = e.redSqr();
  // T = 16*YYYY
  var t = yyyy.redIAdd(yyyy);
  t = t.redIAdd(t);
  t = t.redIAdd(t);
  t = t.redIAdd(t);
  // U = (M + E)^2 - MM - EE - T
  var u = m.redIAdd(e).redSqr().redISub(mm).redISub(ee).redISub(t);
  // X3 = 4 * (X1 * EE - 4 * YY * U)
  var yyu4 = yy.redMul(u);
  yyu4 = yyu4.redIAdd(yyu4);
  yyu4 = yyu4.redIAdd(yyu4);
  var nx = this.x.redMul(ee).redISub(yyu4);
  nx = nx.redIAdd(nx);
  nx = nx.redIAdd(nx);
  // Y3 = 8 * Y1 * (U * (T - U) - E * EE)
  var ny = this.y.redMul(u.redMul(t.redISub(u)).redISub(e.redMul(ee)));
  ny = ny.redIAdd(ny);
  ny = ny.redIAdd(ny);
  ny = ny.redIAdd(ny);
  // Z3 = (Z1 + E)^2 - ZZ - EE
  var nz = this.z.redAdd(e).redSqr().redISub(zz).redISub(ee);

  return this.curve.jpoint(nx, ny, nz);
};

JPoint.prototype.mul = function mul(k, kbase) {
  k = new BN(k, kbase);

  return this.curve._wnafMul(this, k);
};

JPoint.prototype.eq = function eq(p) {
  if (p.type === 'affine')
    return this.eq(p.toJ());

  if (this === p)
    return true;

  // x1 * z2^2 == x2 * z1^2
  var z2 = this.z.redSqr();
  var pz2 = p.z.redSqr();
  if (this.x.redMul(pz2).redISub(p.x.redMul(z2)).cmpn(0) !== 0)
    return false;

  // y1 * z2^3 == y2 * z1^3
  var z3 = z2.redMul(this.z);
  var pz3 = pz2.redMul(p.z);
  return this.y.redMul(pz3).redISub(p.y.redMul(z3)).cmpn(0) === 0;
};

JPoint.prototype.eqXToP = function eqXToP(x) {
  var zs = this.z.redSqr();
  var rx = x.toRed(this.curve.red).redMul(zs);
  if (this.x.cmp(rx) === 0)
    return true;

  var xc = x.clone();
  var t = this.curve.redN.redMul(zs);
  for (;;) {
    xc.iadd(this.curve.n);
    if (xc.cmp(this.curve.p) >= 0)
      return false;

    rx.redIAdd(t);
    if (this.x.cmp(rx) === 0)
      return true;
  }
};

JPoint.prototype.inspect = function inspect() {
  if (this.isInfinity())
    return '<EC JPoint Infinity>';
  return '<EC JPoint x: ' + this.x.toString(16, 2) +
      ' y: ' + this.y.toString(16, 2) +
      ' z: ' + this.z.toString(16, 2) + '>';
};

JPoint.prototype.isInfinity = function isInfinity() {
  // XXX This code assumes that zero is always zero in red
  return this.z.cmpn(0) === 0;
};

var curve_1 = createCommonjsModule(function (module, exports) {
'use strict';

var curve = exports;

curve.base = base;
curve.short = short_1;
curve.mont = /*RicMoo:ethers:require(./mont)*/(null);
curve.edwards = /*RicMoo:ethers:require(./edwards)*/(null);
});

var curves_1 = createCommonjsModule(function (module, exports) {
'use strict';

var curves = exports;





var assert = utils_1$1.assert;

function PresetCurve(options) {
  if (options.type === 'short')
    this.curve = new curve_1.short(options);
  else if (options.type === 'edwards')
    this.curve = new curve_1.edwards(options);
  else
    this.curve = new curve_1.mont(options);
  this.g = this.curve.g;
  this.n = this.curve.n;
  this.hash = options.hash;

  assert(this.g.validate(), 'Invalid curve');
  assert(this.g.mul(this.n).isInfinity(), 'Invalid curve, G*N != O');
}
curves.PresetCurve = PresetCurve;

function defineCurve(name, options) {
  Object.defineProperty(curves, name, {
    configurable: true,
    enumerable: true,
    get: function() {
      var curve = new PresetCurve(options);
      Object.defineProperty(curves, name, {
        configurable: true,
        enumerable: true,
        value: curve,
      });
      return curve;
    },
  });
}

defineCurve('p192', {
  type: 'short',
  prime: 'p192',
  p: 'ffffffff ffffffff ffffffff fffffffe ffffffff ffffffff',
  a: 'ffffffff ffffffff ffffffff fffffffe ffffffff fffffffc',
  b: '64210519 e59c80e7 0fa7e9ab 72243049 feb8deec c146b9b1',
  n: 'ffffffff ffffffff ffffffff 99def836 146bc9b1 b4d22831',
  hash: hash.sha256,
  gRed: false,
  g: [
    '188da80e b03090f6 7cbf20eb 43a18800 f4ff0afd 82ff1012',
    '07192b95 ffc8da78 631011ed 6b24cdd5 73f977a1 1e794811',
  ],
});

defineCurve('p224', {
  type: 'short',
  prime: 'p224',
  p: 'ffffffff ffffffff ffffffff ffffffff 00000000 00000000 00000001',
  a: 'ffffffff ffffffff ffffffff fffffffe ffffffff ffffffff fffffffe',
  b: 'b4050a85 0c04b3ab f5413256 5044b0b7 d7bfd8ba 270b3943 2355ffb4',
  n: 'ffffffff ffffffff ffffffff ffff16a2 e0b8f03e 13dd2945 5c5c2a3d',
  hash: hash.sha256,
  gRed: false,
  g: [
    'b70e0cbd 6bb4bf7f 321390b9 4a03c1d3 56c21122 343280d6 115c1d21',
    'bd376388 b5f723fb 4c22dfe6 cd4375a0 5a074764 44d58199 85007e34',
  ],
});

defineCurve('p256', {
  type: 'short',
  prime: null,
  p: 'ffffffff 00000001 00000000 00000000 00000000 ffffffff ffffffff ffffffff',
  a: 'ffffffff 00000001 00000000 00000000 00000000 ffffffff ffffffff fffffffc',
  b: '5ac635d8 aa3a93e7 b3ebbd55 769886bc 651d06b0 cc53b0f6 3bce3c3e 27d2604b',
  n: 'ffffffff 00000000 ffffffff ffffffff bce6faad a7179e84 f3b9cac2 fc632551',
  hash: hash.sha256,
  gRed: false,
  g: [
    '6b17d1f2 e12c4247 f8bce6e5 63a440f2 77037d81 2deb33a0 f4a13945 d898c296',
    '4fe342e2 fe1a7f9b 8ee7eb4a 7c0f9e16 2bce3357 6b315ece cbb64068 37bf51f5',
  ],
});

defineCurve('p384', {
  type: 'short',
  prime: null,
  p: 'ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ' +
     'fffffffe ffffffff 00000000 00000000 ffffffff',
  a: 'ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ' +
     'fffffffe ffffffff 00000000 00000000 fffffffc',
  b: 'b3312fa7 e23ee7e4 988e056b e3f82d19 181d9c6e fe814112 0314088f ' +
     '5013875a c656398d 8a2ed19d 2a85c8ed d3ec2aef',
  n: 'ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff c7634d81 ' +
     'f4372ddf 581a0db2 48b0a77a ecec196a ccc52973',
  hash: hash.sha384,
  gRed: false,
  g: [
    'aa87ca22 be8b0537 8eb1c71e f320ad74 6e1d3b62 8ba79b98 59f741e0 82542a38 ' +
    '5502f25d bf55296c 3a545e38 72760ab7',
    '3617de4a 96262c6f 5d9e98bf 9292dc29 f8f41dbd 289a147c e9da3113 b5f0b8c0 ' +
    '0a60b1ce 1d7e819d 7a431d7c 90ea0e5f',
  ],
});

defineCurve('p521', {
  type: 'short',
  prime: null,
  p: '000001ff ffffffff ffffffff ffffffff ffffffff ffffffff ' +
     'ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ' +
     'ffffffff ffffffff ffffffff ffffffff ffffffff',
  a: '000001ff ffffffff ffffffff ffffffff ffffffff ffffffff ' +
     'ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ' +
     'ffffffff ffffffff ffffffff ffffffff fffffffc',
  b: '00000051 953eb961 8e1c9a1f 929a21a0 b68540ee a2da725b ' +
     '99b315f3 b8b48991 8ef109e1 56193951 ec7e937b 1652c0bd ' +
     '3bb1bf07 3573df88 3d2c34f1 ef451fd4 6b503f00',
  n: '000001ff ffffffff ffffffff ffffffff ffffffff ffffffff ' +
     'ffffffff ffffffff fffffffa 51868783 bf2f966b 7fcc0148 ' +
     'f709a5d0 3bb5c9b8 899c47ae bb6fb71e 91386409',
  hash: hash.sha512,
  gRed: false,
  g: [
    '000000c6 858e06b7 0404e9cd 9e3ecb66 2395b442 9c648139 ' +
    '053fb521 f828af60 6b4d3dba a14b5e77 efe75928 fe1dc127 ' +
    'a2ffa8de 3348b3c1 856a429b f97e7e31 c2e5bd66',
    '00000118 39296a78 9a3bc004 5c8a5fb4 2c7d1bd9 98f54449 ' +
    '579b4468 17afbd17 273e662c 97ee7299 5ef42640 c550b901 ' +
    '3fad0761 353c7086 a272c240 88be9476 9fd16650',
  ],
});

defineCurve('curve25519', {
  type: 'mont',
  prime: 'p25519',
  p: '7fffffffffffffff ffffffffffffffff ffffffffffffffff ffffffffffffffed',
  a: '76d06',
  b: '1',
  n: '1000000000000000 0000000000000000 14def9dea2f79cd6 5812631a5cf5d3ed',
  hash: hash.sha256,
  gRed: false,
  g: [
    '9',
  ],
});

defineCurve('ed25519', {
  type: 'edwards',
  prime: 'p25519',
  p: '7fffffffffffffff ffffffffffffffff ffffffffffffffff ffffffffffffffed',
  a: '-1',
  c: '1',
  // -121665 * (121666^(-1)) (mod P)
  d: '52036cee2b6ffe73 8cc740797779e898 00700a4d4141d8ab 75eb4dca135978a3',
  n: '1000000000000000 0000000000000000 14def9dea2f79cd6 5812631a5cf5d3ed',
  hash: hash.sha256,
  gRed: false,
  g: [
    '216936d3cd6e53fec0a4e231fdd6dc5c692cc7609525a7b2c9562d608f25d51a',

    // 4/5
    '6666666666666666666666666666666666666666666666666666666666666658',
  ],
});

var pre;
try {
  pre = /*RicMoo:ethers:require(./precomputed/secp256k1)*/(null).crash();
} catch (e) {
  pre = undefined;
}

defineCurve('secp256k1', {
  type: 'short',
  prime: 'k256',
  p: 'ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fffffffe fffffc2f',
  a: '0',
  b: '7',
  n: 'ffffffff ffffffff ffffffff fffffffe baaedce6 af48a03b bfd25e8c d0364141',
  h: '1',
  hash: hash.sha256,

  // Precomputed endomorphism
  beta: '7ae96a2b657c07106e64479eac3434e99cf0497512f58995c1396c28719501ee',
  lambda: '5363ad4cc05c30e0a5261c028812645a122e22ea20816678df02967c1b23bd72',
  basis: [
    {
      a: '3086d221a7d46bcde86c90e49284eb15',
      b: '-e4437ed6010e88286f547fa90abfe4c3',
    },
    {
      a: '114ca50f7a8e2f3f657c1108d9d44cfd8',
      b: '3086d221a7d46bcde86c90e49284eb15',
    },
  ],

  gRed: false,
  g: [
    '79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798',
    '483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8',
    pre,
  ],
});
});

'use strict';





function HmacDRBG(options) {
  if (!(this instanceof HmacDRBG))
    return new HmacDRBG(options);
  this.hash = options.hash;
  this.predResist = !!options.predResist;

  this.outLen = this.hash.outSize;
  this.minEntropy = options.minEntropy || this.hash.hmacStrength;

  this._reseed = null;
  this.reseedInterval = null;
  this.K = null;
  this.V = null;

  var entropy = utils_1.toArray(options.entropy, options.entropyEnc || 'hex');
  var nonce = utils_1.toArray(options.nonce, options.nonceEnc || 'hex');
  var pers = utils_1.toArray(options.pers, options.persEnc || 'hex');
  minimalisticAssert(entropy.length >= (this.minEntropy / 8),
         'Not enough entropy. Minimum is: ' + this.minEntropy + ' bits');
  this._init(entropy, nonce, pers);
}
var hmacDrbg = HmacDRBG;

HmacDRBG.prototype._init = function init(entropy, nonce, pers) {
  var seed = entropy.concat(nonce).concat(pers);

  this.K = new Array(this.outLen / 8);
  this.V = new Array(this.outLen / 8);
  for (var i = 0; i < this.V.length; i++) {
    this.K[i] = 0x00;
    this.V[i] = 0x01;
  }

  this._update(seed);
  this._reseed = 1;
  this.reseedInterval = 0x1000000000000;  // 2^48
};

HmacDRBG.prototype._hmac = function hmac() {
  return new hash.hmac(this.hash, this.K);
};

HmacDRBG.prototype._update = function update(seed) {
  var kmac = this._hmac()
                 .update(this.V)
                 .update([ 0x00 ]);
  if (seed)
    kmac = kmac.update(seed);
  this.K = kmac.digest();
  this.V = this._hmac().update(this.V).digest();
  if (!seed)
    return;

  this.K = this._hmac()
               .update(this.V)
               .update([ 0x01 ])
               .update(seed)
               .digest();
  this.V = this._hmac().update(this.V).digest();
};

HmacDRBG.prototype.reseed = function reseed(entropy, entropyEnc, add, addEnc) {
  // Optional entropy enc
  if (typeof entropyEnc !== 'string') {
    addEnc = add;
    add = entropyEnc;
    entropyEnc = null;
  }

  entropy = utils_1.toArray(entropy, entropyEnc);
  add = utils_1.toArray(add, addEnc);

  minimalisticAssert(entropy.length >= (this.minEntropy / 8),
         'Not enough entropy. Minimum is: ' + this.minEntropy + ' bits');

  this._update(entropy.concat(add || []));
  this._reseed = 1;
};

HmacDRBG.prototype.generate = function generate(len, enc, add, addEnc) {
  if (this._reseed > this.reseedInterval)
    throw new Error('Reseed is required');

  // Optional encoding
  if (typeof enc !== 'string') {
    addEnc = add;
    add = enc;
    enc = null;
  }

  // Optional additional data
  if (add) {
    add = utils_1.toArray(add, addEnc || 'hex');
    this._update(add);
  }

  var temp = [];
  while (temp.length < len) {
    this.V = this._hmac().update(this.V).digest();
    temp = temp.concat(this.V);
  }

  var res = temp.slice(0, len);
  this._update(add);
  this._reseed++;
  return utils_1.encode(res, enc);
};

'use strict';



var assert$3 = utils_1$1.assert;

function KeyPair(ec, options) {
  this.ec = ec;
  this.priv = null;
  this.pub = null;

  // KeyPair(ec, { priv: ..., pub: ... })
  if (options.priv)
    this._importPrivate(options.priv, options.privEnc);
  if (options.pub)
    this._importPublic(options.pub, options.pubEnc);
}
var key = KeyPair;

KeyPair.fromPublic = function fromPublic(ec, pub, enc) {
  if (pub instanceof KeyPair)
    return pub;

  return new KeyPair(ec, {
    pub: pub,
    pubEnc: enc,
  });
};

KeyPair.fromPrivate = function fromPrivate(ec, priv, enc) {
  if (priv instanceof KeyPair)
    return priv;

  return new KeyPair(ec, {
    priv: priv,
    privEnc: enc,
  });
};

KeyPair.prototype.validate = function validate() {
  var pub = this.getPublic();

  if (pub.isInfinity())
    return { result: false, reason: 'Invalid public key' };
  if (!pub.validate())
    return { result: false, reason: 'Public key is not a point' };
  if (!pub.mul(this.ec.curve.n).isInfinity())
    return { result: false, reason: 'Public key * N != O' };

  return { result: true, reason: null };
};

KeyPair.prototype.getPublic = function getPublic(compact, enc) {
  // compact is optional argument
  if (typeof compact === 'string') {
    enc = compact;
    compact = null;
  }

  if (!this.pub)
    this.pub = this.ec.g.mul(this.priv);

  if (!enc)
    return this.pub;

  return this.pub.encode(enc, compact);
};

KeyPair.prototype.getPrivate = function getPrivate(enc) {
  if (enc === 'hex')
    return this.priv.toString(16, 2);
  else
    return this.priv;
};

KeyPair.prototype._importPrivate = function _importPrivate(key, enc) {
  this.priv = new BN(key, enc || 16);

  // Ensure that the priv won't be bigger than n, otherwise we may fail
  // in fixed multiplication method
  this.priv = this.priv.umod(this.ec.curve.n);
};

KeyPair.prototype._importPublic = function _importPublic(key, enc) {
  if (key.x || key.y) {
    // Montgomery points only have an `x` coordinate.
    // Weierstrass/Edwards points on the other hand have both `x` and
    // `y` coordinates.
    if (this.ec.curve.type === 'mont') {
      assert$3(key.x, 'Need x coordinate');
    } else if (this.ec.curve.type === 'short' ||
               this.ec.curve.type === 'edwards') {
      assert$3(key.x && key.y, 'Need both x and y coordinate');
    }
    this.pub = this.ec.curve.point(key.x, key.y);
    return;
  }
  this.pub = this.ec.curve.decodePoint(key, enc);
};

// ECDH
KeyPair.prototype.derive = function derive(pub) {
  if(!pub.validate()) {
    assert$3(pub.validate(), 'public point not validated');
  }
  return pub.mul(this.priv).getX();
};

// ECDSA
KeyPair.prototype.sign = function sign(msg, enc, options) {
  return this.ec.sign(msg, this, enc, options);
};

KeyPair.prototype.verify = function verify(msg, signature) {
  return this.ec.verify(msg, signature, this);
};

KeyPair.prototype.inspect = function inspect() {
  return '<Key priv: ' + (this.priv && this.priv.toString(16, 2)) +
         ' pub: ' + (this.pub && this.pub.inspect()) + ' >';
};

'use strict';




var assert$4 = utils_1$1.assert;

function Signature(options, enc) {
  if (options instanceof Signature)
    return options;

  if (this._importDER(options, enc))
    return;

  assert$4(options.r && options.s, 'Signature without r or s');
  this.r = new BN(options.r, 16);
  this.s = new BN(options.s, 16);
  if (options.recoveryParam === undefined)
    this.recoveryParam = null;
  else
    this.recoveryParam = options.recoveryParam;
}
var signature = Signature;

function Position() {
  this.place = 0;
}

function getLength(buf, p) {
  var initial = buf[p.place++];
  if (!(initial & 0x80)) {
    return initial;
  }
  var octetLen = initial & 0xf;

  // Indefinite length or overflow
  if (octetLen === 0 || octetLen > 4) {
    return false;
  }

  var val = 0;
  for (var i = 0, off = p.place; i < octetLen; i++, off++) {
    val <<= 8;
    val |= buf[off];
    val >>>= 0;
  }

  // Leading zeroes
  if (val <= 0x7f) {
    return false;
  }

  p.place = off;
  return val;
}

function rmPadding(buf) {
  var i = 0;
  var len = buf.length - 1;
  while (!buf[i] && !(buf[i + 1] & 0x80) && i < len) {
    i++;
  }
  if (i === 0) {
    return buf;
  }
  return buf.slice(i);
}

Signature.prototype._importDER = function _importDER(data, enc) {
  data = utils_1$1.toArray(data, enc);
  var p = new Position();
  if (data[p.place++] !== 0x30) {
    return false;
  }
  var len = getLength(data, p);
  if (len === false) {
    return false;
  }
  if ((len + p.place) !== data.length) {
    return false;
  }
  if (data[p.place++] !== 0x02) {
    return false;
  }
  var rlen = getLength(data, p);
  if (rlen === false) {
    return false;
  }
  var r = data.slice(p.place, rlen + p.place);
  p.place += rlen;
  if (data[p.place++] !== 0x02) {
    return false;
  }
  var slen = getLength(data, p);
  if (slen === false) {
    return false;
  }
  if (data.length !== slen + p.place) {
    return false;
  }
  var s = data.slice(p.place, slen + p.place);
  if (r[0] === 0) {
    if (r[1] & 0x80) {
      r = r.slice(1);
    } else {
      // Leading zeroes
      return false;
    }
  }
  if (s[0] === 0) {
    if (s[1] & 0x80) {
      s = s.slice(1);
    } else {
      // Leading zeroes
      return false;
    }
  }

  this.r = new BN(r);
  this.s = new BN(s);
  this.recoveryParam = null;

  return true;
};

function constructLength(arr, len) {
  if (len < 0x80) {
    arr.push(len);
    return;
  }
  var octets = 1 + (Math.log(len) / Math.LN2 >>> 3);
  arr.push(octets | 0x80);
  while (--octets) {
    arr.push((len >>> (octets << 3)) & 0xff);
  }
  arr.push(len);
}

Signature.prototype.toDER = function toDER(enc) {
  var r = this.r.toArray();
  var s = this.s.toArray();

  // Pad values
  if (r[0] & 0x80)
    r = [ 0 ].concat(r);
  // Pad values
  if (s[0] & 0x80)
    s = [ 0 ].concat(s);

  r = rmPadding(r);
  s = rmPadding(s);

  while (!s[0] && !(s[1] & 0x80)) {
    s = s.slice(1);
  }
  var arr = [ 0x02 ];
  constructLength(arr, r.length);
  arr = arr.concat(r);
  arr.push(0x02);
  constructLength(arr, s.length);
  var backHalf = arr.concat(s);
  var res = [ 0x30 ];
  constructLength(res, backHalf.length);
  res = res.concat(backHalf);
  return utils_1$1.encode(res, enc);
};

'use strict';





var rand = /*RicMoo:ethers:require(brorand)*/(function() { throw new Error('unsupported'); });
var assert$5 = utils_1$1.assert;




function EC(options) {
  if (!(this instanceof EC))
    return new EC(options);

  // Shortcut `elliptic.ec(curve-name)`
  if (typeof options === 'string') {
    assert$5(Object.prototype.hasOwnProperty.call(curves_1, options),
      'Unknown curve ' + options);

    options = curves_1[options];
  }

  // Shortcut for `elliptic.ec(elliptic.curves.curveName)`
  if (options instanceof curves_1.PresetCurve)
    options = { curve: options };

  this.curve = options.curve.curve;
  this.n = this.curve.n;
  this.nh = this.n.ushrn(1);
  this.g = this.curve.g;

  // Point on curve
  this.g = options.curve.g;
  this.g.precompute(options.curve.n.bitLength() + 1);

  // Hash for function for DRBG
  this.hash = options.hash || options.curve.hash;
}
var ec = EC;

EC.prototype.keyPair = function keyPair(options) {
  return new key(this, options);
};

EC.prototype.keyFromPrivate = function keyFromPrivate(priv, enc) {
  return key.fromPrivate(this, priv, enc);
};

EC.prototype.keyFromPublic = function keyFromPublic(pub, enc) {
  return key.fromPublic(this, pub, enc);
};

EC.prototype.genKeyPair = function genKeyPair(options) {
  if (!options)
    options = {};

  // Instantiate Hmac_DRBG
  var drbg = new hmacDrbg({
    hash: this.hash,
    pers: options.pers,
    persEnc: options.persEnc || 'utf8',
    entropy: options.entropy || rand(this.hash.hmacStrength),
    entropyEnc: options.entropy && options.entropyEnc || 'utf8',
    nonce: this.n.toArray(),
  });

  var bytes = this.n.byteLength();
  var ns2 = this.n.sub(new BN(2));
  for (;;) {
    var priv = new BN(drbg.generate(bytes));
    if (priv.cmp(ns2) > 0)
      continue;

    priv.iaddn(1);
    return this.keyFromPrivate(priv);
  }
};

EC.prototype._truncateToN = function _truncateToN(msg, truncOnly) {
  var delta = msg.byteLength() * 8 - this.n.bitLength();
  if (delta > 0)
    msg = msg.ushrn(delta);
  if (!truncOnly && msg.cmp(this.n) >= 0)
    return msg.sub(this.n);
  else
    return msg;
};

EC.prototype.sign = function sign(msg, key, enc, options) {
  if (typeof enc === 'object') {
    options = enc;
    enc = null;
  }
  if (!options)
    options = {};

  key = this.keyFromPrivate(key, enc);
  msg = this._truncateToN(new BN(msg, 16));

  // Zero-extend key to provide enough entropy
  var bytes = this.n.byteLength();
  var bkey = key.getPrivate().toArray('be', bytes);

  // Zero-extend nonce to have the same byte size as N
  var nonce = msg.toArray('be', bytes);

  // Instantiate Hmac_DRBG
  var drbg = new hmacDrbg({
    hash: this.hash,
    entropy: bkey,
    nonce: nonce,
    pers: options.pers,
    persEnc: options.persEnc || 'utf8',
  });

  // Number of bytes to generate
  var ns1 = this.n.sub(new BN(1));

  for (var iter = 0; ; iter++) {
    var k = options.k ?
      options.k(iter) :
      new BN(drbg.generate(this.n.byteLength()));
    k = this._truncateToN(k, true);
    if (k.cmpn(1) <= 0 || k.cmp(ns1) >= 0)
      continue;

    var kp = this.g.mul(k);
    if (kp.isInfinity())
      continue;

    var kpX = kp.getX();
    var r = kpX.umod(this.n);
    if (r.cmpn(0) === 0)
      continue;

    var s = k.invm(this.n).mul(r.mul(key.getPrivate()).iadd(msg));
    s = s.umod(this.n);
    if (s.cmpn(0) === 0)
      continue;

    var recoveryParam = (kp.getY().isOdd() ? 1 : 0) |
                        (kpX.cmp(r) !== 0 ? 2 : 0);

    // Use complement of `s`, if it is > `n / 2`
    if (options.canonical && s.cmp(this.nh) > 0) {
      s = this.n.sub(s);
      recoveryParam ^= 1;
    }

    return new signature({ r: r, s: s, recoveryParam: recoveryParam });
  }
};

EC.prototype.verify = function verify(msg, signature$1, key, enc) {
  msg = this._truncateToN(new BN(msg, 16));
  key = this.keyFromPublic(key, enc);
  signature$1 = new signature(signature$1, 'hex');

  // Perform primitive values validation
  var r = signature$1.r;
  var s = signature$1.s;
  if (r.cmpn(1) < 0 || r.cmp(this.n) >= 0)
    return false;
  if (s.cmpn(1) < 0 || s.cmp(this.n) >= 0)
    return false;

  // Validate signature
  var sinv = s.invm(this.n);
  var u1 = sinv.mul(msg).umod(this.n);
  var u2 = sinv.mul(r).umod(this.n);
  var p;

  if (!this.curve._maxwellTrick) {
    p = this.g.mulAdd(u1, key.getPublic(), u2);
    if (p.isInfinity())
      return false;

    return p.getX().umod(this.n).cmp(r) === 0;
  }

  // NOTE: Greg Maxwell's trick, inspired by:
  // https://git.io/vad3K

  p = this.g.jmulAdd(u1, key.getPublic(), u2);
  if (p.isInfinity())
    return false;

  // Compare `p.x` of Jacobian point with `r`,
  // this will do `p.x == r * p.z^2` instead of multiplying `p.x` by the
  // inverse of `p.z^2`
  return p.eqXToP(r);
};

EC.prototype.recoverPubKey = function(msg, signature$1, j, enc) {
  assert$5((3 & j) === j, 'The recovery param is more than two bits');
  signature$1 = new signature(signature$1, enc);

  var n = this.n;
  var e = new BN(msg);
  var r = signature$1.r;
  var s = signature$1.s;

  // A set LSB signifies that the y-coordinate is odd
  var isYOdd = j & 1;
  var isSecondKey = j >> 1;
  if (r.cmp(this.curve.p.umod(this.curve.n)) >= 0 && isSecondKey)
    throw new Error('Unable to find sencond key candinate');

  // 1.1. Let x = r + jn.
  if (isSecondKey)
    r = this.curve.pointFromX(r.add(this.curve.n), isYOdd);
  else
    r = this.curve.pointFromX(r, isYOdd);

  var rInv = signature$1.r.invm(n);
  var s1 = n.sub(e).mul(rInv).umod(n);
  var s2 = s.mul(rInv).umod(n);

  // 1.6.1 Compute Q = r^-1 (sR -  eG)
  //               Q = r^-1 (sR + -eG)
  return this.g.mulAdd(s1, r, s2);
};

EC.prototype.getKeyRecoveryParam = function(e, signature$1, Q, enc) {
  signature$1 = new signature(signature$1, enc);
  if (signature$1.recoveryParam !== null)
    return signature$1.recoveryParam;

  for (var i = 0; i < 4; i++) {
    var Qprime;
    try {
      Qprime = this.recoverPubKey(e, signature$1, i);
    } catch (e) {
      continue;
    }

    if (Qprime.eq(Q))
      return i;
  }
  throw new Error('Unable to find valid recovery factor');
};

var elliptic_1 = createCommonjsModule(function (module, exports) {
'use strict';

var elliptic = exports;

elliptic.version = /*RicMoo:ethers*/{ version: "6.5.4" }.version;
elliptic.utils = utils_1$1;
elliptic.rand = /*RicMoo:ethers:require(brorand)*/(function() { throw new Error('unsupported'); });
elliptic.curve = curve_1;
elliptic.curves = curves_1;

// Protocols
elliptic.ec = ec;
elliptic.eddsa = /*RicMoo:ethers:require(./elliptic/eddsa)*/(null);
});

var EC$1 = elliptic_1.ec;

export { EC$1 as EC };
//# sourceMappingURL=elliptic.js.map

Выполнить команду


Для локальной разработки. Не используйте в интернете!