PHP WebShell

Текущая директория: /usr/lib/node_modules/bitgo/node_modules/noble-bls12-381

Просмотр файла: math.js

"use strict";
Object.defineProperty(exports, "__esModule", { value: true });
exports.isogenyCoefficients = exports.psi2 = exports.psi = exports.millerLoop = exports.calcPairingPrecomputes = exports.isogenyMapG2 = exports.map_to_curve_SSWU_G2 = exports.ProjectivePoint = exports.Fq12 = exports.Fq6 = exports.Fq2 = exports.Fr = exports.Fq = exports.powMod = exports.mod = exports.DST_LABEL = exports.CURVE = void 0;
exports.CURVE = {
    P: 0x1a0111ea397fe69a4b1ba7b6434bacd764774b84f38512bf6730d2a0f6b0f6241eabfffeb153ffffb9feffffffffaaabn,
    r: 0x73eda753299d7d483339d80809a1d80553bda402fffe5bfeffffffff00000001n,
    h: 0x396c8c005555e1568c00aaab0000aaabn,
    Gx: 0x17f1d3a73197d7942695638c4fa9ac0fc3688c4f9774b905a14e3a3f171bac586c55e83ff97a1aeffb3af00adb22c6bbn,
    Gy: 0x08b3f481e3aaa0f1a09e30ed741d8ae4fcf5e095d5d00af600db18cb2c04b3edd03cc744a2888ae40caa232946c5e7e1n,
    b: 4n,
    P2: 0x1a0111ea397fe69a4b1ba7b6434bacd764774b84f38512bf6730d2a0f6b0f6241eabfffeb153ffffb9feffffffffaaabn **
        2n -
        1n,
    h2: 0x5d543a95414e7f1091d50792876a202cd91de4547085abaa68a205b2e5a7ddfa628f1cb4d9e82ef21537e293a6691ae1616ec6e786f0c70cf1c38e31c7238e5n,
    G2x: [
        0x024aa2b2f08f0a91260805272dc51051c6e47ad4fa403b02b4510b647ae3d1770bac0326a805bbefd48056c8c121bdb8n,
        0x13e02b6052719f607dacd3a088274f65596bd0d09920b61ab5da61bbdc7f5049334cf11213945d57e5ac7d055d042b7en,
    ],
    G2y: [
        0x0ce5d527727d6e118cc9cdc6da2e351aadfd9baa8cbdd3a76d429a695160d12c923ac9cc3baca289e193548608b82801n,
        0x0606c4a02ea734cc32acd2b02bc28b99cb3e287e85a763af267492ab572e99ab3f370d275cec1da1aaa9075ff05f79ben,
    ],
    b2: [4n, 4n],
    x: 0xd201000000010000n,
    h_eff: 0xbc69f08f2ee75b3584c6a0ea91b352888e2a8e9145ad7689986ff031508ffe1329c2f178731db956d82bf015d1212b02ec0ec69d7477c1ae954cbc06689f6a359894c0adebbf6b4e8020005aaa95551n,
};
exports.DST_LABEL = 'BLS_SIG_BLS12381G2_XMD:SHA-256_SSWU_RO_NUL_';
const BLS_X_LEN = bitLen(exports.CURVE.x);
function mod(a, b) {
    const res = a % b;
    return res >= 0n ? res : b + res;
}
exports.mod = mod;
function powMod(a, power, m) {
    let res = 1n;
    while (power > 0n) {
        if (power & 1n) {
            res = mod(res * a, m);
        }
        power >>= 1n;
        a = mod(a * a, m);
    }
    return res;
}
exports.powMod = powMod;
function genInvertBatch(cls, nums) {
    const len = nums.length;
    const scratch = new Array(len);
    let acc = cls.ONE;
    for (let i = 0; i < len; i++) {
        if (nums[i].isZero())
            continue;
        scratch[i] = acc;
        acc = acc.multiply(nums[i]);
    }
    acc = acc.invert();
    for (let i = len - 1; i >= 0; i--) {
        if (nums[i].isZero())
            continue;
        let tmp = acc.multiply(nums[i]);
        nums[i] = acc.multiply(scratch[i]);
        acc = tmp;
    }
    return nums;
}
function bitLen(n) {
    let len;
    for (len = 0; n > 0n; n >>= 1n, len += 1)
        ;
    return len;
}
function bitGet(n, pos) {
    return (n >> BigInt(pos)) & 1n;
}
class Fq {
    constructor(value) {
        this.value = mod(value, Fq.ORDER);
    }
    isZero() {
        return this.value === 0n;
    }
    equals(rhs) {
        return this.value === rhs.value;
    }
    negate() {
        return new Fq(-this.value);
    }
    invert() {
        let [x0, x1, y0, y1] = [1n, 0n, 0n, 1n];
        let a = Fq.ORDER;
        let b = this.value;
        let q;
        while (a !== 0n) {
            [q, b, a] = [b / a, a, b % a];
            [x0, x1] = [x1, x0 - q * x1];
            [y0, y1] = [y1, y0 - q * y1];
        }
        return new Fq(x0);
    }
    add(rhs) {
        return new Fq(this.value + rhs.value);
    }
    square() {
        return new Fq(this.value * this.value);
    }
    pow(n) {
        return new Fq(powMod(this.value, n, Fq.ORDER));
    }
    subtract(rhs) {
        return new Fq(this.value - rhs.value);
    }
    multiply(rhs) {
        if (rhs instanceof Fq)
            rhs = rhs.value;
        return new Fq(this.value * rhs);
    }
    div(rhs) {
        const inv = typeof rhs === 'bigint' ? new Fq(rhs).invert().value : rhs.invert();
        return this.multiply(inv);
    }
    toString() {
        const str = this.value.toString(16).padStart(96, '0');
        return str.slice(0, 2) + '.' + str.slice(-2);
    }
}
exports.Fq = Fq;
Fq.ORDER = exports.CURVE.P;
Fq.MAX_BITS = bitLen(exports.CURVE.P);
Fq.ZERO = new Fq(0n);
Fq.ONE = new Fq(1n);
class Fr {
    constructor(value) {
        this.value = mod(value, Fr.ORDER);
    }
    static isValid(b) {
        return b <= Fr.ORDER;
    }
    isZero() {
        return this.value === 0n;
    }
    equals(rhs) {
        return this.value === rhs.value;
    }
    negate() {
        return new Fr(-this.value);
    }
    invert() {
        let [x0, x1, y0, y1] = [1n, 0n, 0n, 1n];
        let a = Fr.ORDER;
        let b = this.value;
        let q;
        while (a !== 0n) {
            [q, b, a] = [b / a, a, b % a];
            [x0, x1] = [x1, x0 - q * x1];
            [y0, y1] = [y1, y0 - q * y1];
        }
        return new Fr(x0);
    }
    add(rhs) {
        return new Fr(this.value + rhs.value);
    }
    square() {
        return new Fr(this.value * this.value);
    }
    pow(n) {
        return new Fr(powMod(this.value, n, Fr.ORDER));
    }
    subtract(rhs) {
        return new Fr(this.value - rhs.value);
    }
    multiply(rhs) {
        if (rhs instanceof Fr)
            rhs = rhs.value;
        return new Fr(this.value * rhs);
    }
    div(rhs) {
        const inv = typeof rhs === 'bigint' ? new Fr(rhs).invert().value : rhs.invert();
        return this.multiply(inv);
    }
    legendre() {
        return this.pow((Fr.ORDER - 1n) / 2n);
    }
    sqrt() {
        if (!this.legendre().equals(Fr.ONE))
            return;
        const P = Fr.ORDER;
        let q, s, z;
        for (q = P - 1n, s = 0; q % 2n == 0n; q /= 2n, s++)
            ;
        if (s == 1)
            return this.pow((P + 1n) / 4n);
        for (z = 2n; z < P && new Fr(z).legendre().value != P - 1n; z++)
            ;
        let c = powMod(z, q, P);
        let r = powMod(this.value, (q + 1n) / 2n, P);
        let t = powMod(this.value, q, P);
        let t2 = 0n;
        while (mod(t - 1n, P) != 0n) {
            t2 = mod(t * t, P);
            let i;
            for (i = 1; i < s; i++) {
                if (mod(t2 - 1n, P) == 0n)
                    break;
                t2 = mod(t2 * t2, P);
            }
            let b = powMod(c, BigInt(1 << (s - i - 1)), P);
            r = mod(r * b, P);
            c = mod(b * b, P);
            t = mod(t * c, P);
            s = i;
        }
        return new Fr(r);
    }
    toString() {
        return '0x' + this.value.toString(16).padStart(64, '0');
    }
}
exports.Fr = Fr;
Fr.ORDER = exports.CURVE.r;
Fr.ZERO = new Fr(0n);
Fr.ONE = new Fr(1n);
class FQP {
    zip(rhs, mapper) {
        const c0 = this.c;
        const c1 = rhs.c;
        const res = [];
        for (let i = 0; i < c0.length; i++) {
            res.push(mapper(c0[i], c1[i]));
        }
        return res;
    }
    map(callbackfn) {
        return this.c.map(callbackfn);
    }
    isZero() {
        return this.c.every((c) => c.isZero());
    }
    equals(rhs) {
        return this.zip(rhs, (left, right) => left.equals(right)).every((r) => r);
    }
    negate() {
        return this.init(this.map((c) => c.negate()));
    }
    add(rhs) {
        return this.init(this.zip(rhs, (left, right) => left.add(right)));
    }
    subtract(rhs) {
        return this.init(this.zip(rhs, (left, right) => left.subtract(right)));
    }
    conjugate() {
        return this.init([this.c[0], this.c[1].negate()]);
    }
    one() {
        const el = this;
        let one;
        if (el instanceof Fq2)
            one = Fq2.ONE;
        if (el instanceof Fq6)
            one = Fq6.ONE;
        if (el instanceof Fq12)
            one = Fq12.ONE;
        return one;
    }
    pow(n) {
        const elm = this;
        const one = this.one();
        if (n === 0n)
            return one;
        if (n === 1n)
            return elm;
        let p = one;
        let d = elm;
        while (n > 0n) {
            if (n & 1n)
                p = p.multiply(d);
            n >>= 1n;
            d = d.square();
        }
        return p;
    }
    div(rhs) {
        const inv = typeof rhs === 'bigint' ? new Fq(rhs).invert().value : rhs.invert();
        return this.multiply(inv);
    }
}
const rv1 = 0x6af0e0437ff400b6831e36d6bd17ffe48395dabc2d3435e77f76e17009241c5ee67992f72ec05f4c81084fbede3cc09n;
const ev1 = 0x699be3b8c6870965e5bf892ad5d2cc7b0e85a117402dfd83b7f4a947e02d978498255a2aaec0ac627b5afbdf1bf1c90n;
const ev2 = 0x8157cd83046453f5dd0972b6e3949e4288020b5b8a9cc99ca07e27089a2ce2436d965026adad3ef7baba37f2183e9b5n;
const ev3 = 0xab1c2ffdd6c253ca155231eb3e71ba044fd562f6f72bc5bad5ec46a0b7a3b0247cf08ce6c6317f40edbc653a72dee17n;
const ev4 = 0xaa404866706722864480885d68ad0ccac1967c7544b447873cc37e0181271e006df72162a3d3e0287bf597fbf7f8fc1n;
class Fq2 extends FQP {
    constructor(coeffs) {
        super();
        if (coeffs.length !== 2)
            throw new Error(`Expected array with 2 elements`);
        coeffs.forEach((c, i) => {
            if (typeof c === 'bigint')
                coeffs[i] = new Fq(c);
        });
        this.c = coeffs;
    }
    init(tuple) {
        return new Fq2(tuple);
    }
    toString() {
        return `Fq2(${this.c[0]} + ${this.c[1]}×i)`;
    }
    get values() {
        return this.c.map((c) => c.value);
    }
    multiply(rhs) {
        if (typeof rhs === 'bigint')
            return new Fq2(this.map((c) => c.multiply(rhs)));
        const [c0, c1] = this.c;
        const [r0, r1] = rhs.c;
        let t1 = c0.multiply(r0);
        let t2 = c1.multiply(r1);
        return new Fq2([t1.subtract(t2), c0.add(c1).multiply(r0.add(r1)).subtract(t1.add(t2))]);
    }
    mulByNonresidue() {
        const c0 = this.c[0];
        const c1 = this.c[1];
        return new Fq2([c0.subtract(c1), c0.add(c1)]);
    }
    square() {
        const c0 = this.c[0];
        const c1 = this.c[1];
        const a = c0.add(c1);
        const b = c0.subtract(c1);
        const c = c0.add(c0);
        return new Fq2([a.multiply(b), c.multiply(c1)]);
    }
    sqrt() {
        const candidateSqrt = this.pow((Fq2.ORDER + 8n) / 16n);
        const check = candidateSqrt.square().div(this);
        const R = Fq2.ROOTS_OF_UNITY;
        const divisor = [R[0], R[2], R[4], R[6]].find((r) => r.equals(check));
        if (!divisor)
            return;
        const index = R.indexOf(divisor);
        const root = R[index / 2];
        if (!root)
            throw new Error('Invalid root');
        const x1 = candidateSqrt.div(root);
        const x2 = x1.negate();
        const [re1, im1] = x1.values;
        const [re2, im2] = x2.values;
        if (im1 > im2 || (im1 == im2 && re1 > re2))
            return x1;
        return x2;
    }
    invert() {
        const [a, b] = this.values;
        const factor = new Fq(a * a + b * b).invert();
        return new Fq2([factor.multiply(new Fq(a)), factor.multiply(new Fq(-b))]);
    }
    frobeniusMap(power) {
        return new Fq2([this.c[0], this.c[1].multiply(Fq2.FROBENIUS_COEFFICIENTS[power % 2])]);
    }
    multiplyByB() {
        let [c0, c1] = this.c;
        let t0 = c0.multiply(4n);
        let t1 = c1.multiply(4n);
        return new Fq2([t0.subtract(t1), t0.add(t1)]);
    }
}
exports.Fq2 = Fq2;
Fq2.ORDER = exports.CURVE.P2;
Fq2.MAX_BITS = bitLen(exports.CURVE.P2);
Fq2.ROOT = new Fq(-1n);
Fq2.ZERO = new Fq2([0n, 0n]);
Fq2.ONE = new Fq2([1n, 0n]);
Fq2.COFACTOR = exports.CURVE.h2;
Fq2.ROOTS_OF_UNITY = [
    new Fq2([1n, 0n]),
    new Fq2([rv1, -rv1]),
    new Fq2([0n, 1n]),
    new Fq2([rv1, rv1]),
    new Fq2([-1n, 0n]),
    new Fq2([-rv1, rv1]),
    new Fq2([0n, -1n]),
    new Fq2([-rv1, -rv1]),
];
Fq2.ETAs = [
    new Fq2([ev1, ev2]),
    new Fq2([-ev2, ev1]),
    new Fq2([ev3, ev4]),
    new Fq2([-ev4, ev3]),
];
Fq2.FROBENIUS_COEFFICIENTS = [
    new Fq(0x000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001n),
    new Fq(0x1a0111ea397fe69a4b1ba7b6434bacd764774b84f38512bf6730d2a0f6b0f6241eabfffeb153ffffb9feffffffffaaaan),
];
class Fq6 extends FQP {
    constructor(c) {
        super();
        this.c = c;
        if (c.length !== 3)
            throw new Error(`Expected array with 2 elements`);
    }
    static fromTuple(t) {
        return new Fq6([new Fq2(t.slice(0, 2)), new Fq2(t.slice(2, 4)), new Fq2(t.slice(4, 6))]);
    }
    init(triple) {
        return new Fq6(triple);
    }
    toString() {
        return `Fq6(${this.c[0]} + ${this.c[1]} * v, ${this.c[2]} * v^2)`;
    }
    conjugate() {
        throw new TypeError('No conjugate on Fq6');
    }
    multiply(rhs) {
        if (typeof rhs === 'bigint')
            return new Fq6([this.c[0].multiply(rhs), this.c[1].multiply(rhs), this.c[2].multiply(rhs)]);
        let [c0, c1, c2] = this.c;
        const [r0, r1, r2] = rhs.c;
        let t0 = c0.multiply(r0);
        let t1 = c1.multiply(r1);
        let t2 = c2.multiply(r2);
        return new Fq6([
            t0.add(c1.add(c2).multiply(r1.add(r2)).subtract(t1.add(t2)).mulByNonresidue()),
            c0.add(c1).multiply(r0.add(r1)).subtract(t0.add(t1)).add(t2.mulByNonresidue()),
            t1.add(c0.add(c2).multiply(r0.add(r2)).subtract(t0.add(t2))),
        ]);
    }
    mulByNonresidue() {
        return new Fq6([this.c[2].mulByNonresidue(), this.c[0], this.c[1]]);
    }
    multiplyBy1(b1) {
        return new Fq6([
            this.c[2].multiply(b1).mulByNonresidue(),
            this.c[0].multiply(b1),
            this.c[1].multiply(b1),
        ]);
    }
    multiplyBy01(b0, b1) {
        let [c0, c1, c2] = this.c;
        let t0 = c0.multiply(b0);
        let t1 = c1.multiply(b1);
        return new Fq6([
            c1.add(c2).multiply(b1).subtract(t1).mulByNonresidue().add(t0),
            b0.add(b1).multiply(c0.add(c1)).subtract(t0).subtract(t1),
            c0.add(c2).multiply(b0).subtract(t0).add(t1),
        ]);
    }
    multiplyByFq2(rhs) {
        return new Fq6(this.map((c) => c.multiply(rhs)));
    }
    square() {
        let [c0, c1, c2] = this.c;
        let t0 = c0.square();
        let t1 = c0.multiply(c1).multiply(2n);
        let t3 = c1.multiply(c2).multiply(2n);
        let t4 = c2.square();
        return new Fq6([
            t3.mulByNonresidue().add(t0),
            t4.mulByNonresidue().add(t1),
            t1.add(c0.subtract(c1).add(c2).square()).add(t3).subtract(t0).subtract(t4),
        ]);
    }
    invert() {
        let [c0, c1, c2] = this.c;
        let t0 = c0.square().subtract(c2.multiply(c1).mulByNonresidue());
        let t1 = c2.square().mulByNonresidue().subtract(c0.multiply(c1));
        let t2 = c1.square().subtract(c0.multiply(c2));
        let t4 = c2.multiply(t1).add(c1.multiply(t2)).mulByNonresidue().add(c0.multiply(t0)).invert();
        return new Fq6([t4.multiply(t0), t4.multiply(t1), t4.multiply(t2)]);
    }
    frobeniusMap(power) {
        return new Fq6([
            this.c[0].frobeniusMap(power),
            this.c[1].frobeniusMap(power).multiply(Fq6.FROBENIUS_COEFFICIENTS_1[power % 6]),
            this.c[2].frobeniusMap(power).multiply(Fq6.FROBENIUS_COEFFICIENTS_2[power % 6]),
        ]);
    }
}
exports.Fq6 = Fq6;
Fq6.ZERO = new Fq6([Fq2.ZERO, Fq2.ZERO, Fq2.ZERO]);
Fq6.ONE = new Fq6([Fq2.ONE, Fq2.ZERO, Fq2.ZERO]);
Fq6.FROBENIUS_COEFFICIENTS_1 = [
    new Fq2([
        0x000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001n,
        0x000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000n,
    ]),
    new Fq2([
        0x000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000n,
        0x1a0111ea397fe699ec02408663d4de85aa0d857d89759ad4897d29650fb85f9b409427eb4f49fffd8bfd00000000aaacn,
    ]),
    new Fq2([
        0x00000000000000005f19672fdf76ce51ba69c6076a0f77eaddb3a93be6f89688de17d813620a00022e01fffffffefffen,
        0x000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000n,
    ]),
    new Fq2([
        0x000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000n,
        0x000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001n,
    ]),
    new Fq2([
        0x1a0111ea397fe699ec02408663d4de85aa0d857d89759ad4897d29650fb85f9b409427eb4f49fffd8bfd00000000aaacn,
        0x000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000n,
    ]),
    new Fq2([
        0x000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000n,
        0x00000000000000005f19672fdf76ce51ba69c6076a0f77eaddb3a93be6f89688de17d813620a00022e01fffffffefffen,
    ]),
];
Fq6.FROBENIUS_COEFFICIENTS_2 = [
    new Fq2([
        0x000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001n,
        0x000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000n,
    ]),
    new Fq2([
        0x1a0111ea397fe699ec02408663d4de85aa0d857d89759ad4897d29650fb85f9b409427eb4f49fffd8bfd00000000aaadn,
        0x000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000n,
    ]),
    new Fq2([
        0x1a0111ea397fe699ec02408663d4de85aa0d857d89759ad4897d29650fb85f9b409427eb4f49fffd8bfd00000000aaacn,
        0x000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000n,
    ]),
    new Fq2([
        0x1a0111ea397fe69a4b1ba7b6434bacd764774b84f38512bf6730d2a0f6b0f6241eabfffeb153ffffb9feffffffffaaaan,
        0x000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000n,
    ]),
    new Fq2([
        0x00000000000000005f19672fdf76ce51ba69c6076a0f77eaddb3a93be6f89688de17d813620a00022e01fffffffefffen,
        0x000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000n,
    ]),
    new Fq2([
        0x00000000000000005f19672fdf76ce51ba69c6076a0f77eaddb3a93be6f89688de17d813620a00022e01fffffffeffffn,
        0x000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000n,
    ]),
];
class Fq12 extends FQP {
    constructor(c) {
        super();
        this.c = c;
        if (c.length !== 2)
            throw new Error(`Expected array with 2 elements`);
    }
    static fromTuple(t) {
        return new Fq12([
            Fq6.fromTuple(t.slice(0, 6)),
            Fq6.fromTuple(t.slice(6, 12)),
        ]);
    }
    init(c) {
        return new Fq12(c);
    }
    toString() {
        return `Fq12(${this.c[0]} + ${this.c[1]} * w)`;
    }
    multiply(rhs) {
        if (typeof rhs === 'bigint')
            return new Fq12([this.c[0].multiply(rhs), this.c[1].multiply(rhs)]);
        let [c0, c1] = this.c;
        const [r0, r1] = rhs.c;
        let t1 = c0.multiply(r0);
        let t2 = c1.multiply(r1);
        return new Fq12([
            t1.add(t2.mulByNonresidue()),
            c0.add(c1).multiply(r0.add(r1)).subtract(t1.add(t2)),
        ]);
    }
    multiplyBy014(o0, o1, o4) {
        let [c0, c1] = this.c;
        let [t0, t1] = [c0.multiplyBy01(o0, o1), c1.multiplyBy1(o4)];
        return new Fq12([
            t1.mulByNonresidue().add(t0),
            c1.add(c0).multiplyBy01(o0, o1.add(o4)).subtract(t0).subtract(t1),
        ]);
    }
    multiplyByFq2(rhs) {
        return this.init(this.map((c) => c.multiplyByFq2(rhs)));
    }
    square() {
        let [c0, c1] = this.c;
        let ab = c0.multiply(c1);
        return new Fq12([
            c1.mulByNonresidue().add(c0).multiply(c0.add(c1)).subtract(ab).subtract(ab.mulByNonresidue()),
            ab.add(ab),
        ]);
    }
    invert() {
        let [c0, c1] = this.c;
        let t = c0.square().subtract(c1.square().mulByNonresidue()).invert();
        return new Fq12([c0.multiply(t), c1.multiply(t).negate()]);
    }
    frobeniusMap(power) {
        const [c0, c1] = this.c;
        let r0 = c0.frobeniusMap(power);
        let [c1_0, c1_1, c1_2] = c1.frobeniusMap(power).c;
        return new Fq12([
            r0,
            new Fq6([
                c1_0.multiply(Fq12.FROBENIUS_COEFFICIENTS[power % 12]),
                c1_1.multiply(Fq12.FROBENIUS_COEFFICIENTS[power % 12]),
                c1_2.multiply(Fq12.FROBENIUS_COEFFICIENTS[power % 12]),
            ]),
        ]);
    }
    Fq4Square(a, b) {
        const a2 = a.square(), b2 = b.square();
        return [
            b2.mulByNonresidue().add(a2),
            a.add(b).square().subtract(a2).subtract(b2),
        ];
    }
    cyclotomicSquare() {
        const [c0, c1] = this.c;
        const [c0c0, c0c1, c0c2] = c0.c;
        const [c1c0, c1c1, c1c2] = c1.c;
        let [t3, t4] = this.Fq4Square(c0c0, c1c1);
        let [t5, t6] = this.Fq4Square(c1c0, c0c2);
        let [t7, t8] = this.Fq4Square(c0c1, c1c2);
        let t9 = t8.mulByNonresidue();
        return new Fq12([
            new Fq6([
                t3.subtract(c0c0).multiply(2n).add(t3),
                t5.subtract(c0c1).multiply(2n).add(t5),
                t7.subtract(c0c2).multiply(2n).add(t7),
            ]),
            new Fq6([
                t9.add(c1c0).multiply(2n).add(t9),
                t4.add(c1c1).multiply(2n).add(t4),
                t6.add(c1c2).multiply(2n).add(t6),
            ]),
        ]);
    }
    cyclotomicExp(n) {
        let z = Fq12.ONE;
        for (let i = BLS_X_LEN - 1; i >= 0; i--) {
            z = z.cyclotomicSquare();
            if (bitGet(n, i))
                z = z.multiply(this);
        }
        return z;
    }
    finalExponentiate() {
        let t0 = this.frobeniusMap(6).div(this);
        let t1 = t0.frobeniusMap(2).multiply(t0);
        let t2 = t1.cyclotomicExp(exports.CURVE.x).conjugate();
        let t3 = t1.cyclotomicSquare().conjugate().multiply(t2);
        let t4 = t3.cyclotomicExp(exports.CURVE.x).conjugate();
        let t5 = t4.cyclotomicExp(exports.CURVE.x).conjugate();
        let t6 = t5.cyclotomicExp(exports.CURVE.x).conjugate().multiply(t2.cyclotomicSquare());
        return t2
            .multiply(t5)
            .frobeniusMap(2)
            .multiply(t4.multiply(t1).frobeniusMap(3))
            .multiply(t6.multiply(t1.conjugate()).frobeniusMap(1))
            .multiply(t6.cyclotomicExp(exports.CURVE.x).conjugate())
            .multiply(t3.conjugate())
            .multiply(t1);
    }
}
exports.Fq12 = Fq12;
Fq12.ZERO = new Fq12([Fq6.ZERO, Fq6.ZERO]);
Fq12.ONE = new Fq12([Fq6.ONE, Fq6.ZERO]);
Fq12.FROBENIUS_COEFFICIENTS = [
    new Fq2([
        0x000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001n,
        0x000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000n,
    ]),
    new Fq2([
        0x1904d3bf02bb0667c231beb4202c0d1f0fd603fd3cbd5f4f7b2443d784bab9c4f67ea53d63e7813d8d0775ed92235fb8n,
        0x00fc3e2b36c4e03288e9e902231f9fb854a14787b6c7b36fec0c8ec971f63c5f282d5ac14d6c7ec22cf78a126ddc4af3n,
    ]),
    new Fq2([
        0x00000000000000005f19672fdf76ce51ba69c6076a0f77eaddb3a93be6f89688de17d813620a00022e01fffffffeffffn,
        0x000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000n,
    ]),
    new Fq2([
        0x135203e60180a68ee2e9c448d77a2cd91c3dedd930b1cf60ef396489f61eb45e304466cf3e67fa0af1ee7b04121bdea2n,
        0x06af0e0437ff400b6831e36d6bd17ffe48395dabc2d3435e77f76e17009241c5ee67992f72ec05f4c81084fbede3cc09n,
    ]),
    new Fq2([
        0x00000000000000005f19672fdf76ce51ba69c6076a0f77eaddb3a93be6f89688de17d813620a00022e01fffffffefffen,
        0x000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000n,
    ]),
    new Fq2([
        0x144e4211384586c16bd3ad4afa99cc9170df3560e77982d0db45f3536814f0bd5871c1908bd478cd1ee605167ff82995n,
        0x05b2cfd9013a5fd8df47fa6b48b1e045f39816240c0b8fee8beadf4d8e9c0566c63a3e6e257f87329b18fae980078116n,
    ]),
    new Fq2([
        0x1a0111ea397fe69a4b1ba7b6434bacd764774b84f38512bf6730d2a0f6b0f6241eabfffeb153ffffb9feffffffffaaaan,
        0x000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000n,
    ]),
    new Fq2([
        0x00fc3e2b36c4e03288e9e902231f9fb854a14787b6c7b36fec0c8ec971f63c5f282d5ac14d6c7ec22cf78a126ddc4af3n,
        0x1904d3bf02bb0667c231beb4202c0d1f0fd603fd3cbd5f4f7b2443d784bab9c4f67ea53d63e7813d8d0775ed92235fb8n,
    ]),
    new Fq2([
        0x1a0111ea397fe699ec02408663d4de85aa0d857d89759ad4897d29650fb85f9b409427eb4f49fffd8bfd00000000aaacn,
        0x000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000n,
    ]),
    new Fq2([
        0x06af0e0437ff400b6831e36d6bd17ffe48395dabc2d3435e77f76e17009241c5ee67992f72ec05f4c81084fbede3cc09n,
        0x135203e60180a68ee2e9c448d77a2cd91c3dedd930b1cf60ef396489f61eb45e304466cf3e67fa0af1ee7b04121bdea2n,
    ]),
    new Fq2([
        0x1a0111ea397fe699ec02408663d4de85aa0d857d89759ad4897d29650fb85f9b409427eb4f49fffd8bfd00000000aaadn,
        0x000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000n,
    ]),
    new Fq2([
        0x05b2cfd9013a5fd8df47fa6b48b1e045f39816240c0b8fee8beadf4d8e9c0566c63a3e6e257f87329b18fae980078116n,
        0x144e4211384586c16bd3ad4afa99cc9170df3560e77982d0db45f3536814f0bd5871c1908bd478cd1ee605167ff82995n,
    ]),
];
class ProjectivePoint {
    constructor(x, y, z, C) {
        this.x = x;
        this.y = y;
        this.z = z;
        this.C = C;
    }
    isZero() {
        return this.z.isZero();
    }
    getPoint(x, y, z) {
        return new this.constructor(x, y, z);
    }
    getZero() {
        return this.getPoint(this.C.ONE, this.C.ONE, this.C.ZERO);
    }
    equals(rhs) {
        if (this.constructor != rhs.constructor)
            throw new Error(`ProjectivePoint#equals: this is ${this.constructor}, but rhs is ${rhs.constructor}`);
        const a = this;
        const b = rhs;
        const xe = a.x.multiply(b.z).equals(b.x.multiply(a.z));
        const ye = a.y.multiply(b.z).equals(b.y.multiply(a.z));
        return xe && ye;
    }
    negate() {
        return this.getPoint(this.x, this.y.negate(), this.z);
    }
    toString(isAffine = true) {
        if (!isAffine) {
            return `Point<x=${this.x}, y=${this.y}, z=${this.z}>`;
        }
        const [x, y] = this.toAffine();
        return `Point<x=${x}, y=${y}>`;
    }
    fromAffineTuple(xy) {
        return this.getPoint(xy[0], xy[1], this.C.ONE);
    }
    toAffine(invZ = this.z.invert()) {
        return [this.x.multiply(invZ), this.y.multiply(invZ)];
    }
    toAffineBatch(points) {
        const toInv = genInvertBatch(this.C, points.map((p) => p.z));
        return points.map((p, i) => p.toAffine(toInv[i]));
    }
    normalizeZ(points) {
        return this.toAffineBatch(points).map((t) => this.fromAffineTuple(t));
    }
    double() {
        const { x, y, z } = this;
        const W = x.multiply(x).multiply(3n);
        const S = y.multiply(z);
        const SS = S.multiply(S);
        const SSS = SS.multiply(S);
        const B = x.multiply(y).multiply(S);
        const H = W.multiply(W).subtract(B.multiply(8n));
        const X3 = H.multiply(S).multiply(2n);
        const Y3 = W.multiply(B.multiply(4n).subtract(H)).subtract(y.multiply(y).multiply(8n).multiply(SS));
        const Z3 = SSS.multiply(8n);
        return this.getPoint(X3, Y3, Z3);
    }
    add(rhs) {
        if (this.constructor != rhs.constructor)
            throw new Error(`ProjectivePoint#add: this is ${this.constructor}, but rhs is ${rhs.constructor}`);
        const p1 = this;
        const p2 = rhs;
        if (p1.isZero())
            return p2;
        if (p2.isZero())
            return p1;
        const X1 = p1.x;
        const Y1 = p1.y;
        const Z1 = p1.z;
        const X2 = p2.x;
        const Y2 = p2.y;
        const Z2 = p2.z;
        const U1 = Y2.multiply(Z1);
        const U2 = Y1.multiply(Z2);
        const V1 = X2.multiply(Z1);
        const V2 = X1.multiply(Z2);
        if (V1.equals(V2) && U1.equals(U2))
            return this.double();
        if (V1.equals(V2))
            return this.getZero();
        const U = U1.subtract(U2);
        const V = V1.subtract(V2);
        const VV = V.multiply(V);
        const VVV = VV.multiply(V);
        const V2VV = V2.multiply(VV);
        const W = Z1.multiply(Z2);
        const A = U.multiply(U).multiply(W).subtract(VVV).subtract(V2VV.multiply(2n));
        const X3 = V.multiply(A);
        const Y3 = U.multiply(V2VV.subtract(A)).subtract(VVV.multiply(U2));
        const Z3 = VVV.multiply(W);
        return this.getPoint(X3, Y3, Z3);
    }
    subtract(rhs) {
        if (this.constructor != rhs.constructor)
            throw new Error(`ProjectivePoint#subtract: this is ${this.constructor}, but rhs is ${rhs.constructor}`);
        return this.add(rhs.negate());
    }
    multiplyUnsafe(scalar) {
        let n = scalar;
        if (n instanceof Fq)
            n = n.value;
        if (typeof n === 'number')
            n = BigInt(n);
        if (n <= 0) {
            throw new Error('Point#multiply: invalid scalar, expected positive integer');
        }
        let p = this.getZero();
        let d = this;
        while (n > 0n) {
            if (n & 1n)
                p = p.add(d);
            d = d.double();
            n >>= 1n;
        }
        return p;
    }
    maxBits() {
        return this.C.MAX_BITS;
    }
    precomputeWindow(W) {
        const windows = Math.ceil(this.maxBits() / W);
        const windowSize = 2 ** (W - 1);
        let points = [];
        let p = this;
        let base = p;
        for (let window = 0; window < windows; window++) {
            base = p;
            points.push(base);
            for (let i = 1; i < windowSize; i++) {
                base = base.add(p);
                points.push(base);
            }
            p = base.double();
        }
        return points;
    }
    calcMultiplyPrecomputes(W) {
        if (this._MPRECOMPUTES)
            throw new Error('This point already has precomputes');
        this._MPRECOMPUTES = [W, this.normalizeZ(this.precomputeWindow(W))];
    }
    clearMultiplyPrecomputes() {
        this._MPRECOMPUTES = undefined;
    }
    wNAF(n) {
        let W, precomputes;
        if (this._MPRECOMPUTES) {
            [W, precomputes] = this._MPRECOMPUTES;
        }
        else {
            W = 1;
            precomputes = this.precomputeWindow(W);
        }
        let [p, f] = [this.getZero(), this.getZero()];
        const windows = Math.ceil(this.maxBits() / W);
        const windowSize = 2 ** (W - 1);
        const mask = BigInt(2 ** W - 1);
        const maxNumber = 2 ** W;
        const shiftBy = BigInt(W);
        for (let window = 0; window < windows; window++) {
            const offset = window * windowSize;
            let wbits = Number(n & mask);
            n >>= shiftBy;
            if (wbits > windowSize) {
                wbits -= maxNumber;
                n += 1n;
            }
            if (wbits === 0) {
                f = f.add(window % 2 ? precomputes[offset].negate() : precomputes[offset]);
            }
            else {
                const cached = precomputes[offset + Math.abs(wbits) - 1];
                p = p.add(wbits < 0 ? cached.negate() : cached);
            }
        }
        return [p, f];
    }
    multiply(scalar) {
        let n = scalar;
        if (n instanceof Fq)
            n = n.value;
        if (typeof n === 'number')
            n = BigInt(n);
        if (n <= 0)
            throw new Error('ProjectivePoint#multiply: invalid scalar, expected positive integer');
        if (bitLen(n) > this.maxBits())
            throw new Error("ProjectivePoint#multiply: scalar has more bits than maxBits, shoulnd't happen");
        return this.wNAF(n)[0];
    }
}
exports.ProjectivePoint = ProjectivePoint;
function sgn0(x) {
    const [x0, x1] = x.values;
    const sign_0 = x0 % 2n;
    const zero_0 = x0 === 0n;
    const sign_1 = x1 % 2n;
    return BigInt(sign_0 || (zero_0 && sign_1));
}
const P_MINUS_9_DIV_16 = (exports.CURVE.P ** 2n - 9n) / 16n;
function sqrt_div_fq2(u, v) {
    const uv7 = u.multiply(v.pow(7n));
    const uv15 = uv7.multiply(v.pow(8n));
    const gamma = uv15.pow(P_MINUS_9_DIV_16).multiply(uv7);
    let success = false;
    let result = gamma;
    const positiveRootsOfUnity = Fq2.ROOTS_OF_UNITY.slice(0, 4);
    for (const root of positiveRootsOfUnity) {
        const candidate = root.multiply(gamma);
        if (candidate.pow(2n).multiply(v).subtract(u).isZero() && !success) {
            success = true;
            result = candidate;
        }
    }
    return [success, result];
}
function map_to_curve_SSWU_G2(t) {
    const iso_3_a = new Fq2([0n, 240n]);
    const iso_3_b = new Fq2([1012n, 1012n]);
    const iso_3_z = new Fq2([-2n, -1n]);
    if (Array.isArray(t))
        t = new Fq2(t);
    const t2 = t.pow(2n);
    const iso_3_z_t2 = iso_3_z.multiply(t2);
    const ztzt = iso_3_z_t2.add(iso_3_z_t2.pow(2n));
    let denominator = iso_3_a.multiply(ztzt).negate();
    let numerator = iso_3_b.multiply(ztzt.add(Fq2.ONE));
    if (denominator.isZero())
        denominator = iso_3_z.multiply(iso_3_a);
    let v = denominator.pow(3n);
    let u = numerator
        .pow(3n)
        .add(iso_3_a.multiply(numerator).multiply(denominator.pow(2n)))
        .add(iso_3_b.multiply(v));
    const [success, sqrtCandidateOrGamma] = sqrt_div_fq2(u, v);
    let y;
    if (success)
        y = sqrtCandidateOrGamma;
    const sqrtCandidateX1 = sqrtCandidateOrGamma.multiply(t.pow(3n));
    u = iso_3_z_t2.pow(3n).multiply(u);
    let success2 = false;
    for (const eta of Fq2.ETAs) {
        const etaSqrtCandidate = eta.multiply(sqrtCandidateX1);
        const temp = etaSqrtCandidate.pow(2n).multiply(v).subtract(u);
        if (temp.isZero() && !success && !success2) {
            y = etaSqrtCandidate;
            success2 = true;
        }
    }
    if (!success && !success2)
        throw new Error('Hash to Curve - Optimized SWU failure');
    if (success2)
        numerator = numerator.multiply(iso_3_z_t2);
    y = y;
    if (sgn0(t) !== sgn0(y))
        y = y.negate();
    y = y.multiply(denominator);
    return [numerator, y, denominator];
}
exports.map_to_curve_SSWU_G2 = map_to_curve_SSWU_G2;
function isogenyMapG2(xyz) {
    const [x, y, z] = xyz;
    const mapped = [Fq2.ZERO, Fq2.ZERO, Fq2.ZERO, Fq2.ZERO];
    const zPowers = [z, z.pow(2n), z.pow(3n)];
    for (let i = 0; i < exports.isogenyCoefficients.length; i++) {
        const k_i = exports.isogenyCoefficients[i];
        mapped[i] = k_i.slice(-1)[0];
        const arr = k_i.slice(0, -1).reverse();
        for (let j = 0; j < arr.length; j++) {
            const k_i_j = arr[j];
            mapped[i] = mapped[i].multiply(x).add(zPowers[j].multiply(k_i_j));
        }
    }
    mapped[2] = mapped[2].multiply(y);
    mapped[3] = mapped[3].multiply(z);
    const z2 = mapped[1].multiply(mapped[3]);
    const x2 = mapped[0].multiply(mapped[3]);
    const y2 = mapped[1].multiply(mapped[2]);
    return [x2, y2, z2];
}
exports.isogenyMapG2 = isogenyMapG2;
function calcPairingPrecomputes(x, y) {
    const [Qx, Qy, Qz] = [x, y, Fq2.ONE];
    let [Rx, Ry, Rz] = [Qx, Qy, Qz];
    let ell_coeff = [];
    for (let i = BLS_X_LEN - 2; i >= 0; i--) {
        let t0 = Ry.square();
        let t1 = Rz.square();
        let t2 = t1.multiply(3n).multiplyByB();
        let t3 = t2.multiply(3n);
        let t4 = Ry.add(Rz).square().subtract(t1).subtract(t0);
        ell_coeff.push([
            t2.subtract(t0),
            Rx.square().multiply(3n),
            t4.negate(),
        ]);
        Rx = t0.subtract(t3).multiply(Rx).multiply(Ry).div(2n);
        Ry = t0.add(t3).div(2n).square().subtract(t2.square().multiply(3n));
        Rz = t0.multiply(t4);
        if (bitGet(exports.CURVE.x, i)) {
            let t0 = Ry.subtract(Qy.multiply(Rz));
            let t1 = Rx.subtract(Qx.multiply(Rz));
            ell_coeff.push([
                t0.multiply(Qx).subtract(t1.multiply(Qy)),
                t0.negate(),
                t1,
            ]);
            let t2 = t1.square();
            let t3 = t2.multiply(t1);
            let t4 = t2.multiply(Rx);
            let t5 = t3.subtract(t4.multiply(2n)).add(t0.square().multiply(Rz));
            Rx = t1.multiply(t5);
            Ry = t4.subtract(t5).multiply(t0).subtract(t3.multiply(Ry));
            Rz = Rz.multiply(t3);
        }
    }
    return ell_coeff;
}
exports.calcPairingPrecomputes = calcPairingPrecomputes;
function millerLoop(ell, g1) {
    let f12 = Fq12.ONE;
    const [x, y] = g1;
    const [Px, Py] = [x, y];
    for (let j = 0, i = BLS_X_LEN - 2; i >= 0; i--, j++) {
        f12 = f12.multiplyBy014(ell[j][0], ell[j][1].multiply(Px.value), ell[j][2].multiply(Py.value));
        if (bitGet(exports.CURVE.x, i)) {
            j += 1;
            f12 = f12.multiplyBy014(ell[j][0], ell[j][1].multiply(Px.value), ell[j][2].multiply(Py.value));
        }
        if (i != 0)
            f12 = f12.square();
    }
    return f12.conjugate();
}
exports.millerLoop = millerLoop;
const ut_root = new Fq6([Fq2.ZERO, Fq2.ONE, Fq2.ZERO]);
const wsq = new Fq12([ut_root, Fq6.ZERO]);
const wsq_inv = wsq.invert();
const wcu = new Fq12([Fq6.ZERO, ut_root]);
const wcu_inv = wcu.invert();
function psi(x, y) {
    const x2 = wsq_inv.multiplyByFq2(x).frobeniusMap(1).multiply(wsq).c[0].c[0];
    const y2 = wcu_inv.multiplyByFq2(y).frobeniusMap(1).multiply(wcu).c[0].c[0];
    return [x2, y2];
}
exports.psi = psi;
const PSI2_C1 = 0x1a0111ea397fe699ec02408663d4de85aa0d857d89759ad4897d29650fb85f9b409427eb4f49fffd8bfd00000000aaacn;
function psi2(x, y) {
    return [x.multiply(PSI2_C1), y.negate()];
}
exports.psi2 = psi2;
const xnum = [
    new Fq2([
        0x5c759507e8e333ebb5b7a9a47d7ed8532c52d39fd3a042a88b58423c50ae15d5c2638e343d9c71c6238aaaaaaaa97d6n,
        0x5c759507e8e333ebb5b7a9a47d7ed8532c52d39fd3a042a88b58423c50ae15d5c2638e343d9c71c6238aaaaaaaa97d6n,
    ]),
    new Fq2([
        0x0n,
        0x11560bf17baa99bc32126fced787c88f984f87adf7ae0c7f9a208c6b4f20a4181472aaa9cb8d555526a9ffffffffc71an,
    ]),
    new Fq2([
        0x11560bf17baa99bc32126fced787c88f984f87adf7ae0c7f9a208c6b4f20a4181472aaa9cb8d555526a9ffffffffc71en,
        0x8ab05f8bdd54cde190937e76bc3e447cc27c3d6fbd7063fcd104635a790520c0a395554e5c6aaaa9354ffffffffe38dn,
    ]),
    new Fq2([
        0x171d6541fa38ccfaed6dea691f5fb614cb14b4e7f4e810aa22d6108f142b85757098e38d0f671c7188e2aaaaaaaa5ed1n,
        0x0n,
    ]),
];
const xden = [
    new Fq2([
        0x0n,
        0x1a0111ea397fe69a4b1ba7b6434bacd764774b84f38512bf6730d2a0f6b0f6241eabfffeb153ffffb9feffffffffaa63n,
    ]),
    new Fq2([
        0xcn,
        0x1a0111ea397fe69a4b1ba7b6434bacd764774b84f38512bf6730d2a0f6b0f6241eabfffeb153ffffb9feffffffffaa9fn,
    ]),
    Fq2.ONE,
    Fq2.ZERO,
];
const ynum = [
    new Fq2([
        0x1530477c7ab4113b59a4c18b076d11930f7da5d4a07f649bf54439d87d27e500fc8c25ebf8c92f6812cfc71c71c6d706n,
        0x1530477c7ab4113b59a4c18b076d11930f7da5d4a07f649bf54439d87d27e500fc8c25ebf8c92f6812cfc71c71c6d706n,
    ]),
    new Fq2([
        0x0n,
        0x5c759507e8e333ebb5b7a9a47d7ed8532c52d39fd3a042a88b58423c50ae15d5c2638e343d9c71c6238aaaaaaaa97ben,
    ]),
    new Fq2([
        0x11560bf17baa99bc32126fced787c88f984f87adf7ae0c7f9a208c6b4f20a4181472aaa9cb8d555526a9ffffffffc71cn,
        0x8ab05f8bdd54cde190937e76bc3e447cc27c3d6fbd7063fcd104635a790520c0a395554e5c6aaaa9354ffffffffe38fn,
    ]),
    new Fq2([
        0x124c9ad43b6cf79bfbf7043de3811ad0761b0f37a1e26286b0e977c69aa274524e79097a56dc4bd9e1b371c71c718b10n,
        0x0n,
    ]),
];
const yden = [
    new Fq2([
        0x1a0111ea397fe69a4b1ba7b6434bacd764774b84f38512bf6730d2a0f6b0f6241eabfffeb153ffffb9feffffffffa8fbn,
        0x1a0111ea397fe69a4b1ba7b6434bacd764774b84f38512bf6730d2a0f6b0f6241eabfffeb153ffffb9feffffffffa8fbn,
    ]),
    new Fq2([
        0x0n,
        0x1a0111ea397fe69a4b1ba7b6434bacd764774b84f38512bf6730d2a0f6b0f6241eabfffeb153ffffb9feffffffffa9d3n,
    ]),
    new Fq2([
        0x12n,
        0x1a0111ea397fe69a4b1ba7b6434bacd764774b84f38512bf6730d2a0f6b0f6241eabfffeb153ffffb9feffffffffaa99n,
    ]),
    new Fq2([0x1n, 0x0n]),
];
exports.isogenyCoefficients = [xnum, xden, ynum, yden];

Выполнить команду


Для локальной разработки. Не используйте в интернете!