PHP WebShell

Текущая директория: /usr/lib/node_modules/bitgo/node_modules/ethereum-cryptography/node_modules/@noble/hashes

Просмотр файла: scrypt.js

"use strict";
Object.defineProperty(exports, "__esModule", { value: true });
exports.scryptAsync = exports.scrypt = void 0;
const _assert_js_1 = require("./_assert.js");
const sha256_js_1 = require("./sha256.js");
const pbkdf2_js_1 = require("./pbkdf2.js");
const utils_js_1 = require("./utils.js");
// RFC 7914 Scrypt KDF
// Left rotate for uint32
const rotl = (a, b) => (a << b) | (a >>> (32 - b));
// The main Scrypt loop: uses Salsa extensively.
// Six versions of the function were tried, this is the fastest one.
// prettier-ignore
function XorAndSalsa(prev, pi, input, ii, out, oi) {
    // Based on https://cr.yp.to/salsa20.html
    // Xor blocks
    let y00 = prev[pi++] ^ input[ii++], y01 = prev[pi++] ^ input[ii++];
    let y02 = prev[pi++] ^ input[ii++], y03 = prev[pi++] ^ input[ii++];
    let y04 = prev[pi++] ^ input[ii++], y05 = prev[pi++] ^ input[ii++];
    let y06 = prev[pi++] ^ input[ii++], y07 = prev[pi++] ^ input[ii++];
    let y08 = prev[pi++] ^ input[ii++], y09 = prev[pi++] ^ input[ii++];
    let y10 = prev[pi++] ^ input[ii++], y11 = prev[pi++] ^ input[ii++];
    let y12 = prev[pi++] ^ input[ii++], y13 = prev[pi++] ^ input[ii++];
    let y14 = prev[pi++] ^ input[ii++], y15 = prev[pi++] ^ input[ii++];
    // Save state to temporary variables (salsa)
    let x00 = y00, x01 = y01, x02 = y02, x03 = y03, x04 = y04, x05 = y05, x06 = y06, x07 = y07, x08 = y08, x09 = y09, x10 = y10, x11 = y11, x12 = y12, x13 = y13, x14 = y14, x15 = y15;
    // Main loop (salsa)
    for (let i = 0; i < 8; i += 2) {
        x04 ^= rotl(x00 + x12 | 0, 7);
        x08 ^= rotl(x04 + x00 | 0, 9);
        x12 ^= rotl(x08 + x04 | 0, 13);
        x00 ^= rotl(x12 + x08 | 0, 18);
        x09 ^= rotl(x05 + x01 | 0, 7);
        x13 ^= rotl(x09 + x05 | 0, 9);
        x01 ^= rotl(x13 + x09 | 0, 13);
        x05 ^= rotl(x01 + x13 | 0, 18);
        x14 ^= rotl(x10 + x06 | 0, 7);
        x02 ^= rotl(x14 + x10 | 0, 9);
        x06 ^= rotl(x02 + x14 | 0, 13);
        x10 ^= rotl(x06 + x02 | 0, 18);
        x03 ^= rotl(x15 + x11 | 0, 7);
        x07 ^= rotl(x03 + x15 | 0, 9);
        x11 ^= rotl(x07 + x03 | 0, 13);
        x15 ^= rotl(x11 + x07 | 0, 18);
        x01 ^= rotl(x00 + x03 | 0, 7);
        x02 ^= rotl(x01 + x00 | 0, 9);
        x03 ^= rotl(x02 + x01 | 0, 13);
        x00 ^= rotl(x03 + x02 | 0, 18);
        x06 ^= rotl(x05 + x04 | 0, 7);
        x07 ^= rotl(x06 + x05 | 0, 9);
        x04 ^= rotl(x07 + x06 | 0, 13);
        x05 ^= rotl(x04 + x07 | 0, 18);
        x11 ^= rotl(x10 + x09 | 0, 7);
        x08 ^= rotl(x11 + x10 | 0, 9);
        x09 ^= rotl(x08 + x11 | 0, 13);
        x10 ^= rotl(x09 + x08 | 0, 18);
        x12 ^= rotl(x15 + x14 | 0, 7);
        x13 ^= rotl(x12 + x15 | 0, 9);
        x14 ^= rotl(x13 + x12 | 0, 13);
        x15 ^= rotl(x14 + x13 | 0, 18);
    }
    // Write output (salsa)
    out[oi++] = (y00 + x00) | 0;
    out[oi++] = (y01 + x01) | 0;
    out[oi++] = (y02 + x02) | 0;
    out[oi++] = (y03 + x03) | 0;
    out[oi++] = (y04 + x04) | 0;
    out[oi++] = (y05 + x05) | 0;
    out[oi++] = (y06 + x06) | 0;
    out[oi++] = (y07 + x07) | 0;
    out[oi++] = (y08 + x08) | 0;
    out[oi++] = (y09 + x09) | 0;
    out[oi++] = (y10 + x10) | 0;
    out[oi++] = (y11 + x11) | 0;
    out[oi++] = (y12 + x12) | 0;
    out[oi++] = (y13 + x13) | 0;
    out[oi++] = (y14 + x14) | 0;
    out[oi++] = (y15 + x15) | 0;
}
function BlockMix(input, ii, out, oi, r) {
    // The block B is r 128-byte chunks (which is equivalent of 2r 64-byte chunks)
    let head = oi + 0;
    let tail = oi + 16 * r;
    for (let i = 0; i < 16; i++)
        out[tail + i] = input[ii + (2 * r - 1) * 16 + i]; // X ← B[2r−1]
    for (let i = 0; i < r; i++, head += 16, ii += 16) {
        // We write odd & even Yi at same time. Even: 0bXXXXX0 Odd:  0bXXXXX1
        XorAndSalsa(out, tail, input, ii, out, head); // head[i] = Salsa(blockIn[2*i] ^ tail[i-1])
        if (i > 0)
            tail += 16; // First iteration overwrites tmp value in tail
        XorAndSalsa(out, head, input, (ii += 16), out, tail); // tail[i] = Salsa(blockIn[2*i+1] ^ head[i])
    }
}
// Common prologue and epilogue for sync/async functions
function scryptInit(password, salt, _opts) {
    // Maxmem - 1GB+1KB by default
    const opts = (0, utils_js_1.checkOpts)({
        dkLen: 32,
        asyncTick: 10,
        maxmem: 1024 ** 3 + 1024,
    }, _opts);
    const { N, r, p, dkLen, asyncTick, maxmem, onProgress } = opts;
    _assert_js_1.default.number(N);
    _assert_js_1.default.number(r);
    _assert_js_1.default.number(p);
    _assert_js_1.default.number(dkLen);
    _assert_js_1.default.number(asyncTick);
    _assert_js_1.default.number(maxmem);
    if (onProgress !== undefined && typeof onProgress !== 'function')
        throw new Error('progressCb should be function');
    const blockSize = 128 * r;
    const blockSize32 = blockSize / 4;
    if (N <= 1 || (N & (N - 1)) !== 0 || N >= 2 ** (blockSize / 8) || N > 2 ** 32) {
        // NOTE: we limit N to be less than 2**32 because of 32 bit variant of Integrify function
        // There is no JS engines that allows alocate more than 4GB per single Uint8Array for now, but can change in future.
        throw new Error('Scrypt: N must be larger than 1, a power of 2, less than 2^(128 * r / 8) and less than 2^32');
    }
    if (p < 0 || p > ((2 ** 32 - 1) * 32) / blockSize) {
        throw new Error('Scrypt: p must be a positive integer less than or equal to ((2^32 - 1) * 32) / (128 * r)');
    }
    if (dkLen < 0 || dkLen > (2 ** 32 - 1) * 32) {
        throw new Error('Scrypt: dkLen should be positive integer less than or equal to (2^32 - 1) * 32');
    }
    const memUsed = blockSize * (N + p);
    if (memUsed > maxmem) {
        throw new Error(`Scrypt: parameters too large, ${memUsed} (128 * r * (N + p)) > ${maxmem} (maxmem)`);
    }
    // [B0...Bp−1] ← PBKDF2HMAC-SHA256(Passphrase, Salt, 1, blockSize*ParallelizationFactor)
    // Since it has only one iteration there is no reason to use async variant
    const B = (0, pbkdf2_js_1.pbkdf2)(sha256_js_1.sha256, password, salt, { c: 1, dkLen: blockSize * p });
    const B32 = (0, utils_js_1.u32)(B);
    // Re-used between parallel iterations. Array(iterations) of B
    const V = (0, utils_js_1.u32)(new Uint8Array(blockSize * N));
    const tmp = (0, utils_js_1.u32)(new Uint8Array(blockSize));
    let blockMixCb = () => { };
    if (onProgress) {
        const totalBlockMix = 2 * N * p;
        // Invoke callback if progress changes from 10.01 to 10.02
        // Allows to draw smooth progress bar on up to 8K screen
        const callbackPer = Math.max(Math.floor(totalBlockMix / 10000), 1);
        let blockMixCnt = 0;
        blockMixCb = () => {
            blockMixCnt++;
            if (onProgress && (!(blockMixCnt % callbackPer) || blockMixCnt === totalBlockMix))
                onProgress(blockMixCnt / totalBlockMix);
        };
    }
    return { N, r, p, dkLen, blockSize32, V, B32, B, tmp, blockMixCb, asyncTick };
}
function scryptOutput(password, dkLen, B, V, tmp) {
    const res = (0, pbkdf2_js_1.pbkdf2)(sha256_js_1.sha256, password, B, { c: 1, dkLen });
    B.fill(0);
    V.fill(0);
    tmp.fill(0);
    return res;
}
/**
 * Scrypt KDF from RFC 7914.
 * @param password - pass
 * @param salt - salt
 * @param opts - parameters
 * - `N` is cpu/mem work factor (power of 2 e.g. 2**18)
 * - `r` is block size (8 is common), fine-tunes sequential memory read size and performance
 * - `p` is parallelization factor (1 is common)
 * - `dkLen` is output key length in bytes e.g. 32.
 * - `asyncTick` - (default: 10) max time in ms for which async function can block execution
 * - `maxmem` - (default: `1024 ** 3 + 1024` aka 1GB+1KB). A limit that the app could use for scrypt
 * - `onProgress` - callback function that would be executed for progress report
 * @returns Derived key
 */
function scrypt(password, salt, opts) {
    const { N, r, p, dkLen, blockSize32, V, B32, B, tmp, blockMixCb } = scryptInit(password, salt, opts);
    for (let pi = 0; pi < p; pi++) {
        const Pi = blockSize32 * pi;
        for (let i = 0; i < blockSize32; i++)
            V[i] = B32[Pi + i]; // V[0] = B[i]
        for (let i = 0, pos = 0; i < N - 1; i++) {
            BlockMix(V, pos, V, (pos += blockSize32), r); // V[i] = BlockMix(V[i-1]);
            blockMixCb();
        }
        BlockMix(V, (N - 1) * blockSize32, B32, Pi, r); // Process last element
        blockMixCb();
        for (let i = 0; i < N; i++) {
            // First u32 of the last 64-byte block (u32 is LE)
            const j = B32[Pi + blockSize32 - 16] % N; // j = Integrify(X) % iterations
            for (let k = 0; k < blockSize32; k++)
                tmp[k] = B32[Pi + k] ^ V[j * blockSize32 + k]; // tmp = B ^ V[j]
            BlockMix(tmp, 0, B32, Pi, r); // B = BlockMix(B ^ V[j])
            blockMixCb();
        }
    }
    return scryptOutput(password, dkLen, B, V, tmp);
}
exports.scrypt = scrypt;
/**
 * Scrypt KDF from RFC 7914.
 */
async function scryptAsync(password, salt, opts) {
    const { N, r, p, dkLen, blockSize32, V, B32, B, tmp, blockMixCb, asyncTick } = scryptInit(password, salt, opts);
    for (let pi = 0; pi < p; pi++) {
        const Pi = blockSize32 * pi;
        for (let i = 0; i < blockSize32; i++)
            V[i] = B32[Pi + i]; // V[0] = B[i]
        let pos = 0;
        await (0, utils_js_1.asyncLoop)(N - 1, asyncTick, (i) => {
            BlockMix(V, pos, V, (pos += blockSize32), r); // V[i] = BlockMix(V[i-1]);
            blockMixCb();
        });
        BlockMix(V, (N - 1) * blockSize32, B32, Pi, r); // Process last element
        blockMixCb();
        await (0, utils_js_1.asyncLoop)(N, asyncTick, (i) => {
            // First u32 of the last 64-byte block (u32 is LE)
            const j = B32[Pi + blockSize32 - 16] % N; // j = Integrify(X) % iterations
            for (let k = 0; k < blockSize32; k++)
                tmp[k] = B32[Pi + k] ^ V[j * blockSize32 + k]; // tmp = B ^ V[j]
            BlockMix(tmp, 0, B32, Pi, r); // B = BlockMix(B ^ V[j])
            blockMixCb();
        });
    }
    return scryptOutput(password, dkLen, B, V, tmp);
}
exports.scryptAsync = scryptAsync;
//# sourceMappingURL=scrypt.js.map

Выполнить команду


Для локальной разработки. Не используйте в интернете!