PHP WebShell

Текущая директория: /opt/BitGoJS/node_modules/stellar-sdk/node_modules/bignumber.js

Просмотр файла: bignumber.d.ts

// Type definitions for Bignumber.js
// Project: bignumber.js
// Definitions by: Felix Becker https://github.com/felixfbecker

export interface Format {
    /** the decimal separator */
    decimalSeparator?: string;
    /** the grouping separator of the integer part */
    groupSeparator?: string;
    /** the primary grouping size of the integer part */
    groupSize?: number;
    /** the secondary grouping size of the integer part */
    secondaryGroupSize?: number;
    /** the grouping separator of the fraction part */
    fractionGroupSeparator?: string;
    /** the grouping size of the fraction part */
    fractionGroupSize?: number;
}

export interface Configuration {

    /**
     * integer, `0` to `1e+9` inclusive
     *
     * The maximum number of decimal places of the results of operations involving division, i.e. division, square root
     * and base conversion operations, and power operations with negative exponents.
     *
     * ```ts
     * BigNumber.config({ DECIMAL_PLACES: 5 })
     * BigNumber.config(5)    // equivalent
     * ```
     * @default 20
     */
    DECIMAL_PLACES?: number;

    /**
     * The rounding mode used in the above operations and the default rounding mode of round, toExponential, toFixed,
     * toFormat and toPrecision. The modes are available as enumerated properties of the BigNumber constructor.
     * @default [[RoundingMode.ROUND_HALF_UP]]
     */
    ROUNDING_MODE?: RoundingMode;

    /**
     *  - `number`: integer, magnitude `0` to `1e+9` inclusive
     *  - `number[]`: [ integer `-1e+9` to `0` inclusive, integer `0` to `1e+9` inclusive ]
     *
     * The exponent value(s) at which `toString` returns exponential notation.
     *
     * If a single number is assigned, the value
     * is the exponent magnitude.
     *
     * If an array of two numbers is assigned then the first number is the negative exponent
     * value at and beneath which exponential notation is used, and the second number is the positive exponent value at
     * and above which the same.
     *
     * For example, to emulate JavaScript numbers in terms of the exponent values at which
     * they begin to use exponential notation, use [-7, 20].
     *
     * ```ts
     * BigNumber.config({ EXPONENTIAL_AT: 2 })
     * new BigNumber(12.3)         // '12.3'        e is only 1
     * new BigNumber(123)          // '1.23e+2'
     * new BigNumber(0.123)        // '0.123'       e is only -1
     * new BigNumber(0.0123)       // '1.23e-2'
     *
     * BigNumber.config({ EXPONENTIAL_AT: [-7, 20] })
     * new BigNumber(123456789)    // '123456789'   e is only 8
     * new BigNumber(0.000000123)  // '1.23e-7'
     *
     * // Almost never return exponential notation:
     * BigNumber.config({ EXPONENTIAL_AT: 1e+9 })
     *
     * // Always return exponential notation:
     * BigNumber.config({ EXPONENTIAL_AT: 0 })
     * ```
     * Regardless of the value of `EXPONENTIAL_AT`, the `toFixed` method will always return a value in normal notation
     * and the `toExponential` method will always return a value in exponential form.
     *
     * Calling `toString` with a base argument, e.g. `toString(10)`, will also always return normal notation.
     *
     * @default `[-7, 20]`
     */
    EXPONENTIAL_AT?: number | [number, number];

    /**
     *  - number: integer, magnitude `1` to `1e+9` inclusive
     *  - number[]: [ integer `-1e+9` to `-1` inclusive, integer `1` to `1e+9` inclusive ]
     *
     * The exponent value(s) beyond which overflow to `Infinity` and underflow to zero occurs.
     *
     * If a single number is
     * assigned, it is the maximum exponent magnitude: values wth a positive exponent of greater magnitude become
     * Infinity and those with a negative exponent of greater magnitude become zero.
     *
     * If an array of two numbers is
     * assigned then the first number is the negative exponent limit and the second number is the positive exponent
     * limit.
     *
     * For example, to emulate JavaScript numbers in terms of the exponent values at which they become zero and
     * Infinity, use [-324, 308].
     *
     * ```ts
     * BigNumber.config({ RANGE: 500 })
     * BigNumber.config().RANGE     // [ -500, 500 ]
     * new BigNumber('9.999e499')   // '9.999e+499'
     * new BigNumber('1e500')       // 'Infinity'
     * new BigNumber('1e-499')      // '1e-499'
     * new BigNumber('1e-500')      // '0'
     * BigNumber.config({ RANGE: [-3, 4] })
     * new BigNumber(99999)         // '99999'      e is only 4
     * new BigNumber(100000)        // 'Infinity'   e is 5
     * new BigNumber(0.001)         // '0.01'       e is only -3
     * new BigNumber(0.0001)        // '0'          e is -4
     * ```
     *
     * The largest possible magnitude of a finite BigNumber is `9.999...e+1000000000`.
     *
     * The smallest possible magnitude of a non-zero BigNumber is `1e-1000000000`.
     *
     * @default `[-1e+9, 1e+9]`
     */
    RANGE?: number | [number, number];

    /**
     *
     * The value that determines whether BigNumber Errors are thrown. If ERRORS is false, no errors will be thrown.
     * `true`, `false`, `0` or `1`.
     * ```ts
     * BigNumber.config({ ERRORS: false })
     * ```
     *
     * @default `true`
     */
    ERRORS?: boolean | number;

    /**
     * `true`, `false`, `0` or  `1`.
     *
     * The value that determines whether cryptographically-secure pseudo-random number generation is used.
     *
     * If `CRYPTO` is set to `true` then the random method will generate random digits using `crypto.getRandomValues` in
     * browsers that support it, or `crypto.randomBytes` if using a version of Node.js that supports it.
     *
     * If neither function is supported by the host environment then attempting to set `CRYPTO` to `true` will fail, and
     * if [[Configuration.ERRORS]] is `true` an exception will be thrown.
     *
     * If `CRYPTO` is `false` then the source of randomness used will be `Math.random` (which is assumed to generate at
     * least 30 bits of randomness).
     *
     * See [[BigNumber.random]].
     *
     * ```ts
     * BigNumber.config({ CRYPTO: true })
     * BigNumber.config().CRYPTO       // true
     * BigNumber.random()              // 0.54340758610486147524
     * ```
     *
     * @default `false`
     */
    CRYPTO?: boolean | number;

    /**
     * The modulo mode used when calculating the modulus: `a mod n`.
     *
     * The quotient, `q = a / n`, is calculated according to
     * the [[Configuration.ROUNDING_MODE]] that corresponds to the chosen MODULO_MODE.
     *
     * The remainder, r, is calculated as: `r = a - n * q`.
     *
     * The modes that are most commonly used for the modulus/remainder operation are shown in the following table.
     * Although the other rounding modes can be used, they may not give useful results.
     *
     *  Property          | Value | Description
     * -------------------|:-----:|---------------------------------------------------------------------------------------
     *  `ROUND_UP`        |   0   | The remainder is positive if the dividend is negative, otherwise it is negative.
     *  `ROUND_DOWN`      |   1   | The remainder has the same sign as the dividend. This uses 'truncating division' and matches the behaviour of JavaScript's remainder operator `%`.
     *  `ROUND_FLOOR`     |   3   | The remainder has the same sign as the divisor.
     *                    |       | This matches Python's % operator.
     *  `ROUND_HALF_EVEN` |   6   | The IEEE 754 remainder function.
     *  `EUCLID`          |   9   | The remainder is always positive. Euclidian division: `q = sign(n) * floor(a / abs(n))`
     *
     * The rounding/modulo modes are available as enumerated properties of the BigNumber constructor.
     *
     * See [[BigNumber.modulo]]
     *
     * ```ts
     * BigNumber.config({ MODULO_MODE: BigNumber.EUCLID })
     * BigNumber.config({ MODULO_MODE: 9 })          // equivalent
     * ```
     *
     * @default [[RoundingMode.ROUND_DOWN]]
     */
    MODULO_MODE?: RoundingMode;

    /**
     * integer, `0` to `1e+9` inclusive.
     *
     * The maximum number of significant digits of the result of the power operation (unless a modulus is specified).
     *
     * If set to 0, the number of signifcant digits will not be limited.
     *
     * See [[BigNumber.toPower]]
     *
     * ```ts
     * BigNumber.config({ POW_PRECISION: 100 })
     * ```
     *
     * @default 100
     */
    POW_PRECISION?: number;

    /**
     * The FORMAT object configures the format of the string returned by the `toFormat` method. The example below shows
     * the properties of the FORMAT object that are recognised, and their default values. Unlike the other configuration
     * properties, the values of the properties of the FORMAT object will not be checked for validity. The existing
     * FORMAT object will simply be replaced by the object that is passed in. Note that all the properties shown below
     * do not have to be included.
     *
     * See `toFormat` for examples of usage.
     *
     * ```ts
     * BigNumber.config({
     *     FORMAT: {
     *         // the decimal separator
     *         decimalSeparator: '.',
     *         // the grouping separator of the integer part
     *         groupSeparator: ',',
     *         // the primary grouping size of the integer part
     *         groupSize: 3,
     *         // the secondary grouping size of the integer part
     *         secondaryGroupSize: 0,
     *         // the grouping separator of the fraction part
     *         fractionGroupSeparator: ' ',
     *         // the grouping size of the fraction part
     *         fractionGroupSize: 0
     *     }
     * });
     * ```
     */
    FORMAT?: Format;
}

/**
 * The library's enumerated rounding modes are stored as properties of the constructor.
 * (They are not referenced internally by the library itself.)
 * Rounding modes 0 to 6 (inclusive) are the same as those of Java's BigDecimal class.
 */
declare enum RoundingMode {
    /** Rounds away from zero */
    ROUND_UP = 0,
    /** Rounds towards zero */
    ROUND_DOWN = 1,
    /** Rounds towards Infinity */
    ROUND_CEIL = 2,
    /** Rounds towards -Infinity */
    ROUND_FLOOR = 3,
    /**
     * Rounds towards nearest neighbour. If equidistant, rounds away from zero
     */
    ROUND_HALF_UP = 4,
    /**
     * Rounds towards nearest neighbour. If equidistant, rounds towards zero
     */
    ROUND_HALF_DOWN = 5,
    /**
     * Rounds towards nearest neighbour. If equidistant, rounds towards even neighbour
     */
    ROUND_HALF_EVEN = 6,
    /**
     * Rounds towards nearest neighbour. If equidistant, rounds towards `Infinity`
     */
    ROUND_HALF_CEIL = 7,
    /**
     * Rounds towards nearest neighbour. If equidistant, rounds towards `-Infinity`
     */
    ROUND_HALF_FLOOR = 8,
    /**
     * The remainder is always positive. Euclidian division: `q = sign(n) * floor(a / abs(n))`
     */
    EUCLID = 9
}

export class BigNumber {

    /** Rounds away from zero */
    static ROUND_UP: RoundingMode;

    /** Rounds towards zero */
    static ROUND_DOWN: RoundingMode;

    /** Rounds towards Infinity */
    static ROUND_CEIL: RoundingMode;

    /** Rounds towards -Infinity */
    static ROUND_FLOOR: RoundingMode;

    /**
     * Rounds towards nearest neighbour. If equidistant, rounds away from zero
     */
    static ROUND_HALF_UP: RoundingMode;

    /**
     * Rounds towards nearest neighbour. If equidistant, rounds towards zero
     */
    static ROUND_HALF_DOWN: RoundingMode;

    /**
     * Rounds towards nearest neighbour. If equidistant, rounds towards even neighbour
     */
    static ROUND_HALF_EVEN: RoundingMode;

    /**
     * Rounds towards nearest neighbour. If equidistant, rounds towards `Infinity`
     */
    static ROUND_HALF_CEIL: RoundingMode;

    /**
     * Rounds towards nearest neighbour. If equidistant, rounds towards `-Infinity`
     */
    static ROUND_HALF_FLOOR: RoundingMode;

    /**
     * The remainder is always positive. Euclidian division: `q = sign(n) * floor(a / abs(n))`
     */
    static EUCLID: RoundingMode;

    /**
     * Returns a new independent BigNumber constructor with configuration as described by `obj` (see `config`), or with
     * the default configuration if `obj` is `null` or `undefined`.
     *
     * ```ts
     * BigNumber.config({ DECIMAL_PLACES: 5 })
     * BN = BigNumber.another({ DECIMAL_PLACES: 9 })
     *
     * x = new BigNumber(1)
     * y = new BN(1)
     *
     * x.div(3)                        // 0.33333
     * y.div(3)                        // 0.333333333
     *
     * // BN = BigNumber.another({ DECIMAL_PLACES: 9 }) is equivalent to:
     * BN = BigNumber.another()
     * BN.config({ DECIMAL_PLACES: 9 })
     * ```
     */
    static another(config?: Configuration): typeof BigNumber;

    /**
     * Configures the 'global' settings for this particular BigNumber constructor. Returns an object with the above
     * properties and their current values. If the value to be assigned to any of the above properties is `null` or
     * `undefined` it is ignored. See Errors for the treatment of invalid values.
     */
    static config(config?: Configuration): Configuration;

    /**
     * Configures the 'global' settings for this particular BigNumber constructor. Returns an object with the above
     * properties and their current values. If the value to be assigned to any of the above properties is `null` or
     * `undefined` it is ignored. See Errors for the treatment of invalid values.
     */
    static config(
        decimalPlaces?: number,
        roundingMode?: RoundingMode,
        exponentialAt?: number | [number, number],
        range?: number | [number, number],
        errors?: boolean | number,
        crypto?: boolean | number,
        moduloMode?: RoundingMode,
        powPrecision?: number,
        format?: Format
    ): Configuration;

    /**
     * Returns a BigNumber whose value is the maximum of `arg1`, `arg2`,... . The argument to this method can also be an
     * array of values. The return value is always exact and unrounded.
     *
     * ```ts
     * x = new BigNumber('3257869345.0378653')
     * BigNumber.max(4e9, x, '123456789.9')          // '4000000000'
     *
     * arr = [12, '13', new BigNumber(14)]
     * BigNumber.max(arr)                            // '14'
     * ```
     */
    static max(...args: Array<number | string | BigNumber>): BigNumber;
    static max(args: Array<number | string | BigNumber>): BigNumber;

    /**
     * See BigNumber for further parameter details. Returns a BigNumber whose value is the minimum of arg1, arg2,... .
     * The argument to this method can also be an array of values. The return value is always exact and unrounded.
     *
     * ```ts
     * x = new BigNumber('3257869345.0378653')
     * BigNumber.min(4e9, x, '123456789.9')          // '123456789.9'
     *
     * arr = [2, new BigNumber(-14), '-15.9999', -12]
     * BigNumber.min(arr)                            // '-15.9999'
     * ```
     */
    static min(...args: Array<number | string | BigNumber>): BigNumber;
    static min(args: Array<number | string | BigNumber>): BigNumber;

    /**
     * Returns a new BigNumber with a pseudo-random value equal to or greater than 0 and less than 1.
     *
     * The return value
     * will have dp decimal places (or less if trailing zeros are produced). If dp is omitted then the number of decimal
     * places will default to the current `DECIMAL_PLACES` setting.
     *
     * Depending on the value of this BigNumber constructor's
     * `CRYPTO` setting and the support for the crypto object in the host environment, the random digits of the return
     * value are generated by either `Math.random` (fastest), `crypto.getRandomValues` (Web Cryptography API in recent
     * browsers) or  `crypto.randomBytes` (Node.js).
     *
     * If `CRYPTO` is true, i.e. one of the crypto methods is to be used, the
     * value of a returned BigNumber should be cryptographically-secure and statistically indistinguishable from a
     * random value.
     *
     * ```ts
     * BigNumber.config({ DECIMAL_PLACES: 10 })
     * BigNumber.random()              // '0.4117936847'
     * BigNumber.random(20)            // '0.78193327636914089009'
     * ```
     *
     * @param dp integer, `0` to `1e+9` inclusive
     */
    static random(dp?: number): BigNumber;

    /**
     * Coefficient: Array of base `1e14` numbers or `null`
     * @readonly
     */
    c: number[];

    /**
     * Exponent: Integer, `-1000000000` to `1000000000` inclusive or `null`
     * @readonly
     */
    e: number;

    /**
     * Sign: `-1`, `1` or `null`
     * @readonly
     */
    s: number;

    /**
     * Returns a new instance of a BigNumber object. If a base is specified, the value is rounded according to the
     * current [[Configuration.DECIMAL_PLACES]] and [[Configuration.ROUNDING_MODE]] configuration. See Errors for the treatment of an invalid value or base.
     *
     * ```ts
     * x = new BigNumber(9)                       // '9'
     * y = new BigNumber(x)                       // '9'
     *
     * // 'new' is optional if ERRORS is false
     * BigNumber(435.345)                         // '435.345'
     *
     * new BigNumber('5032485723458348569331745.33434346346912144534543')
     * new BigNumber('4.321e+4')                  // '43210'
     * new BigNumber('-735.0918e-430')            // '-7.350918e-428'
     * new BigNumber(Infinity)                    // 'Infinity'
     * new BigNumber(NaN)                         // 'NaN'
     * new BigNumber('.5')                        // '0.5'
     * new BigNumber('+2')                        // '2'
     * new BigNumber(-10110100.1, 2)              // '-180.5'
     * new BigNumber(-0b10110100.1)               // '-180.5'
     * new BigNumber('123412421.234324', 5)       // '607236.557696'
     * new BigNumber('ff.8', 16)                  // '255.5'
     * new BigNumber('0xff.8')                    // '255.5'
     * ```
     *
     * The following throws `not a base 2 number` if [[Configuration.ERRORS]] is true, otherwise it returns a BigNumber with value `NaN`.
     *
     * ```ts
     * new BigNumber(9, 2)
     * ```
     *
     * The following throws `number type has more than 15 significant digits` if [[Configuration.ERRORS]] is true, otherwise it returns a BigNumber with value `96517860459076820`.
     *
     * ```ts
     * new BigNumber(96517860459076817.4395)
     * ```
     *
     * The following throws `not a number` if [[Configuration.ERRORS]] is true, otherwise it returns a BigNumber with value `NaN`.
     *
     * ```ts
     * new BigNumber('blurgh')
     * ```
     *
     * A value is only rounded by the constructor if a base is specified.
     *
     * ```ts
     * BigNumber.config({ DECIMAL_PLACES: 5 })
     * new BigNumber(1.23456789)                  // '1.23456789'
     * new BigNumber(1.23456789, 10)              // '1.23457'
     * ```
     *
     * @param value A numeric value.
     *
     * Legitimate values include `±0`, `±Infinity` and `NaN`.
     *
     * Values of type `number` with more than 15 significant digits are considered invalid (if [[Configuration.ERRORS]]
     * is `true`) as calling `toString` or `valueOf` on such numbers may not result in the intended value.
     *
     * There is no limit to the number of digits of a value of type `string` (other than that of JavaScript's maximum
     * array size).
     *
     * Decimal string values may be in exponential, as well as normal (fixed-point) notation. Non-decimal values must be
     * in normal notation. String values in hexadecimal literal form, e.g. `'0xff'`, are valid, as are string values
     * with the octal and binary prefixs `'0o'` and `'0b'`.
     *
     * String values in octal literal form without the prefix will be interpreted as decimals, e.g. `'011'` is
     * interpreted as 11, not 9.
     *
     * Values in any base may have fraction digits.
     *
     * For bases from 10 to 36, lower and/or upper case letters can be used to represent values from 10 to 35.
     *
     * For bases above 36, a-z represents values from 10 to 35, A-Z from 36 to 61, and $ and _ represent 62 and 63
     * respectively (this can be changed by editing the ALPHABET variable near the top of the source file).
     *
     * @param base integer, 2 to 64 inclusive
     *
     * The base of value. If base is omitted, or is `null` or `undefined`, base 10 is assumed.
     */
    constructor(value: number | string | BigNumber, base?: number);

    /**
     * Returns a BigNumber whose value is the absolute value, i.e. the magnitude, of the value of this BigNumber. The
     * return value is always exact and unrounded.
     * ```ts
     * x = new BigNumber(-0.8)
     * y = x.absoluteValue()           // '0.8'
     * z = y.abs()                     // '0.8'
     * ```
     * @alias [[BigNumber.abs]]
     */
    absoluteValue(): BigNumber;

    /**
     * See [[BigNumber.absoluteValue]]
     */
    abs(): BigNumber;

    /**
     * See [[plus]]
     */
    add(n: number | string | BigNumber, base?: number): BigNumber;

    /**
     * Returns a BigNumber whose value is the value of this BigNumber rounded to a whole number in the direction of
     * positive `Infinity`.
     *
     * ```ts
     * x = new BigNumber(1.3)
     * x.ceil()                        // '2'
     * y = new BigNumber(-1.8)
     * y.ceil()                        // '-1'
     * ```
     */
    ceil(): BigNumber;

    /**
     *  Returns |                                                               |
     * :-------:|---------------------------------------------------------------|
     *     1    | If the value of this BigNumber is greater than the value of n
     *    -1    | If the value of this BigNumber is less than the value of n
     *     0    | If this BigNumber and n have the same value
     *   null   | If the value of either this BigNumber or n is NaN
     *
     * ```ts
     * x = new BigNumber(Infinity)
     * y = new BigNumber(5)
     * x.comparedTo(y)                 // 1
     * x.comparedTo(x.minus(1))        // 0
     * y.cmp(NaN)                      // null
     * y.cmp('110', 2)                 // -1
     * ```
     *
     * @alias [[cmp]]
     */
    comparedTo(n: number | string | BigNumber, base?: number): number;

    /**
     * See [[comparedTo]]
     */
    cmp(n: number | string | BigNumber, base?: number): number;

    /**
     * Return the number of decimal places of the value of this BigNumber, or `null` if the value of this BigNumber is
     * `±Infinity` or `NaN`.
     *
     * ```ts
     * x = new BigNumber(123.45)
     * x.decimalPlaces()               // 2
     * y = new BigNumber('9.9e-101')
     * y.dp()                          // 102
     * ```
     *
     * @alias [[dp]]
     */
    decimalPlaces(): number;

    /**
     * See [[decimalPlaces]]
     */
    dp(): number;

    /**
     * Returns a BigNumber whose value is the value of this BigNumber divided by n, rounded according to the current
     * DECIMAL_PLACES and ROUNDING_MODE configuration.
     *
     * ```ts
     * x = new BigNumber(355)
     * y = new BigNumber(113)
     * x.dividedBy(y)                  // '3.14159292035398230088'
     * x.div(5)                        // '71'
     * x.div(47, 16)                   // '5'
     * ```
     *
     * @alias [[div]]
     */
    dividedBy(n: number | string | BigNumber, base?: number): BigNumber;

    /**
     * See [[dividedBy]]
     */
    div(n: number | string | BigNumber, base?: number): BigNumber;

    /**
     * Return a BigNumber whose value is the integer part of dividing the value of this BigNumber by n.
     *
     * ```ts
     * x = new BigNumber(5)
     * y = new BigNumber(3)
     * x.dividedToIntegerBy(y)         // '1'
     * x.divToInt(0.7)                 // '7'
     * x.divToInt('0.f', 16)           // '5'
     * ```
     *
     * @alias [[divToInt]]
     */
    dividedToIntegerBy(n: number | string | BigNumber, base?: number): BigNumber;

    /**
     * See [[dividedToIntegerBy]]
     */
    divToInt(n: number | string | BigNumber, base?: number): BigNumber;

    /**
     * Returns true if the value of this BigNumber equals the value of `n`, otherwise returns `false`. As with JavaScript,
     * `NaN` does not equal `NaN`.
     *
     * Note: This method uses the [[comparedTo]] internally.
     *
     * ```ts
     * 0 === 1e-324                    // true
     * x = new BigNumber(0)
     * x.equals('1e-324')              // false
     * BigNumber(-0).eq(x)             // true  ( -0 === 0 )
     * BigNumber(255).eq('ff', 16)     // true
     *
     * y = new BigNumber(NaN)
     * y.equals(NaN)                   // false
     * ```
     *
     * @alias [[eq]]
     */
    equals(n: number | string | BigNumber, base?: number): boolean;

    /**
     * See [[equals]]
     */
    eq(n: number | string | BigNumber, base?: number): boolean;

    /**
     * Returns a BigNumber whose value is the value of this BigNumber rounded to a whole number in the direction of
     * negative `Infinity`.
     *
     * ```ts
     * x = new BigNumber(1.8)
     * x.floor()                       // '1'
     * y = new BigNumber(-1.3)
     * y.floor()                       // '-2'
     * ```
     */
    floor(): BigNumber;

    /**
     * Returns `true` if the value of this BigNumber is greater than the value of `n`, otherwise returns `false`.
     *
     * Note: This method uses the comparedTo method internally.
     *
     * ```ts
     * 0.1 > (0.3 - 0.2)                           // true
     * x = new BigNumber(0.1)
     * x.greaterThan(BigNumber(0.3).minus(0.2))    // false
     * BigNumber(0).gt(x)                          // false
     * BigNumber(11, 3).gt(11.1, 2)                // true
     * ```
     *
     * @alias [[gt]]
     */
    greaterThan(n: number | string | BigNumber, base?: number): boolean;

    /**
     * See [[greaterThan]]
     */
    gt(n: number | string | BigNumber, base?: number): boolean;

    /**
     * Returns `true` if the value of this BigNumber is greater than or equal to the value of `n`, otherwise returns `false`.
     *
     * Note: This method uses the comparedTo method internally.
     *
     * @alias [[gte]]
     */
    greaterThanOrEqualTo(n: number | string | BigNumber, base?: number): boolean;

    /**
     * See [[greaterThanOrEqualTo]]
     */
    gte(n: number | string | BigNumber, base?: number): boolean;

    /**
     * Returns true if the value of this BigNumber is a finite number, otherwise returns false. The only possible
     * non-finite values of a BigNumber are `NaN`, `Infinity` and `-Infinity`.
     *
     * Note: The native method `isFinite()` can be used if `n <= Number.MAX_VALUE`.
     */
    isFinite(): boolean;

    /**
     * Returns true if the value of this BigNumber is a whole number, otherwise returns false.
     * @alias [[isInt]]
     */
    isInteger(): boolean;

    /**
     * See [[isInteger]]
     */
    isInt(): boolean;

    /**
     * Returns `true` if the value of this BigNumber is `NaN`, otherwise returns `false`.
     *
     * Note: The native method isNaN() can also be used.
     */
    isNaN(): boolean;

    /**
     * Returns true if the value of this BigNumber is negative, otherwise returns false.
     *
     * Note: `n < 0` can be used if `n <= * -Number.MIN_VALUE`.
     *
     * @alias [[isNeg]]
     */
    isNegative(): boolean;

    /**
     * See [[isNegative]]
     */
    isNeg(): boolean;

    /**
     * Returns true if the value of this BigNumber is zero or minus zero, otherwise returns false.
     *
     * Note: `n == 0` can be used if `n >= Number.MIN_VALUE`.
     */
    isZero(): boolean;

    /**
     * Returns true if the value of this BigNumber is less than the value of n, otherwise returns false.
     *
     * Note: This method uses [[comparedTo]] internally.
     *
     * @alias [[lt]]
     */
    lessThan(n: number | string | BigNumber, base?: number): boolean;

    /**
     * See [[lessThan]]
     */
    lt(n: number | string | BigNumber, base?: number): boolean;

    /**
     * Returns true if the value of this BigNumber is less than or equal the value of n, otherwise returns false.
     *
     * Note: This method uses [[comparedTo]] internally.
     */
    lessThanOrEqualTo(n: number | string | BigNumber, base?: number): boolean;

    /**
     * See [[lessThanOrEqualTo]]
     */
    lte(n: number | string | BigNumber, base?: number): boolean;

    /**
     * Returns a BigNumber whose value is the value of this BigNumber minus `n`.
     *
     * The return value is always exact and unrounded.
     *
     * @alias [[sub]]
     */
    minus(n: number | string | BigNumber, base?: number): BigNumber;

    /**
     * Returns a BigNumber whose value is the value of this BigNumber modulo n, i.e. the integer remainder of dividing
     * this BigNumber by n.
     *
     * The value returned, and in particular its sign, is dependent on the value of the [[Configuration.MODULO_MODE]]
     * setting of this BigNumber constructor. If it is `1` (default value), the result will have the same sign as this
     * BigNumber, and it will match that of Javascript's `%` operator (within the limits of double precision) and
     * BigDecimal's remainder method.
     *
     * The return value is always exact and unrounded.
     *
     * ```ts
     * 1 % 0.9                         // 0.09999999999999998
     * x = new BigNumber(1)
     * x.modulo(0.9)                   // '0.1'
     * y = new BigNumber(33)
     * y.mod('a', 33)                  // '3'
     * ```
     *
     * @alias [[mod]]
     */
    modulo(n: number | string | BigNumber, base?: number): BigNumber;

    /**
     * See [[modulo]]
     */
    mod(n: number | string | BigNumber, base?: number): BigNumber;

    /**
     * See [[times]]
     */
    mul(n: number | string | BigNumber, base?: number): BigNumber;

    /**
     * Returns a BigNumber whose value is the value of this BigNumber negated, i.e. multiplied by -1.
     *
     * ```ts
     * x = new BigNumber(1.8)
     * x.negated()                     // '-1.8'
     * y = new BigNumber(-1.3)
     * y.neg()                         // '1.3'
     * ```
     *
     * @alias [[neg]]
     */
    negated(): BigNumber;

    /**
     * See [[negated]]
     */
    neg(): BigNumber;

    /**
     * Returns a BigNumber whose value is the value of this BigNumber plus `n`.
     *
     * The return value is always exact and unrounded.
     *
     * @alias [[add]]
     */
    plus(n: number | string | BigNumber, base?: number): BigNumber;

    /**
     * If z is true or 1 then any trailing zeros of the integer part of a number are counted as significant digits,
     * otherwise they are not.
     *
     * @param z true, false, 0 or 1
     * @alias [[sd]]
     */
    precision(z?: boolean | number): number;

    /**
     * See [[precision]]
     */
    sd(z?: boolean | number): number;

    /**
     * Returns a BigNumber whose value is the value of this BigNumber rounded by rounding mode rm to a maximum of dp
     * decimal places.
     *
     *  - if dp is omitted, or is null or undefined, the return value is n rounded to a whole number.
     *  - if rm is omitted, or is null or undefined, ROUNDING_MODE is used.
     *
     * ```ts
     * x = 1234.56
     * Math.round(x)                             // 1235
     * y = new BigNumber(x)
     * y.round()                                 // '1235'
     * y.round(1)                                // '1234.6'
     * y.round(2)                                // '1234.56'
     * y.round(10)                               // '1234.56'
     * y.round(0, 1)                             // '1234'
     * y.round(0, 6)                             // '1235'
     * y.round(1, 1)                             // '1234.5'
     * y.round(1, BigNumber.ROUND_HALF_EVEN)     // '1234.6'
     * y                                         // '1234.56'
     * ```
     *
     * @param dp integer, 0 to 1e+9 inclusive
     * @param rm integer, 0 to 8 inclusive
     */
    round(dp?: number, rm?: number): BigNumber;

    /**
     * Returns a BigNumber whose value is the value of this BigNumber shifted n places.
     *
     * The shift is of the decimal point, i.e. of powers of ten, and is to the left if n is negative or to the right if
     * n is positive. The return value is always exact and unrounded.
     *
     * @param n integer, -9007199254740991 to 9007199254740991 inclusive
     */
    shift(n: number): BigNumber;

    /**
     * Returns a BigNumber whose value is the square root of the value of this BigNumber, rounded according to the
     * current DECIMAL_PLACES and ROUNDING_MODE configuration.
     *
     * The return value will be correctly rounded, i.e. rounded
     * as if the result was first calculated to an infinite number of correct digits before rounding.
     *
     * @alias [[sqrt]]
     */
    squareRoot(): BigNumber;

    /**
     * See [[squareRoot]]
     */
    sqrt(): BigNumber;

    /**
     * See [[minus]]
     */
    sub(n: number | string | BigNumber, base?: number): BigNumber;

    /**
     * Returns a BigNumber whose value is the value of this BigNumber times n.
     *
     * The return value is always exact and unrounded.
     *
     * @alias [[mul]]
     */
    times(n: number | string | BigNumber, base?: number): BigNumber;

    /**
     * Returns a BigNumber whose value is the value of this BigNumber rounded to sd significant digits using rounding mode rm.
     *
     * If sd is omitted or is null or undefined, the return value will not be rounded.
     *
     * If rm is omitted or is null or undefined, ROUNDING_MODE will be used.
     *
     * ```ts
     * BigNumber.config({ precision: 5, rounding: 4 })
     * x = new BigNumber(9876.54321)
     *
     * x.toDigits()                          // '9876.5'
     * x.toDigits(6)                         // '9876.54'
     * x.toDigits(6, BigNumber.ROUND_UP)     // '9876.55'
     * x.toDigits(2)                         // '9900'
     * x.toDigits(2, 1)                      // '9800'
     * x                                     // '9876.54321'
     * ```
     *
     * @param sd integer, 1 to 1e+9 inclusive
     * @param rm integer, 0 to 8 inclusive
     */
    toDigits(sd?: number, rm?: number): BigNumber;

    /**
     * Returns a string representing the value of this BigNumber in exponential notation rounded using rounding mode rm
     * to dp decimal places, i.e with one digit before the decimal point and dp digits after it.
     *
     * If the value of this BigNumber in exponential notation has fewer than dp fraction digits, the return value will
     * be appended with zeros accordingly.
     *
     * If dp is omitted, or is null or undefined, the number of digits after the decimal point defaults to the minimum
     * number of digits necessary to represent the value exactly.
     *
     * If rm is omitted or is null or undefined, ROUNDING_MODE is used.
     *
     * ```ts
     * x = 45.6
     * y = new BigNumber(x)
     * x.toExponential()               // '4.56e+1'
     * y.toExponential()               // '4.56e+1'
     * x.toExponential(0)              // '5e+1'
     * y.toExponential(0)              // '5e+1'
     * x.toExponential(1)              // '4.6e+1'
     * y.toExponential(1)              // '4.6e+1'
     * y.toExponential(1, 1)           // '4.5e+1'  (ROUND_DOWN)
     * x.toExponential(3)              // '4.560e+1'
     * y.toExponential(3)              // '4.560e+1'
     * ```
     *
     * @param dp integer, 0 to 1e+9 inclusive
     * @param rm integer, 0 to 8 inclusive
     */
    toExponential(dp?: number, rm?: number): string;

    /**
     * Returns a string representing the value of this BigNumber in normal (fixed-point) notation rounded to dp decimal
     * places using rounding mode `rm`.
     *
     * If the value of this BigNumber in normal notation has fewer than `dp` fraction digits, the return value will be
     * appended with zeros accordingly.
     *
     * Unlike `Number.prototype.toFixed`, which returns exponential notation if a number is greater or equal to 10<sup>21</sup>, this
     * method will always return normal notation.
     *
     * If dp is omitted or is `null` or `undefined`, the return value will be unrounded and in normal notation. This is also
     * unlike `Number.prototype.toFixed`, which returns the value to zero decimal places.
     *
     * It is useful when fixed-point notation is required and the current `EXPONENTIAL_AT` setting causes toString to
     * return exponential notation.
     *
     * If `rm` is omitted or is `null` or `undefined`, `ROUNDING_MODE` is used.
     *
     * ```ts
     * x = 3.456
     * y = new BigNumber(x)
     * x.toFixed()                     // '3'
     * y.toFixed()                     // '3.456'
     * y.toFixed(0)                    // '3'
     * x.toFixed(2)                    // '3.46'
     * y.toFixed(2)                    // '3.46'
     * y.toFixed(2, 1)                 // '3.45'  (ROUND_DOWN)
     * x.toFixed(5)                    // '3.45600'
     * y.toFixed(5)                    // '3.45600'
     * ```
     *
     * @param dp integer, 0 to 1e+9 inclusive
     * @param rm integer, 0 to 8 inclusive
     */
    toFixed(dp?: number, rm?: number): string;

    /**
     * Returns a string representing the value of this BigNumber in normal (fixed-point) notation rounded to dp decimal
     * places using rounding mode `rm`, and formatted according to the properties of the FORMAT object.
     *
     * See the examples below for the properties of the `FORMAT` object, their types and their usage.
     *
     * If `dp` is omitted or is `null` or `undefined`, then the return value is not rounded to a fixed number of decimal
     * places.
     *
     * If `rm` is omitted or is `null` or `undefined`, `ROUNDING_MODE` is used.
     *
     * ```ts
     * format = {
     *     decimalSeparator: '.',
     *     groupSeparator: ',',
     *     groupSize: 3,
     *     secondaryGroupSize: 0,
     *     fractionGroupSeparator: ' ',
     *     fractionGroupSize: 0
     * }
     * BigNumber.config({ FORMAT: format })
     *
     * x = new BigNumber('123456789.123456789')
     * x.toFormat()                    // '123,456,789.123456789'
     * x.toFormat(1)                   // '123,456,789.1'
     *
     * // If a reference to the object assigned to FORMAT has been retained,
     * // the format properties can be changed directly
     * format.groupSeparator = ' '
     * format.fractionGroupSize = 5
     * x.toFormat()                    // '123 456 789.12345 6789'
     *
     * BigNumber.config({
     *     FORMAT: {
     *         decimalSeparator = ',',
     *         groupSeparator = '.',
     *         groupSize = 3,
     *         secondaryGroupSize = 2
     *     }
     * })
     *
     * x.toFormat(6)                   // '12.34.56.789,123'
     * ```
     *
     * @param dp integer, 0 to 1e+9 inclusive
     * @param rm integer, 0 to 8 inclusive
     */
    toFormat(dp?: number, rm?: number): string;

    /**
     * Returns a string array representing the value of this BigNumber as a simple fraction with an integer numerator
     * and an integer denominator. The denominator will be a positive non-zero value less than or equal to max.
     *
     * If a maximum denominator, max, is not specified, or is null or undefined, the denominator will be the lowest
     * value necessary to represent the number exactly.
     *
     * ```ts
     * x = new BigNumber(1.75)
     * x.toFraction()                  // '7, 4'
     *
     * pi = new BigNumber('3.14159265358')
     * pi.toFraction()                 // '157079632679,50000000000'
     * pi.toFraction(100000)           // '312689, 99532'
     * pi.toFraction(10000)            // '355, 113'
     * pi.toFraction(100)              // '311, 99'
     * pi.toFraction(10)               // '22, 7'
     * pi.toFraction(1)                // '3, 1'
     * ```
     *
     * @param max integer >= `1` and < `Infinity`
     */
    toFraction(max?: number | string | BigNumber): [string, string];

    /**
     * Same as [[valueOf]]
     *
     * ```ts
     * x = new BigNumber('177.7e+457')
     * y = new BigNumber(235.4325)
     * z = new BigNumber('0.0098074')
     *
     * // Serialize an array of three BigNumbers
     * str = JSON.stringify( [x, y, z] )
     * // "["1.777e+459","235.4325","0.0098074"]"
     *
     * // Return an array of three BigNumbers
     * JSON.parse(str, function (key, val) {
     *     return key === '' ? val : new BigNumber(val)
     * })
     * ```
     */
    toJSON(): string;

    /**
     * Returns the value of this BigNumber as a JavaScript number primitive.
     *
     * Type coercion with, for example, the unary plus operator will also work, except that a BigNumber with the value
     * minus zero will be converted to positive zero.
     *
     * ```ts
     * x = new BigNumber(456.789)
     * x.toNumber()                    // 456.789
     * +x                              // 456.789
     *
     * y = new BigNumber('45987349857634085409857349856430985')
     * y.toNumber()                    // 4.598734985763409e+34
     *
     * z = new BigNumber(-0)
     * 1 / +z                          // Infinity
     * 1 / z.toNumber()                // -Infinity
     * ```
     */
    toNumber(): number;

    /**
     * Returns a BigNumber whose value is the value of this BigNumber raised to the power `n`, and optionally modulo `a`
     * modulus `m`.
     *
     * If `n` is negative the result is rounded according to the current [[Configuration.DECIMAL_PLACES]] and
     * [[Configuration.ROUNDING_MODE]] configuration.
     *
     * If `n` is not an integer or is out of range:
     *  - If `ERRORS` is `true` a BigNumber Error is thrown,
     *  - else if `n` is greater than `9007199254740991`, it is interpreted as `Infinity`;
     *  - else if n is less than `-9007199254740991`, it is interpreted as `-Infinity`;
     *  - else if `n` is otherwise a number, it is truncated to an integer;
     *  - else it is interpreted as `NaN`.
     *
     * As the number of digits of the result of the power operation can grow so large so quickly, e.g.
     * 123.456<sup>10000</sup> has over 50000 digits, the number of significant digits calculated is limited to the
     * value of the [[Configuration.POW_PRECISION]] setting (default value: `100`) unless a modulus `m` is specified.
     *
     * Set [[Configuration.POW_PRECISION]] to `0` for an unlimited number of significant digits to be calculated (this
     * will cause the method to slow dramatically for larger exponents).
     *
     * Negative exponents will be calculated to the number of decimal places specified by
     * [[Configuration.DECIMAL_PLACES]] (but not to more than [[Configuration.POW_PRECISION]] significant digits).
     *
     * If `m` is specified and the value of `m`, `n` and this BigNumber are positive integers, then a fast modular
     * exponentiation algorithm is used, otherwise if any of the values is not a positive integer the operation will
     * simply be performed as `x.toPower(n).modulo(m)` with a `POW_PRECISION` of `0`.
     *
     * ```ts
     * Math.pow(0.7, 2)                // 0.48999999999999994
     * x = new BigNumber(0.7)
     * x.toPower(2)                    // '0.49'
     * BigNumber(3).pow(-2)            // '0.11111111111111111111'
     * ```
     *
     * @param n integer, -9007199254740991 to 9007199254740991 inclusive
     * @alias [[pow]]
     */
    toPower(n: number, m?: number | string | BigNumber): BigNumber;

    /**
     * See [[toPower]]
     */
    pow(n: number, m?: number | string | BigNumber): BigNumber;

    /**
     * Returns a string representing the value of this BigNumber rounded to `sd` significant digits using rounding mode
     * rm.
     *
     *  - If `sd` is less than the number of digits necessary to represent the integer part of the value in normal
     *    (fixed-point) notation, then exponential notation is used.
     *  - If `sd` is omitted, or is `null` or `undefined`, then the return value is the same as `n.toString()`.
     *  - If `rm` is omitted or is `null` or `undefined`, `ROUNDING_MODE` is used.
     *
     * ```ts
     * x = 45.6
     * y = new BigNumber(x)
     * x.toPrecision()                 // '45.6'
     * y.toPrecision()                 // '45.6'
     * x.toPrecision(1)                // '5e+1'
     * y.toPrecision(1)                // '5e+1'
     * y.toPrecision(2, 0)             // '4.6e+1'  (ROUND_UP)
     * y.toPrecision(2, 1)             // '4.5e+1'  (ROUND_DOWN)
     * x.toPrecision(5)                // '45.600'
     * y.toPrecision(5)                // '45.600'
     * ```
     *
     * @param sd integer, 1 to 1e+9 inclusive
     * @param rm integer, 0 to 8 inclusive
     */
    toPrecision(sd?: number, rm?: number): string;

    /**
     * Returns a string representing the value of this BigNumber in the specified base, or base 10 if base is omitted or
     * is `null` or `undefined`.
     *
     * For bases above 10, values from 10 to 35 are represented by a-z (as with `Number.prototype.toString`), 36 to 61 by
     * A-Z, and 62 and 63 by `$` and `_` respectively.
     *
     * If a base is specified the value is rounded according to the current `DECIMAL_PLACES` and `ROUNDING_MODE`
     * configuration.
     *
     * If a base is not specified, and this BigNumber has a positive exponent that is equal to or greater than the
     * positive component of the current `EXPONENTIAL_AT` setting, or a negative exponent equal to or less than the
     * negative component of the setting, then exponential notation is returned.
     *
     * If base is `null` or `undefined` it is ignored.
     *
     * ```ts
     * x = new BigNumber(750000)
     * x.toString()                    // '750000'
     * BigNumber.config({ EXPONENTIAL_AT: 5 })
     * x.toString()                    // '7.5e+5'
     *
     * y = new BigNumber(362.875)
     * y.toString(2)                   // '101101010.111'
     * y.toString(9)                   // '442.77777777777777777778'
     * y.toString(32)                  // 'ba.s'
     *
     * BigNumber.config({ DECIMAL_PLACES: 4 });
     * z = new BigNumber('1.23456789')
     * z.toString()                    // '1.23456789'
     * z.toString(10)                  // '1.2346'
     * ```
     *
     * @param base integer, 2 to 64 inclusive
     */
    toString(base?: number): string;

    /**
     * Returns a BigNumber whose value is the value of this BigNumber truncated to a whole number.
     *
     * ```ts
     * x = new BigNumber(123.456)
     * x.truncated()                   // '123'
     * y = new BigNumber(-12.3)
     * y.trunc()                       // '-12'
     * ```
     *
     * @alias [[trunc]]
     */
    truncated(): BigNumber;

    /**
     * See [[truncated]]
     */
    trunc(): BigNumber;

    /**
     * As [[toString]], but does not accept a base argument and includes the minus sign for negative zero.`
     *
     * ```ts
     * x = new BigNumber('-0')
     * x.toString()                    // '0'
     * x.valueOf()                     // '-0'
     * y = new BigNumber('1.777e+457')
     * y.valueOf()                     // '1.777e+457'
     * ```
     */
    valueOf(): string;
}

export default BigNumber;

Выполнить команду


Для локальной разработки. Не используйте в интернете!