PHP WebShell

Текущая директория: /usr/lib/node_modules/bitgo/node_modules/viem/node_modules/@noble/curves/esm/abstract

Просмотр файла: modular.js

/**
 * Utils for modular division and finite fields.
 * A finite field over 11 is integer number operations `mod 11`.
 * There is no division: it is replaced by modular multiplicative inverse.
 * @module
 */
/*! noble-curves - MIT License (c) 2022 Paul Miller (paulmillr.com) */
import { anumber } from '@noble/hashes/utils';
import { bitMask, bytesToNumberBE, bytesToNumberLE, ensureBytes, numberToBytesBE, numberToBytesLE, validateObject, } from "./utils.js";
// prettier-ignore
const _0n = BigInt(0), _1n = BigInt(1), _2n = /* @__PURE__ */ BigInt(2), _3n = /* @__PURE__ */ BigInt(3);
// prettier-ignore
const _4n = /* @__PURE__ */ BigInt(4), _5n = /* @__PURE__ */ BigInt(5), _8n = /* @__PURE__ */ BigInt(8);
// Calculates a modulo b
export function mod(a, b) {
    const result = a % b;
    return result >= _0n ? result : b + result;
}
/**
 * Efficiently raise num to power and do modular division.
 * Unsafe in some contexts: uses ladder, so can expose bigint bits.
 * TODO: remove.
 * @example
 * pow(2n, 6n, 11n) // 64n % 11n == 9n
 */
export function pow(num, power, modulo) {
    return FpPow(Field(modulo), num, power);
}
/** Does `x^(2^power)` mod p. `pow2(30, 4)` == `30^(2^4)` */
export function pow2(x, power, modulo) {
    let res = x;
    while (power-- > _0n) {
        res *= res;
        res %= modulo;
    }
    return res;
}
/**
 * Inverses number over modulo.
 * Implemented using [Euclidean GCD](https://brilliant.org/wiki/extended-euclidean-algorithm/).
 */
export function invert(number, modulo) {
    if (number === _0n)
        throw new Error('invert: expected non-zero number');
    if (modulo <= _0n)
        throw new Error('invert: expected positive modulus, got ' + modulo);
    // Fermat's little theorem "CT-like" version inv(n) = n^(m-2) mod m is 30x slower.
    let a = mod(number, modulo);
    let b = modulo;
    // prettier-ignore
    let x = _0n, y = _1n, u = _1n, v = _0n;
    while (a !== _0n) {
        // JIT applies optimization if those two lines follow each other
        const q = b / a;
        const r = b % a;
        const m = x - u * q;
        const n = y - v * q;
        // prettier-ignore
        b = a, a = r, x = u, y = v, u = m, v = n;
    }
    const gcd = b;
    if (gcd !== _1n)
        throw new Error('invert: does not exist');
    return mod(x, modulo);
}
// Not all roots are possible! Example which will throw:
// const NUM =
// n = 72057594037927816n;
// Fp = Field(BigInt('0x1a0111ea397fe69a4b1ba7b6434bacd764774b84f38512bf6730d2a0f6b0f6241eabfffeb153ffffb9feffffffffaaab'));
function sqrt3mod4(Fp, n) {
    const p1div4 = (Fp.ORDER + _1n) / _4n;
    const root = Fp.pow(n, p1div4);
    // Throw if root^2 != n
    if (!Fp.eql(Fp.sqr(root), n))
        throw new Error('Cannot find square root');
    return root;
}
function sqrt5mod8(Fp, n) {
    const p5div8 = (Fp.ORDER - _5n) / _8n;
    const n2 = Fp.mul(n, _2n);
    const v = Fp.pow(n2, p5div8);
    const nv = Fp.mul(n, v);
    const i = Fp.mul(Fp.mul(nv, _2n), v);
    const root = Fp.mul(nv, Fp.sub(i, Fp.ONE));
    if (!Fp.eql(Fp.sqr(root), n))
        throw new Error('Cannot find square root');
    return root;
}
// TODO: Commented-out for now. Provide test vectors.
// Tonelli is too slow for extension fields Fp2.
// That means we can't use sqrt (c1, c2...) even for initialization constants.
// if (P % _16n === _9n) return sqrt9mod16;
// // prettier-ignore
// function sqrt9mod16<T>(Fp: IField<T>, n: T, p7div16?: bigint) {
//   if (p7div16 === undefined) p7div16 = (Fp.ORDER + BigInt(7)) / _16n;
//   const c1 = Fp.sqrt(Fp.neg(Fp.ONE)); //  1. c1 = sqrt(-1) in F, i.e., (c1^2) == -1 in F
//   const c2 = Fp.sqrt(c1);             //  2. c2 = sqrt(c1) in F, i.e., (c2^2) == c1 in F
//   const c3 = Fp.sqrt(Fp.neg(c1));     //  3. c3 = sqrt(-c1) in F, i.e., (c3^2) == -c1 in F
//   const c4 = p7div16;                 //  4. c4 = (q + 7) / 16        # Integer arithmetic
//   let tv1 = Fp.pow(n, c4);            //  1. tv1 = x^c4
//   let tv2 = Fp.mul(c1, tv1);          //  2. tv2 = c1 * tv1
//   const tv3 = Fp.mul(c2, tv1);        //  3. tv3 = c2 * tv1
//   let tv4 = Fp.mul(c3, tv1);          //  4. tv4 = c3 * tv1
//   const e1 = Fp.eql(Fp.sqr(tv2), n);  //  5.  e1 = (tv2^2) == x
//   const e2 = Fp.eql(Fp.sqr(tv3), n);  //  6.  e2 = (tv3^2) == x
//   tv1 = Fp.cmov(tv1, tv2, e1); //  7. tv1 = CMOV(tv1, tv2, e1)  # Select tv2 if (tv2^2) == x
//   tv2 = Fp.cmov(tv4, tv3, e2); //  8. tv2 = CMOV(tv4, tv3, e2)  # Select tv3 if (tv3^2) == x
//   const e3 = Fp.eql(Fp.sqr(tv2), n);  //  9.  e3 = (tv2^2) == x
//   return Fp.cmov(tv1, tv2, e3); // 10.  z = CMOV(tv1, tv2, e3) # Select the sqrt from tv1 and tv2
// }
/**
 * Tonelli-Shanks square root search algorithm.
 * 1. https://eprint.iacr.org/2012/685.pdf (page 12)
 * 2. Square Roots from 1; 24, 51, 10 to Dan Shanks
 * @param P field order
 * @returns function that takes field Fp (created from P) and number n
 */
export function tonelliShanks(P) {
    // Initialization (precomputation).
    if (P < BigInt(3))
        throw new Error('sqrt is not defined for small field');
    // Factor P - 1 = Q * 2^S, where Q is odd
    let Q = P - _1n;
    let S = 0;
    while (Q % _2n === _0n) {
        Q /= _2n;
        S++;
    }
    // Find the first quadratic non-residue Z >= 2
    let Z = _2n;
    const _Fp = Field(P);
    while (FpLegendre(_Fp, Z) === 1) {
        // Basic primality test for P. After x iterations, chance of
        // not finding quadratic non-residue is 2^x, so 2^1000.
        if (Z++ > 1000)
            throw new Error('Cannot find square root: probably non-prime P');
    }
    // Fast-path; usually done before Z, but we do "primality test".
    if (S === 1)
        return sqrt3mod4;
    // Slow-path
    // TODO: test on Fp2 and others
    let cc = _Fp.pow(Z, Q); // c = z^Q
    const Q1div2 = (Q + _1n) / _2n;
    return function tonelliSlow(Fp, n) {
        if (Fp.is0(n))
            return n;
        // Check if n is a quadratic residue using Legendre symbol
        if (FpLegendre(Fp, n) !== 1)
            throw new Error('Cannot find square root');
        // Initialize variables for the main loop
        let M = S;
        let c = Fp.mul(Fp.ONE, cc); // c = z^Q, move cc from field _Fp into field Fp
        let t = Fp.pow(n, Q); // t = n^Q, first guess at the fudge factor
        let R = Fp.pow(n, Q1div2); // R = n^((Q+1)/2), first guess at the square root
        // Main loop
        // while t != 1
        while (!Fp.eql(t, Fp.ONE)) {
            if (Fp.is0(t))
                return Fp.ZERO; // if t=0 return R=0
            let i = 1;
            // Find the smallest i >= 1 such that t^(2^i) ≡ 1 (mod P)
            let t_tmp = Fp.sqr(t); // t^(2^1)
            while (!Fp.eql(t_tmp, Fp.ONE)) {
                i++;
                t_tmp = Fp.sqr(t_tmp); // t^(2^2)...
                if (i === M)
                    throw new Error('Cannot find square root');
            }
            // Calculate the exponent for b: 2^(M - i - 1)
            const exponent = _1n << BigInt(M - i - 1); // bigint is important
            const b = Fp.pow(c, exponent); // b = 2^(M - i - 1)
            // Update variables
            M = i;
            c = Fp.sqr(b); // c = b^2
            t = Fp.mul(t, c); // t = (t * b^2)
            R = Fp.mul(R, b); // R = R*b
        }
        return R;
    };
}
/**
 * Square root for a finite field. Will try optimized versions first:
 *
 * 1. P ≡ 3 (mod 4)
 * 2. P ≡ 5 (mod 8)
 * 3. Tonelli-Shanks algorithm
 *
 * Different algorithms can give different roots, it is up to user to decide which one they want.
 * For example there is FpSqrtOdd/FpSqrtEven to choice root based on oddness (used for hash-to-curve).
 */
export function FpSqrt(P) {
    // P ≡ 3 (mod 4) => √n = n^((P+1)/4)
    if (P % _4n === _3n)
        return sqrt3mod4;
    // P ≡ 5 (mod 8) => Atkin algorithm, page 10 of https://eprint.iacr.org/2012/685.pdf
    if (P % _8n === _5n)
        return sqrt5mod8;
    // P ≡ 9 (mod 16) not implemented, see above
    // Tonelli-Shanks algorithm
    return tonelliShanks(P);
}
// Little-endian check for first LE bit (last BE bit);
export const isNegativeLE = (num, modulo) => (mod(num, modulo) & _1n) === _1n;
// prettier-ignore
const FIELD_FIELDS = [
    'create', 'isValid', 'is0', 'neg', 'inv', 'sqrt', 'sqr',
    'eql', 'add', 'sub', 'mul', 'pow', 'div',
    'addN', 'subN', 'mulN', 'sqrN'
];
export function validateField(field) {
    const initial = {
        ORDER: 'bigint',
        MASK: 'bigint',
        BYTES: 'isSafeInteger',
        BITS: 'isSafeInteger',
    };
    const opts = FIELD_FIELDS.reduce((map, val) => {
        map[val] = 'function';
        return map;
    }, initial);
    return validateObject(field, opts);
}
// Generic field functions
/**
 * Same as `pow` but for Fp: non-constant-time.
 * Unsafe in some contexts: uses ladder, so can expose bigint bits.
 */
export function FpPow(Fp, num, power) {
    if (power < _0n)
        throw new Error('invalid exponent, negatives unsupported');
    if (power === _0n)
        return Fp.ONE;
    if (power === _1n)
        return num;
    let p = Fp.ONE;
    let d = num;
    while (power > _0n) {
        if (power & _1n)
            p = Fp.mul(p, d);
        d = Fp.sqr(d);
        power >>= _1n;
    }
    return p;
}
/**
 * Efficiently invert an array of Field elements.
 * Exception-free. Will return `undefined` for 0 elements.
 * @param passZero map 0 to 0 (instead of undefined)
 */
export function FpInvertBatch(Fp, nums, passZero = false) {
    const inverted = new Array(nums.length).fill(passZero ? Fp.ZERO : undefined);
    // Walk from first to last, multiply them by each other MOD p
    const multipliedAcc = nums.reduce((acc, num, i) => {
        if (Fp.is0(num))
            return acc;
        inverted[i] = acc;
        return Fp.mul(acc, num);
    }, Fp.ONE);
    // Invert last element
    const invertedAcc = Fp.inv(multipliedAcc);
    // Walk from last to first, multiply them by inverted each other MOD p
    nums.reduceRight((acc, num, i) => {
        if (Fp.is0(num))
            return acc;
        inverted[i] = Fp.mul(acc, inverted[i]);
        return Fp.mul(acc, num);
    }, invertedAcc);
    return inverted;
}
// TODO: remove
export function FpDiv(Fp, lhs, rhs) {
    return Fp.mul(lhs, typeof rhs === 'bigint' ? invert(rhs, Fp.ORDER) : Fp.inv(rhs));
}
/**
 * Legendre symbol.
 * Legendre constant is used to calculate Legendre symbol (a | p)
 * which denotes the value of a^((p-1)/2) (mod p).
 *
 * * (a | p) ≡ 1    if a is a square (mod p), quadratic residue
 * * (a | p) ≡ -1   if a is not a square (mod p), quadratic non residue
 * * (a | p) ≡ 0    if a ≡ 0 (mod p)
 */
export function FpLegendre(Fp, n) {
    // We can use 3rd argument as optional cache of this value
    // but seems unneeded for now. The operation is very fast.
    const p1mod2 = (Fp.ORDER - _1n) / _2n;
    const powered = Fp.pow(n, p1mod2);
    const yes = Fp.eql(powered, Fp.ONE);
    const zero = Fp.eql(powered, Fp.ZERO);
    const no = Fp.eql(powered, Fp.neg(Fp.ONE));
    if (!yes && !zero && !no)
        throw new Error('invalid Legendre symbol result');
    return yes ? 1 : zero ? 0 : -1;
}
// This function returns True whenever the value x is a square in the field F.
export function FpIsSquare(Fp, n) {
    const l = FpLegendre(Fp, n);
    return l === 1;
}
// CURVE.n lengths
export function nLength(n, nBitLength) {
    // Bit size, byte size of CURVE.n
    if (nBitLength !== undefined)
        anumber(nBitLength);
    const _nBitLength = nBitLength !== undefined ? nBitLength : n.toString(2).length;
    const nByteLength = Math.ceil(_nBitLength / 8);
    return { nBitLength: _nBitLength, nByteLength };
}
/**
 * Initializes a finite field over prime.
 * Major performance optimizations:
 * * a) denormalized operations like mulN instead of mul
 * * b) same object shape: never add or remove keys
 * * c) Object.freeze
 * Fragile: always run a benchmark on a change.
 * Security note: operations don't check 'isValid' for all elements for performance reasons,
 * it is caller responsibility to check this.
 * This is low-level code, please make sure you know what you're doing.
 * @param ORDER prime positive bigint
 * @param bitLen how many bits the field consumes
 * @param isLE (def: false) if encoding / decoding should be in little-endian
 * @param redef optional faster redefinitions of sqrt and other methods
 */
export function Field(ORDER, bitLen, isLE = false, redef = {}) {
    if (ORDER <= _0n)
        throw new Error('invalid field: expected ORDER > 0, got ' + ORDER);
    const { nBitLength: BITS, nByteLength: BYTES } = nLength(ORDER, bitLen);
    if (BYTES > 2048)
        throw new Error('invalid field: expected ORDER of <= 2048 bytes');
    let sqrtP; // cached sqrtP
    const f = Object.freeze({
        ORDER,
        isLE,
        BITS,
        BYTES,
        MASK: bitMask(BITS),
        ZERO: _0n,
        ONE: _1n,
        create: (num) => mod(num, ORDER),
        isValid: (num) => {
            if (typeof num !== 'bigint')
                throw new Error('invalid field element: expected bigint, got ' + typeof num);
            return _0n <= num && num < ORDER; // 0 is valid element, but it's not invertible
        },
        is0: (num) => num === _0n,
        isOdd: (num) => (num & _1n) === _1n,
        neg: (num) => mod(-num, ORDER),
        eql: (lhs, rhs) => lhs === rhs,
        sqr: (num) => mod(num * num, ORDER),
        add: (lhs, rhs) => mod(lhs + rhs, ORDER),
        sub: (lhs, rhs) => mod(lhs - rhs, ORDER),
        mul: (lhs, rhs) => mod(lhs * rhs, ORDER),
        pow: (num, power) => FpPow(f, num, power),
        div: (lhs, rhs) => mod(lhs * invert(rhs, ORDER), ORDER),
        // Same as above, but doesn't normalize
        sqrN: (num) => num * num,
        addN: (lhs, rhs) => lhs + rhs,
        subN: (lhs, rhs) => lhs - rhs,
        mulN: (lhs, rhs) => lhs * rhs,
        inv: (num) => invert(num, ORDER),
        sqrt: redef.sqrt ||
            ((n) => {
                if (!sqrtP)
                    sqrtP = FpSqrt(ORDER);
                return sqrtP(f, n);
            }),
        toBytes: (num) => (isLE ? numberToBytesLE(num, BYTES) : numberToBytesBE(num, BYTES)),
        fromBytes: (bytes) => {
            if (bytes.length !== BYTES)
                throw new Error('Field.fromBytes: expected ' + BYTES + ' bytes, got ' + bytes.length);
            return isLE ? bytesToNumberLE(bytes) : bytesToNumberBE(bytes);
        },
        // TODO: we don't need it here, move out to separate fn
        invertBatch: (lst) => FpInvertBatch(f, lst),
        // We can't move this out because Fp6, Fp12 implement it
        // and it's unclear what to return in there.
        cmov: (a, b, c) => (c ? b : a),
    });
    return Object.freeze(f);
}
export function FpSqrtOdd(Fp, elm) {
    if (!Fp.isOdd)
        throw new Error("Field doesn't have isOdd");
    const root = Fp.sqrt(elm);
    return Fp.isOdd(root) ? root : Fp.neg(root);
}
export function FpSqrtEven(Fp, elm) {
    if (!Fp.isOdd)
        throw new Error("Field doesn't have isOdd");
    const root = Fp.sqrt(elm);
    return Fp.isOdd(root) ? Fp.neg(root) : root;
}
/**
 * "Constant-time" private key generation utility.
 * Same as mapKeyToField, but accepts less bytes (40 instead of 48 for 32-byte field).
 * Which makes it slightly more biased, less secure.
 * @deprecated use `mapKeyToField` instead
 */
export function hashToPrivateScalar(hash, groupOrder, isLE = false) {
    hash = ensureBytes('privateHash', hash);
    const hashLen = hash.length;
    const minLen = nLength(groupOrder).nByteLength + 8;
    if (minLen < 24 || hashLen < minLen || hashLen > 1024)
        throw new Error('hashToPrivateScalar: expected ' + minLen + '-1024 bytes of input, got ' + hashLen);
    const num = isLE ? bytesToNumberLE(hash) : bytesToNumberBE(hash);
    return mod(num, groupOrder - _1n) + _1n;
}
/**
 * Returns total number of bytes consumed by the field element.
 * For example, 32 bytes for usual 256-bit weierstrass curve.
 * @param fieldOrder number of field elements, usually CURVE.n
 * @returns byte length of field
 */
export function getFieldBytesLength(fieldOrder) {
    if (typeof fieldOrder !== 'bigint')
        throw new Error('field order must be bigint');
    const bitLength = fieldOrder.toString(2).length;
    return Math.ceil(bitLength / 8);
}
/**
 * Returns minimal amount of bytes that can be safely reduced
 * by field order.
 * Should be 2^-128 for 128-bit curve such as P256.
 * @param fieldOrder number of field elements, usually CURVE.n
 * @returns byte length of target hash
 */
export function getMinHashLength(fieldOrder) {
    const length = getFieldBytesLength(fieldOrder);
    return length + Math.ceil(length / 2);
}
/**
 * "Constant-time" private key generation utility.
 * Can take (n + n/2) or more bytes of uniform input e.g. from CSPRNG or KDF
 * and convert them into private scalar, with the modulo bias being negligible.
 * Needs at least 48 bytes of input for 32-byte private key.
 * https://research.kudelskisecurity.com/2020/07/28/the-definitive-guide-to-modulo-bias-and-how-to-avoid-it/
 * FIPS 186-5, A.2 https://csrc.nist.gov/publications/detail/fips/186/5/final
 * RFC 9380, https://www.rfc-editor.org/rfc/rfc9380#section-5
 * @param hash hash output from SHA3 or a similar function
 * @param groupOrder size of subgroup - (e.g. secp256k1.CURVE.n)
 * @param isLE interpret hash bytes as LE num
 * @returns valid private scalar
 */
export function mapHashToField(key, fieldOrder, isLE = false) {
    const len = key.length;
    const fieldLen = getFieldBytesLength(fieldOrder);
    const minLen = getMinHashLength(fieldOrder);
    // No small numbers: need to understand bias story. No huge numbers: easier to detect JS timings.
    if (len < 16 || len < minLen || len > 1024)
        throw new Error('expected ' + minLen + '-1024 bytes of input, got ' + len);
    const num = isLE ? bytesToNumberLE(key) : bytesToNumberBE(key);
    // `mod(x, 11)` can sometimes produce 0. `mod(x, 10) + 1` is the same, but no 0
    const reduced = mod(num, fieldOrder - _1n) + _1n;
    return isLE ? numberToBytesLE(reduced, fieldLen) : numberToBytesBE(reduced, fieldLen);
}
//# sourceMappingURL=modular.js.map

Выполнить команду


Для локальной разработки. Не используйте в интернете!