PHP WebShell

Текущая директория: /usr/lib/node_modules/bitgo/node_modules/cbor-x/dist

Просмотр файла: decode-no-eval.cjs

(function (global, factory) {
	typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports) :
	typeof define === 'function' && define.amd ? define(['exports'], factory) :
	(global = typeof globalThis !== 'undefined' ? globalThis : global || self, factory(global.CBOR = {}));
})(this, (function (exports) { 'use strict';

	let decoder;
	try {
		decoder = new TextDecoder();
	} catch(error) {}
	let src;
	let srcEnd;
	let position = 0;
	const EMPTY_ARRAY = [];
	const LEGACY_RECORD_INLINE_ID = 105;
	const RECORD_DEFINITIONS_ID = 0xdffe;
	const RECORD_INLINE_ID = 0xdfff; // temporary first-come first-serve tag // proposed tag: 0x7265 // 're'
	const BUNDLED_STRINGS_ID = 0xdff9;
	const PACKED_REFERENCE_TAG_ID = 6;
	const STOP_CODE = {};
	let maxArraySize = 112810000; // This is the maximum array size in V8. We would potentially detect and set it higher
	// for JSC, but this is pretty large and should be sufficient for most use cases
	let maxMapSize = 16810000; // JavaScript has a fixed maximum map size of about 16710000, but JS itself enforces this,
	// many keys in an object, so also probably a reasonable choice there.
	let strings = EMPTY_ARRAY;
	let stringPosition = 0;
	let currentDecoder = {};
	let currentStructures;
	let srcString;
	let srcStringStart = 0;
	let srcStringEnd = 0;
	let bundledStrings;
	let referenceMap;
	let currentExtensions = [];
	let currentExtensionRanges = [];
	let packedValues;
	let dataView;
	let restoreMapsAsObject;
	let defaultOptions = {
		useRecords: false,
		mapsAsObjects: true
	};
	let sequentialMode = false;
	let inlineObjectReadThreshold = 2;
	var BlockedFunction; // we use search and replace to change the next call to BlockedFunction to avoid CSP issues for
	// no-eval build
	try {
		new BlockedFunction ('');
	} catch(error) {
		// if eval variants are not supported, do not create inline object readers ever
		inlineObjectReadThreshold = Infinity;
	}



	class Decoder {
		constructor(options) {
			if (options) {
				if ((options.keyMap || options._keyMap) && !options.useRecords) {
					options.useRecords = false;
					options.mapsAsObjects = true;
				}
				if (options.useRecords === false && options.mapsAsObjects === undefined)
					options.mapsAsObjects = true;
				if (options.getStructures)
					options.getShared = options.getStructures;
				if (options.getShared && !options.structures)
					(options.structures = []).uninitialized = true; // this is what we use to denote an uninitialized structures
				if (options.keyMap) {
					this.mapKey = new Map();
					for (let [k,v] of Object.entries(options.keyMap)) this.mapKey.set(v,k);
				}
			}
			Object.assign(this, options);
		}
		/*
		decodeKey(key) {
			return this.keyMap
				? Object.keys(this.keyMap)[Object.values(this.keyMap).indexOf(key)] || key
				: key
		}
		*/
		decodeKey(key) {
			return this.keyMap ? this.mapKey.get(key) || key : key
		}
		
		encodeKey(key) {
			return this.keyMap && this.keyMap.hasOwnProperty(key) ? this.keyMap[key] : key
		}

		encodeKeys(rec) {
			if (!this._keyMap) return rec
			let map = new Map();
			for (let [k,v] of Object.entries(rec)) map.set((this._keyMap.hasOwnProperty(k) ? this._keyMap[k] : k), v);
			return map
		}

		decodeKeys(map) {
			if (!this._keyMap || map.constructor.name != 'Map') return map
			if (!this._mapKey) {
				this._mapKey = new Map();
				for (let [k,v] of Object.entries(this._keyMap)) this._mapKey.set(v,k);
			}
			let res = {};
			//map.forEach((v,k) => res[Object.keys(this._keyMap)[Object.values(this._keyMap).indexOf(k)] || k] = v)
			map.forEach((v,k) => res[safeKey(this._mapKey.has(k) ? this._mapKey.get(k) : k)] =  v);
			return res
		}
		
		mapDecode(source, end) {
		
			let res = this.decode(source);
			if (this._keyMap) { 
				//Experiemntal support for Optimised KeyMap  decoding 
				switch (res.constructor.name) {
					case 'Array': return res.map(r => this.decodeKeys(r))
					//case 'Map': return this.decodeKeys(res)
				}
			}
			return res
		}

		decode(source, end) {
			if (src) {
				// re-entrant execution, save the state and restore it after we do this decode
				return saveState(() => {
					clearSource();
					return this ? this.decode(source, end) : Decoder.prototype.decode.call(defaultOptions, source, end)
				})
			}
			srcEnd = end > -1 ? end : source.length;
			position = 0;
			stringPosition = 0;
			srcStringEnd = 0;
			srcString = null;
			strings = EMPTY_ARRAY;
			bundledStrings = null;
			src = source;
			// this provides cached access to the data view for a buffer if it is getting reused, which is a recommend
			// technique for getting data from a database where it can be copied into an existing buffer instead of creating
			// new ones
			try {
				dataView = source.dataView || (source.dataView = new DataView(source.buffer, source.byteOffset, source.byteLength));
			} catch(error) {
				// if it doesn't have a buffer, maybe it is the wrong type of object
				src = null;
				if (source instanceof Uint8Array)
					throw error
				throw new Error('Source must be a Uint8Array or Buffer but was a ' + ((source && typeof source == 'object') ? source.constructor.name : typeof source))
			}
			if (this instanceof Decoder) {
				currentDecoder = this;
				packedValues = this.sharedValues &&
					(this.pack ? new Array(this.maxPrivatePackedValues || 16).concat(this.sharedValues) :
					this.sharedValues);
				if (this.structures) {
					currentStructures = this.structures;
					return checkedRead()
				} else if (!currentStructures || currentStructures.length > 0) {
					currentStructures = [];
				}
			} else {
				currentDecoder = defaultOptions;
				if (!currentStructures || currentStructures.length > 0)
					currentStructures = [];
				packedValues = null;
			}
			return checkedRead()
		}
		decodeMultiple(source, forEach) {
			let values, lastPosition = 0;
			try {
				let size = source.length;
				sequentialMode = true;
				let value = this ? this.decode(source, size) : defaultDecoder.decode(source, size);
				if (forEach) {
					if (forEach(value) === false) {
						return
					}
					while(position < size) {
						lastPosition = position;
						if (forEach(checkedRead()) === false) {
							return
						}
					}
				}
				else {
					values = [ value ];
					while(position < size) {
						lastPosition = position;
						values.push(checkedRead());
					}
					return values
				}
			} catch(error) {
				error.lastPosition = lastPosition;
				error.values = values;
				throw error
			} finally {
				sequentialMode = false;
				clearSource();
			}
		}
	}
	function getPosition() {
		return position
	}
	function checkedRead() {
		try {
			let result = read();
			if (bundledStrings) {
				if (position >= bundledStrings.postBundlePosition) {
					let error = new Error('Unexpected bundle position');
					error.incomplete = true;
					throw error
				}
				// bundled strings to skip past
				position = bundledStrings.postBundlePosition;
				bundledStrings = null;
			}

			if (position == srcEnd) {
				// finished reading this source, cleanup references
				currentStructures = null;
				src = null;
				if (referenceMap)
					referenceMap = null;
			} else if (position > srcEnd) {
				// over read
				let error = new Error('Unexpected end of CBOR data');
				error.incomplete = true;
				throw error
			} else if (!sequentialMode) {
				throw new Error('Data read, but end of buffer not reached')
			}
			// else more to read, but we are reading sequentially, so don't clear source yet
			return result
		} catch(error) {
			clearSource();
			if (error instanceof RangeError || error.message.startsWith('Unexpected end of buffer')) {
				error.incomplete = true;
			}
			throw error
		}
	}

	function read() {
		let token = src[position++];
		let majorType = token >> 5;
		token = token & 0x1f;
		if (token > 0x17) {
			switch (token) {
				case 0x18:
					token = src[position++];
					break
				case 0x19:
					if (majorType == 7) {
						return getFloat16()
					}
					token = dataView.getUint16(position);
					position += 2;
					break
				case 0x1a:
					if (majorType == 7) {
						let value = dataView.getFloat32(position);
						if (currentDecoder.useFloat32 > 2) {
							// this does rounding of numbers that were encoded in 32-bit float to nearest significant decimal digit that could be preserved
							let multiplier = mult10[((src[position] & 0x7f) << 1) | (src[position + 1] >> 7)];
							position += 4;
							return ((multiplier * value + (value > 0 ? 0.5 : -0.5)) >> 0) / multiplier
						}
						position += 4;
						return value
					}
					token = dataView.getUint32(position);
					position += 4;
					break
				case 0x1b:
					if (majorType == 7) {
						let value = dataView.getFloat64(position);
						position += 8;
						return value
					}
					if (majorType > 1) {
						if (dataView.getUint32(position) > 0)
							throw new Error('JavaScript does not support arrays, maps, or strings with length over 4294967295')
						token = dataView.getUint32(position + 4);
					} else if (currentDecoder.int64AsNumber) {
						token = dataView.getUint32(position) * 0x100000000;
						token += dataView.getUint32(position + 4);
					} else
						token = dataView.getBigUint64(position);
					position += 8;
					break
				case 0x1f: 
					// indefinite length
					switch(majorType) {
						case 2: // byte string
						case 3: // text string
							throw new Error('Indefinite length not supported for byte or text strings')
						case 4: // array
							let array = [];
							let value, i = 0;
							while ((value = read()) != STOP_CODE) {
								if (i >= maxArraySize) throw new Error(`Array length exceeds ${maxArraySize}`)
								array[i++] = value;
							}
							return majorType == 4 ? array : majorType == 3 ? array.join('') : Buffer.concat(array)
						case 5: // map
							let key;
							if (currentDecoder.mapsAsObjects) {
								let object = {};
								let i = 0;
								if (currentDecoder.keyMap) {
									while((key = read()) != STOP_CODE) {
										if (i++ >= maxMapSize) throw new Error(`Property count exceeds ${maxMapSize}`)
										object[safeKey(currentDecoder.decodeKey(key))] = read();
									}
								}
								else {
									while ((key = read()) != STOP_CODE) {
										if (i++ >= maxMapSize) throw new Error(`Property count exceeds ${maxMapSize}`)
										object[safeKey(key)] = read();
									}
								}
								return object
							} else {
								if (restoreMapsAsObject) {
									currentDecoder.mapsAsObjects = true;
									restoreMapsAsObject = false;
								}
								let map = new Map();
								if (currentDecoder.keyMap) {
									let i = 0;
									while((key = read()) != STOP_CODE) {
										if (i++ >= maxMapSize) {
											throw new Error(`Map size exceeds ${maxMapSize}`);
										}
										map.set(currentDecoder.decodeKey(key), read());
									}
								}
								else {
									let i = 0;
									while ((key = read()) != STOP_CODE) {
										if (i++ >= maxMapSize) {
											throw new Error(`Map size exceeds ${maxMapSize}`);
										}
										map.set(key, read());
									}
								}
								return map
							}
						case 7:
							return STOP_CODE
						default:
							throw new Error('Invalid major type for indefinite length ' + majorType)
					}
				default:
					throw new Error('Unknown token ' + token)
			}
		}
		switch (majorType) {
			case 0: // positive int
				return token
			case 1: // negative int
				return ~token
			case 2: // buffer
				return readBin(token)
			case 3: // string
				if (srcStringEnd >= position) {
					return srcString.slice(position - srcStringStart, (position += token) - srcStringStart)
				}
				if (srcStringEnd == 0 && srcEnd < 140 && token < 32) {
					// for small blocks, avoiding the overhead of the extract call is helpful
					let string = token < 16 ? shortStringInJS(token) : longStringInJS(token);
					if (string != null)
						return string
				}
				return readFixedString(token)
			case 4: // array
				if (token >= maxArraySize) throw new Error(`Array length exceeds ${maxArraySize}`)
				let array = new Array(token);
			  //if (currentDecoder.keyMap) for (let i = 0; i < token; i++) array[i] = currentDecoder.decodeKey(read())	
				//else 
				for (let i = 0; i < token; i++) array[i] = read();
				return array
			case 5: // map
				if (token >= maxMapSize) throw new Error(`Map size exceeds ${maxArraySize}`)
				if (currentDecoder.mapsAsObjects) {
					let object = {};
					if (currentDecoder.keyMap) for (let i = 0; i < token; i++) object[safeKey(currentDecoder.decodeKey(read()))] = read();
					else for (let i = 0; i < token; i++) object[safeKey(read())] = read();
					return object
				} else {
					if (restoreMapsAsObject) {
						currentDecoder.mapsAsObjects = true;
						restoreMapsAsObject = false;
					}
					let map = new Map();
					if (currentDecoder.keyMap) for (let i = 0; i < token; i++) map.set(currentDecoder.decodeKey(read()),read());
					else for (let i = 0; i < token; i++) map.set(read(), read());
					return map
				}
			case 6: // extension
				if (token >= BUNDLED_STRINGS_ID) {
					let structure = currentStructures[token & 0x1fff]; // check record structures first
					// At some point we may provide an option for dynamic tag assignment with a range like token >= 8 && (token < 16 || (token > 0x80 && token < 0xc0) || (token > 0x130 && token < 0x4000))
					if (structure) {
						if (!structure.read) structure.read = createStructureReader(structure);
						return structure.read()
					}
					if (token < 0x10000) {
						if (token == RECORD_INLINE_ID) { // we do a special check for this so that we can keep the
							// currentExtensions as densely stored array (v8 stores arrays densely under about 3000 elements)
							let length = readJustLength();
							let id = read();
							let structure = read();
							recordDefinition(id, structure);
							let object = {};
							if (currentDecoder.keyMap) for (let i = 2; i < length; i++) {
								let key = currentDecoder.decodeKey(structure[i - 2]);
								object[safeKey(key)] = read();
							}
							else for (let i = 2; i < length; i++) {
								let key = structure[i - 2];
								object[safeKey(key)] = read();
							}
							return object
						}
						else if (token == RECORD_DEFINITIONS_ID) {
							let length = readJustLength();
							let id = read();
							for (let i = 2; i < length; i++) {
								recordDefinition(id++, read());
							}
							return read()
						} else if (token == BUNDLED_STRINGS_ID) {
							return readBundleExt()
						}
						if (currentDecoder.getShared) {
							loadShared();
							structure = currentStructures[token & 0x1fff];
							if (structure) {
								if (!structure.read)
									structure.read = createStructureReader(structure);
								return structure.read()
							}
						}
					}
				}
				let extension = currentExtensions[token];
				if (extension) {
					if (extension.handlesRead)
						return extension(read)
					else
						return extension(read())
				} else {
					let input = read();
					for (let i = 0; i < currentExtensionRanges.length; i++) {
						let value = currentExtensionRanges[i](token, input);
						if (value !== undefined)
							return value
					}
					return new Tag(input, token)
				}
			case 7: // fixed value
				switch (token) {
					case 0x14: return false
					case 0x15: return true
					case 0x16: return null
					case 0x17: return; // undefined
					case 0x1f:
					default:
						let packedValue = (packedValues || getPackedValues())[token];
						if (packedValue !== undefined)
							return packedValue
						throw new Error('Unknown token ' + token)
				}
			default: // negative int
				if (isNaN(token)) {
					let error = new Error('Unexpected end of CBOR data');
					error.incomplete = true;
					throw error
				}
				throw new Error('Unknown CBOR token ' + token)
		}
	}
	const validName = /^[a-zA-Z_$][a-zA-Z\d_$]*$/;
	function createStructureReader(structure) {
		if (!structure) throw new Error('Structure is required in record definition');
		function readObject() {
			// get the array size from the header
			let length = src[position++];
			//let majorType = token >> 5
			length = length & 0x1f;
			if (length > 0x17) {
				switch (length) {
					case 0x18:
						length = src[position++];
						break
					case 0x19:
						length = dataView.getUint16(position);
						position += 2;
						break
					case 0x1a:
						length = dataView.getUint32(position);
						position += 4;
						break
					default:
						throw new Error('Expected array header, but got ' + src[position - 1])
				}
			}
			// This initial function is quick to instantiate, but runs slower. After several iterations pay the cost to build the faster function
			let compiledReader = this.compiledReader; // first look to see if we have the fast compiled function
			while(compiledReader) {
				// we have a fast compiled object literal reader
				if (compiledReader.propertyCount === length)
					return compiledReader(read) // with the right length, so we use it
				compiledReader = compiledReader.next; // see if there is another reader with the right length
			}
			if (this.slowReads++ >= inlineObjectReadThreshold) { // create a fast compiled reader
				let array = this.length == length ? this : this.slice(0, length);
				compiledReader = currentDecoder.keyMap 
				? new BlockedFunction ('r', 'return {' + array.map(k => currentDecoder.decodeKey(k)).map(k => validName.test(k) ? safeKey(k) + ':r()' : ('[' + JSON.stringify(k) + ']:r()')).join(',') + '}')
				: new BlockedFunction ('r', 'return {' + array.map(key => validName.test(key) ? safeKey(key) + ':r()' : ('[' + JSON.stringify(key) + ']:r()')).join(',') + '}');
				if (this.compiledReader)
					compiledReader.next = this.compiledReader; // if there is an existing one, we store multiple readers as a linked list because it is usually pretty rare to have multiple readers (of different length) for the same structure
				compiledReader.propertyCount = length;
				this.compiledReader = compiledReader;
				return compiledReader(read)
			}
			let object = {};
			if (currentDecoder.keyMap) for (let i = 0; i < length; i++) object[safeKey(currentDecoder.decodeKey(this[i]))] = read();
			else for (let i = 0; i < length; i++) {
				object[safeKey(this[i])] = read();
			}
			return object
		}
		structure.slowReads = 0;
		return readObject
	}

	function safeKey(key) {
		// protect against prototype pollution
		if (typeof key === 'string') return key === '__proto__' ? '__proto_' : key
		if (typeof key === 'number' || typeof key === 'boolean' || typeof key === 'bigint') return key.toString();
		if (key == null) return key + '';
		// protect against expensive (DoS) string conversions
		throw new Error('Invalid property name type ' + typeof key);
	}

	let readFixedString = readStringJS;

	exports.isNativeAccelerationEnabled = false;
	function setExtractor(extractStrings) {
		exports.isNativeAccelerationEnabled = true;
		readFixedString = readString();
		function readString(headerLength) {
			return function readString(length) {
				let string = strings[stringPosition++];
				if (string == null) {
					if (bundledStrings)
						return readStringJS(length)
					let extraction = extractStrings(position, srcEnd, length, src);
					if (typeof extraction == 'string') {
						string = extraction;
						strings = EMPTY_ARRAY;
					} else {
						strings = extraction;
						stringPosition = 1;
						srcStringEnd = 1; // even if a utf-8 string was decoded, must indicate we are in the midst of extracted strings and can't skip strings
						string = strings[0];
						if (string === undefined)
							throw new Error('Unexpected end of buffer')
					}
				}
				let srcStringLength = string.length;
				if (srcStringLength <= length) {
					position += length;
					return string
				}
				srcString = string;
				srcStringStart = position;
				srcStringEnd = position + srcStringLength;
				position += length;
				return string.slice(0, length) // we know we just want the beginning
			}
		}
	}
	function readStringJS(length) {
		let result;
		if (length < 16) {
			if (result = shortStringInJS(length))
				return result
		}
		if (length > 64 && decoder)
			return decoder.decode(src.subarray(position, position += length))
		const end = position + length;
		const units = [];
		result = '';
		while (position < end) {
			const byte1 = src[position++];
			if ((byte1 & 0x80) === 0) {
				// 1 byte
				units.push(byte1);
			} else if ((byte1 & 0xe0) === 0xc0) {
				// 2 bytes
				const byte2 = src[position++] & 0x3f;
				units.push(((byte1 & 0x1f) << 6) | byte2);
			} else if ((byte1 & 0xf0) === 0xe0) {
				// 3 bytes
				const byte2 = src[position++] & 0x3f;
				const byte3 = src[position++] & 0x3f;
				units.push(((byte1 & 0x1f) << 12) | (byte2 << 6) | byte3);
			} else if ((byte1 & 0xf8) === 0xf0) {
				// 4 bytes
				const byte2 = src[position++] & 0x3f;
				const byte3 = src[position++] & 0x3f;
				const byte4 = src[position++] & 0x3f;
				let unit = ((byte1 & 0x07) << 0x12) | (byte2 << 0x0c) | (byte3 << 0x06) | byte4;
				if (unit > 0xffff) {
					unit -= 0x10000;
					units.push(((unit >>> 10) & 0x3ff) | 0xd800);
					unit = 0xdc00 | (unit & 0x3ff);
				}
				units.push(unit);
			} else {
				units.push(byte1);
			}

			if (units.length >= 0x1000) {
				result += fromCharCode.apply(String, units);
				units.length = 0;
			}
		}

		if (units.length > 0) {
			result += fromCharCode.apply(String, units);
		}

		return result
	}
	let fromCharCode = String.fromCharCode;
	function longStringInJS(length) {
		let start = position;
		let bytes = new Array(length);
		for (let i = 0; i < length; i++) {
			const byte = src[position++];
			if ((byte & 0x80) > 0) {
				position = start;
	    			return
	    		}
	    		bytes[i] = byte;
	    	}
	    	return fromCharCode.apply(String, bytes)
	}
	function shortStringInJS(length) {
		if (length < 4) {
			if (length < 2) {
				if (length === 0)
					return ''
				else {
					let a = src[position++];
					if ((a & 0x80) > 1) {
						position -= 1;
						return
					}
					return fromCharCode(a)
				}
			} else {
				let a = src[position++];
				let b = src[position++];
				if ((a & 0x80) > 0 || (b & 0x80) > 0) {
					position -= 2;
					return
				}
				if (length < 3)
					return fromCharCode(a, b)
				let c = src[position++];
				if ((c & 0x80) > 0) {
					position -= 3;
					return
				}
				return fromCharCode(a, b, c)
			}
		} else {
			let a = src[position++];
			let b = src[position++];
			let c = src[position++];
			let d = src[position++];
			if ((a & 0x80) > 0 || (b & 0x80) > 0 || (c & 0x80) > 0 || (d & 0x80) > 0) {
				position -= 4;
				return
			}
			if (length < 6) {
				if (length === 4)
					return fromCharCode(a, b, c, d)
				else {
					let e = src[position++];
					if ((e & 0x80) > 0) {
						position -= 5;
						return
					}
					return fromCharCode(a, b, c, d, e)
				}
			} else if (length < 8) {
				let e = src[position++];
				let f = src[position++];
				if ((e & 0x80) > 0 || (f & 0x80) > 0) {
					position -= 6;
					return
				}
				if (length < 7)
					return fromCharCode(a, b, c, d, e, f)
				let g = src[position++];
				if ((g & 0x80) > 0) {
					position -= 7;
					return
				}
				return fromCharCode(a, b, c, d, e, f, g)
			} else {
				let e = src[position++];
				let f = src[position++];
				let g = src[position++];
				let h = src[position++];
				if ((e & 0x80) > 0 || (f & 0x80) > 0 || (g & 0x80) > 0 || (h & 0x80) > 0) {
					position -= 8;
					return
				}
				if (length < 10) {
					if (length === 8)
						return fromCharCode(a, b, c, d, e, f, g, h)
					else {
						let i = src[position++];
						if ((i & 0x80) > 0) {
							position -= 9;
							return
						}
						return fromCharCode(a, b, c, d, e, f, g, h, i)
					}
				} else if (length < 12) {
					let i = src[position++];
					let j = src[position++];
					if ((i & 0x80) > 0 || (j & 0x80) > 0) {
						position -= 10;
						return
					}
					if (length < 11)
						return fromCharCode(a, b, c, d, e, f, g, h, i, j)
					let k = src[position++];
					if ((k & 0x80) > 0) {
						position -= 11;
						return
					}
					return fromCharCode(a, b, c, d, e, f, g, h, i, j, k)
				} else {
					let i = src[position++];
					let j = src[position++];
					let k = src[position++];
					let l = src[position++];
					if ((i & 0x80) > 0 || (j & 0x80) > 0 || (k & 0x80) > 0 || (l & 0x80) > 0) {
						position -= 12;
						return
					}
					if (length < 14) {
						if (length === 12)
							return fromCharCode(a, b, c, d, e, f, g, h, i, j, k, l)
						else {
							let m = src[position++];
							if ((m & 0x80) > 0) {
								position -= 13;
								return
							}
							return fromCharCode(a, b, c, d, e, f, g, h, i, j, k, l, m)
						}
					} else {
						let m = src[position++];
						let n = src[position++];
						if ((m & 0x80) > 0 || (n & 0x80) > 0) {
							position -= 14;
							return
						}
						if (length < 15)
							return fromCharCode(a, b, c, d, e, f, g, h, i, j, k, l, m, n)
						let o = src[position++];
						if ((o & 0x80) > 0) {
							position -= 15;
							return
						}
						return fromCharCode(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o)
					}
				}
			}
		}
	}

	function readBin(length) {
		return currentDecoder.copyBuffers ?
			// specifically use the copying slice (not the node one)
			Uint8Array.prototype.slice.call(src, position, position += length) :
			src.subarray(position, position += length)
	}
	let f32Array = new Float32Array(1);
	let u8Array = new Uint8Array(f32Array.buffer, 0, 4);
	function getFloat16() {
		let byte0 = src[position++];
		let byte1 = src[position++];
		let exponent = (byte0 & 0x7f) >> 2;
		if (exponent === 0x1f) { // specials
			if (byte1 || (byte0 & 3))
				return NaN;
			return (byte0 & 0x80) ? -Infinity : Infinity;
		}
		if (exponent === 0) { // sub-normals
			// significand with 10 fractional bits and divided by 2^14
			let abs = (((byte0 & 3) << 8) | byte1) / (1 << 24);
			return (byte0 & 0x80) ? -abs : abs
		}

		u8Array[3] = (byte0 & 0x80) | // sign bit
			((exponent >> 1) + 56); // 4 of 5 of the exponent bits, re-offset-ed
		u8Array[2] = ((byte0 & 7) << 5) | // last exponent bit and first two mantissa bits
			(byte1 >> 3); // next 5 bits of mantissa
		u8Array[1] = byte1 << 5; // last three bits of mantissa
		u8Array[0] = 0;
		return f32Array[0];
	}

	new Array(4096);

	class Tag {
		constructor(value, tag) {
			this.value = value;
			this.tag = tag;
		}
	}

	currentExtensions[0] = (dateString) => {
		// string date extension
		return new Date(dateString)
	};

	currentExtensions[1] = (epochSec) => {
		// numeric date extension
		return new Date(Math.round(epochSec * 1000))
	};

	currentExtensions[2] = (buffer) => {
		// bigint extension
		let value = BigInt(0);
		for (let i = 0, l = buffer.byteLength; i < l; i++) {
			value = BigInt(buffer[i]) + (value << BigInt(8));
		}
		return value
	};

	currentExtensions[3] = (buffer) => {
		// negative bigint extension
		return BigInt(-1) - currentExtensions[2](buffer)
	};
	currentExtensions[4] = (fraction) => {
		// best to reparse to maintain accuracy
		return +(fraction[1] + 'e' + fraction[0])
	};

	currentExtensions[5] = (fraction) => {
		// probably not sufficiently accurate
		return fraction[1] * Math.exp(fraction[0] * Math.log(2))
	};

	// the registration of the record definition extension
	const recordDefinition = (id, structure) => {
		id = id - 0xe000;
		let existingStructure = currentStructures[id];
		if (existingStructure && existingStructure.isShared) {
			(currentStructures.restoreStructures || (currentStructures.restoreStructures = []))[id] = existingStructure;
		}
		currentStructures[id] = structure;

		structure.read = createStructureReader(structure);
	};
	currentExtensions[LEGACY_RECORD_INLINE_ID] = (data) => {
		let length = data.length;
		let structure = data[1];
		recordDefinition(data[0], structure);
		let object = {};
		for (let i = 2; i < length; i++) {
			let key = structure[i - 2];
			object[safeKey(key)] = data[i];
		}
		return object
	};
	currentExtensions[14] = (value) => {
		if (bundledStrings)
			return bundledStrings[0].slice(bundledStrings.position0, bundledStrings.position0 += value)
		return new Tag(value, 14)
	};
	currentExtensions[15] = (value) => {
		if (bundledStrings)
			return bundledStrings[1].slice(bundledStrings.position1, bundledStrings.position1 += value)
		return new Tag(value, 15)
	};
	let glbl = { Error, RegExp };
	currentExtensions[27] = (data) => { // http://cbor.schmorp.de/generic-object
		return (glbl[data[0]] || Error)(data[1], data[2])
	};
	const packedTable = (read) => {
		if (src[position++] != 0x84) {
			let error = new Error('Packed values structure must be followed by a 4 element array');
			if (src.length < position)
				error.incomplete = true;
			throw error
		}
		let newPackedValues = read(); // packed values
		if (!newPackedValues || !newPackedValues.length) {
			let error = new Error('Packed values structure must be followed by a 4 element array');
			error.incomplete = true;
			throw error
		}
		packedValues = packedValues ? newPackedValues.concat(packedValues.slice(newPackedValues.length)) : newPackedValues;
		packedValues.prefixes = read();
		packedValues.suffixes = read();
		return read() // read the rump
	};
	packedTable.handlesRead = true;
	currentExtensions[51] = packedTable;

	currentExtensions[PACKED_REFERENCE_TAG_ID] = (data) => { // packed reference
		if (!packedValues) {
			if (currentDecoder.getShared)
				loadShared();
			else
				return new Tag(data, PACKED_REFERENCE_TAG_ID)
		}
		if (typeof data == 'number')
			return packedValues[16 + (data >= 0 ? 2 * data : (-2 * data - 1))]
		let error = new Error('No support for non-integer packed references yet');
		if (data === undefined)
			error.incomplete = true;
		throw error
	};

	// The following code is an incomplete implementation of http://cbor.schmorp.de/stringref
	// the real thing would need to implemennt more logic to populate the stringRefs table and
	// maintain a stack of stringRef "namespaces".
	//
	// currentExtensions[25] = (id) => {
	// 	return stringRefs[id]
	// }
	// currentExtensions[256] = (read) => {
	// 	stringRefs = []
	// 	try {
	// 		return read()
	// 	} finally {
	// 		stringRefs = null
	// 	}
	// }
	// currentExtensions[256].handlesRead = true

	currentExtensions[28] = (read) => { 
		// shareable http://cbor.schmorp.de/value-sharing (for structured clones)
		if (!referenceMap) {
			referenceMap = new Map();
			referenceMap.id = 0;
		}
		let id = referenceMap.id++;
		let startingPosition = position;
		let token = src[position];
		let target;
		// TODO: handle Maps, Sets, and other types that can cycle; this is complicated, because you potentially need to read
		// ahead past references to record structure definitions
		if ((token >> 5) == 4)
			target = [];
		else
			target = {};

		let refEntry = { target }; // a placeholder object
		referenceMap.set(id, refEntry);
		let targetProperties = read(); // read the next value as the target object to id
		if (refEntry.used) {// there is a cycle, so we have to assign properties to original target
			if (Object.getPrototypeOf(target) !== Object.getPrototypeOf(targetProperties)) {
				// this means that the returned target does not match the targetProperties, so we need rerun the read to
				// have the correctly create instance be assigned as a reference, then we do the copy the properties back to the
				// target
				// reset the position so that the read can be repeated
				position = startingPosition;
				// the returned instance is our new target for references
				target = targetProperties;
				referenceMap.set(id, { target });
				targetProperties = read();
			}
			return Object.assign(target, targetProperties)
		}
		refEntry.target = targetProperties; // the placeholder wasn't used, replace with the deserialized one
		return targetProperties // no cycle, can just use the returned read object
	};
	currentExtensions[28].handlesRead = true;

	currentExtensions[29] = (id) => {
		// sharedref http://cbor.schmorp.de/value-sharing (for structured clones)
		let refEntry = referenceMap.get(id);
		refEntry.used = true;
		return refEntry.target
	};

	currentExtensions[258] = (array) => new Set(array); // https://github.com/input-output-hk/cbor-sets-spec/blob/master/CBOR_SETS.md
	(currentExtensions[259] = (read) => {
		// https://github.com/shanewholloway/js-cbor-codec/blob/master/docs/CBOR-259-spec
		// for decoding as a standard Map
		if (currentDecoder.mapsAsObjects) {
			currentDecoder.mapsAsObjects = false;
			restoreMapsAsObject = true;
		}
		return read()
	}).handlesRead = true;
	function combine(a, b) {
		if (typeof a === 'string')
			return a + b
		if (a instanceof Array)
			return a.concat(b)
		return Object.assign({}, a, b)
	}
	function getPackedValues() {
		if (!packedValues) {
			if (currentDecoder.getShared)
				loadShared();
			else
				throw new Error('No packed values available')
		}
		return packedValues
	}
	const SHARED_DATA_TAG_ID = 0x53687264; // ascii 'Shrd'
	currentExtensionRanges.push((tag, input) => {
		if (tag >= 225 && tag <= 255)
			return combine(getPackedValues().prefixes[tag - 224], input)
		if (tag >= 28704 && tag <= 32767)
			return combine(getPackedValues().prefixes[tag - 28672], input)
		if (tag >= 1879052288 && tag <= 2147483647)
			return combine(getPackedValues().prefixes[tag - 1879048192], input)
		if (tag >= 216 && tag <= 223)
			return combine(input, getPackedValues().suffixes[tag - 216])
		if (tag >= 27647 && tag <= 28671)
			return combine(input, getPackedValues().suffixes[tag - 27639])
		if (tag >= 1811940352 && tag <= 1879048191)
			return combine(input, getPackedValues().suffixes[tag - 1811939328])
		if (tag == SHARED_DATA_TAG_ID) {// we do a special check for this so that we can keep the currentExtensions as densely stored array (v8 stores arrays densely under about 3000 elements)
			return {
				packedValues: packedValues,
				structures: currentStructures.slice(0),
				version: input,
			}
		}
		if (tag == 55799) // self-descriptive CBOR tag, just return input value
			return input
	});

	const isLittleEndianMachine = new Uint8Array(new Uint16Array([1]).buffer)[0] == 1;
	const typedArrays = [Uint8Array, Uint8ClampedArray, Uint16Array, Uint32Array,
		typeof BigUint64Array == 'undefined' ? { name:'BigUint64Array' } : BigUint64Array, Int8Array, Int16Array, Int32Array,
		typeof BigInt64Array == 'undefined' ? { name:'BigInt64Array' } : BigInt64Array, Float32Array, Float64Array];
	const typedArrayTags = [64, 68, 69, 70, 71, 72, 77, 78, 79, 85, 86];
	for (let i = 0; i < typedArrays.length; i++) {
		registerTypedArray(typedArrays[i], typedArrayTags[i]);
	}
	function registerTypedArray(TypedArray, tag) {
		let dvMethod = 'get' + TypedArray.name.slice(0, -5);
		let bytesPerElement;
		if (typeof TypedArray === 'function')
			bytesPerElement = TypedArray.BYTES_PER_ELEMENT;
		else
			TypedArray = null;
		for (let littleEndian = 0; littleEndian < 2; littleEndian++) {
			if (!littleEndian && bytesPerElement == 1)
				continue
			let sizeShift = bytesPerElement == 2 ? 1 : bytesPerElement == 4 ? 2 : bytesPerElement == 8 ? 3 : 0;
			currentExtensions[littleEndian ? tag : (tag - 4)] = (bytesPerElement == 1 || littleEndian == isLittleEndianMachine) ? (buffer) => {
				if (!TypedArray)
					throw new Error('Could not find typed array for code ' + tag)
				if (!currentDecoder.copyBuffers) {
					// try provide a direct view, but will only work if we are byte-aligned
					if (bytesPerElement === 1 ||
						bytesPerElement === 2 && !(buffer.byteOffset & 1) ||
						bytesPerElement === 4 && !(buffer.byteOffset & 3) ||
						bytesPerElement === 8 && !(buffer.byteOffset & 7))
						return new TypedArray(buffer.buffer, buffer.byteOffset, buffer.byteLength >> sizeShift);
				}
				// we have to slice/copy here to get a new ArrayBuffer, if we are not word/byte aligned
				return new TypedArray(Uint8Array.prototype.slice.call(buffer, 0).buffer)
			} : buffer => {
				if (!TypedArray)
					throw new Error('Could not find typed array for code ' + tag)
				let dv = new DataView(buffer.buffer, buffer.byteOffset, buffer.byteLength);
				let elements = buffer.length >> sizeShift;
				let ta = new TypedArray(elements);
				let method = dv[dvMethod];
				for (let i = 0; i < elements; i++) {
					ta[i] = method.call(dv, i << sizeShift, littleEndian);
				}
				return ta
			};
		}
	}

	function readBundleExt() {
		let length = readJustLength();
		let bundlePosition = position + read();
		for (let i = 2; i < length; i++) {
			// skip past bundles that were already read
			let bundleLength = readJustLength(); // this will increment position, so must add to position afterwards
			position += bundleLength;
		}
		let dataPosition = position;
		position = bundlePosition;
		bundledStrings = [readStringJS(readJustLength()), readStringJS(readJustLength())];
		bundledStrings.position0 = 0;
		bundledStrings.position1 = 0;
		bundledStrings.postBundlePosition = position;
		position = dataPosition;
		return read()
	}

	function readJustLength() {
		let token = src[position++] & 0x1f;
		if (token > 0x17) {
			switch (token) {
				case 0x18:
					token = src[position++];
					break
				case 0x19:
					token = dataView.getUint16(position);
					position += 2;
					break
				case 0x1a:
					token = dataView.getUint32(position);
					position += 4;
					break
			}
		}
		return token
	}

	function loadShared() {
		if (currentDecoder.getShared) {
			let sharedData = saveState(() => {
				// save the state in case getShared modifies our buffer
				src = null;
				return currentDecoder.getShared()
			}) || {};
			let updatedStructures = sharedData.structures || [];
			currentDecoder.sharedVersion = sharedData.version;
			packedValues = currentDecoder.sharedValues = sharedData.packedValues;
			if (currentStructures === true)
				currentDecoder.structures = currentStructures = updatedStructures;
			else
				currentStructures.splice.apply(currentStructures, [0, updatedStructures.length].concat(updatedStructures));
		}
	}

	function saveState(callback) {
		let savedSrcEnd = srcEnd;
		let savedPosition = position;
		let savedStringPosition = stringPosition;
		let savedSrcStringStart = srcStringStart;
		let savedSrcStringEnd = srcStringEnd;
		let savedSrcString = srcString;
		let savedStrings = strings;
		let savedReferenceMap = referenceMap;
		let savedBundledStrings = bundledStrings;

		// TODO: We may need to revisit this if we do more external calls to user code (since it could be slow)
		let savedSrc = new Uint8Array(src.slice(0, srcEnd)); // we copy the data in case it changes while external data is processed
		let savedStructures = currentStructures;
		let savedDecoder = currentDecoder;
		let savedSequentialMode = sequentialMode;
		let value = callback();
		srcEnd = savedSrcEnd;
		position = savedPosition;
		stringPosition = savedStringPosition;
		srcStringStart = savedSrcStringStart;
		srcStringEnd = savedSrcStringEnd;
		srcString = savedSrcString;
		strings = savedStrings;
		referenceMap = savedReferenceMap;
		bundledStrings = savedBundledStrings;
		src = savedSrc;
		sequentialMode = savedSequentialMode;
		currentStructures = savedStructures;
		currentDecoder = savedDecoder;
		dataView = new DataView(src.buffer, src.byteOffset, src.byteLength);
		return value
	}
	function clearSource() {
		src = null;
		referenceMap = null;
		currentStructures = null;
	}

	function addExtension(extension) {
		currentExtensions[extension.tag] = extension.decode;
	}

	function setSizeLimits(limits) {
		if (limits.maxMapSize) maxMapSize = limits.maxMapSize;
		if (limits.maxArraySize) maxArraySize = limits.maxArraySize;
		if (limits.maxObjectSize) limits.maxObjectSize;
	}

	const mult10 = new Array(147); // this is a table matching binary exponents to the multiplier to determine significant digit rounding
	for (let i = 0; i < 256; i++) {
		mult10[i] = +('1e' + Math.floor(45.15 - i * 0.30103));
	}
	let defaultDecoder = new Decoder({ useRecords: false });
	const decode = defaultDecoder.decode;
	const decodeMultiple = defaultDecoder.decodeMultiple;
	const FLOAT32_OPTIONS = {
		NEVER: 0,
		ALWAYS: 1,
		DECIMAL_ROUND: 3,
		DECIMAL_FIT: 4
	};
	function roundFloat32(float32Number) {
		f32Array[0] = float32Number;
		let multiplier = mult10[((u8Array[3] & 0x7f) << 1) | (u8Array[2] >> 7)];
		return ((multiplier * float32Number + (float32Number > 0 ? 0.5 : -0.5)) >> 0) / multiplier
	}

	exports.Decoder = Decoder;
	exports.FLOAT32_OPTIONS = FLOAT32_OPTIONS;
	exports.Tag = Tag;
	exports.addExtension = addExtension;
	exports.checkedRead = checkedRead;
	exports.clearSource = clearSource;
	exports.decode = decode;
	exports.decodeMultiple = decodeMultiple;
	exports.getPosition = getPosition;
	exports.mult10 = mult10;
	exports.read = read;
	exports.roundFloat32 = roundFloat32;
	exports.setExtractor = setExtractor;
	exports.setSizeLimits = setSizeLimits;
	exports.typedArrays = typedArrays;

}));
//# sourceMappingURL=decode-no-eval.cjs.map

Выполнить команду


Для локальной разработки. Не используйте в интернете!